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Abstract—Advances in computational power are enabling 

high-precision numerical simulations of unsteady flows using 

unstructured grids. The dynamic ray casting technique with the 

aid of texture hardware can achieve high-accuracy volume 

rendering of unstructured time-varying data from these 

simulations. However, the existing approach does not pay 

enough attention to temporal coherence, which depresses the 

rendering rate. Besides this, the texture structure used to store 

the mesh data results in a waste of GPU memory, which limits 

the mesh scale of the rendering data. This paper presents a 

high-efficiency dynamic ray casting algorithm for rendering 

unstructured time-varying fields using temporal coherence. 

Meanwhile, the pressure of GPU memory is effectually reduced 

by a well-designed texture structure. The analysis and 

experiments demonstrate that our approach gains a much lower 

cost of both time and space than the existing method and allows 

rendering time-varying data on a larger mesh scale in real time. 

 
Index Terms—Temporal coherence, unstructured grids, 

time-varying flows, GPU, ray casting 

I. INTRODUCTION 

n the field of CFD, unstructured grids are widely applied to 

solve 3D flows for a high-precision numerical simulation. 

Advances in computational power enable the simulation of 

unsteady flows that produces time-varying data with hundreds 

of time steps. Visualization of these unstructured time-varying 

data offers the scientists powerful insight into the 

characteristic of unsteady flows and the reliability of 

simulation results. 

Volume rendering, which is taken as the leading and 

preferred method to visualize 3D scalar fields, has many 

applications in flow visualization[1,2,7,9,11,16]. However, it 

is a challenge to render the unstructured time-varying volume 

data in real time by reason that: (1) volume rendering of even 

static unstructured-grid data is expensive due to the large 

mesh scale and the complicated topology, and (2) the dynamic 

(time-varying) volume data with a large amount of time steps 

(see Table 2) increase the difficulty in performing real-time 

rendering. The availability of texture hardware support for 
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volume rendering enables real-time visualization of static 

unstructured-grid data. The GPU-based ray casting (HRC)[1] 

and the Hardware-Assisted Visibility Sorting (HAVS)[2] are 

two of the fastest volume rendering techniques using texture 

hardware for static unstructured-grid data. Recently, 

Bernardon et al.[3] proposed an approach that coupled a 

compression scheme[4] with these two techniques to render 

dynamic unstructured-grid volume data (we call them the 

dynamic HRC and the dynamic HAVS). Then they improved 

the dynamic HAVS with the aid of multiple processors[5]. 

However, these approaches do not pay enough attention to 

temporal coherence that plays an important role in visualizing 

time-varying data[7,8,9,10,11], which depresses the 

performance. 

HAVS can render data on a larger mesh scale (main 

memory scale) than HRC (GPU memory scale), while HRC 

can lead to an image with higher accuracy[2,3] which is 

especially important for scientists to analyze the 

high-precision numerical resolutions. However, both the static 

and the dynamic HRC algorithms use a cell-based texture 

structure to store the whole mesh data. Each cell texture 

includes all its vertex data although a cell vertex is usually 

shared by a group of point-neighboring cells. This cell-based 

layout results in an inefficient storage since many redundant 

vertex data are stored in GPU memory. Moreover, the number 

of the cells is much larger than that of the vertices for most 3D 

unstructured-grid data from CFD simulations[1,2,3,5,6], so 

the cell-based texture structure increases the pressure of GPU 

memory even further. 

This paper presents a novel dynamic ray casting algorithm 

to perform high-efficiency rendering of unstructured 

time-varying data using temporal coherence with the aid of 

texture hardware. Besides this, the pressure of GPU memory 

is effectually reduced by a well-designed texture structure. 

The analysis and experiments demonstrate that our approach 

gains a much lower cost of both time and GPU memory than 

the existing method and achieves a real-time performance 

even for time-varying data on a large mesh scale. To 

summarize, the major contributions of this paper are: 

  We provide a method to qualitatively analyze temporal 

coherence of both the cell and the vertex data on unstructured 

grids. Then the cell and the vertex temporal tables are built 

based on the analysis result to achieve a lower time cost during 

ray traversal. 

  Taking the characteristic of CFD unstructured grids into 

account, we design a novel texture structure that separates the 

vertex data from the cell data to reduce the pressure of GPU 
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memory, allowing the storage of a larger-scale data set than 

the dynamic HRC. 

  We propose to use 16 steps as a basic unit for data 

compression which enables a smarter codebook than the 

dynamic HRC, so that the codebook can be loaded faster to 

avoid rendering stalls while switching codebooks. Moreover, 

since there are two codebooks (corresponding to consecutive 

32-step data) in GPU memory at a moment, they require 32-bit 

temporal tables which can be nicely laid out inside the textures 

leading to a compact and efficient storage (detailed in Sec. V).  

II. RELATED WORK 

Research so far in time-varying volume data visualization 

has primarily utilized temporal coherence for fast rendering 

data on structured grids[3,7,16]. To improve the rendering 

performance, Shen[8] qualitatively analyzed temporal 

coherence of each voxel on structured grids and devised a 

temporal hierarchical index tree for fast isosurface extraction 

in time-varying fields. However, the tree does not maintain the 

spatial locality of the voxels and can not be readily adopted for 

volume rendering. Shen[9] and Ellsworth[10] proposed a 

time-space partition (TSP) tree for a better use of temporal 

and spatial coherence to achieve volume rendering of 

time-varying scalar fields on structured grids. They 

quantitatively analyze temporal coherence of the subvolumes 

on each spatial level and only use the mean values of the 

subvolumes that satisfy the temporal and spatial error 

tolerance to perform rendering. As a result, the amount of data 

required to be loaded into the main memory is reduced. This 

enables the algorithm to render a large-scale time-varying data 

in real time. Ma[11] organized the structured time-varying 

volume data with a group of octrees and used temporal 

coherence to prune the branches for each octree. Thus the 

demanding storage space is reduced, making it possible to 

render time-varying data. 

Bernardon[3] compressed unstructured time-varying 

volume data into several codebooks with the vector 

quantization(VQ) approach[4]. Temporal coherence is used to 

gain a fast generation of the codebooks. Because the 

compression is done in a preprocessing stage, temporal 

coherence is not employed to save the time and space cost of 

the algorithm. In addition, an important difference between 

the static and the dynamic HRC algorithms is the 

representation of the cell gradient for reconstruction purpose 

during sampling. To reduce the usage of GPU memory, the 

dynamic HRC stores a gradient matrix [12] to compute the 

gradient of the scalar field in a cell (cell gradient) on line 

instead of the pre-computed cell gradient. 

III. TEMPORAL COHERENCE OF UNSTRUCTURED 

TIME-VARYING FLOWS 

Sampling is the major part of the ray casting algorithm. 

During sampling, HRC reconstructs the field at a sample with 

the cell gradient and a vertex data value[1,3,6,16]. Thus 

temporal coherence of the cell and the vertex data can be used 

to reduce the cost of sampling for high-efficiency ray casting. 

To utilize temporal coherence, a method is presented to 

qualitatively analyze the temporal coherence of the cell and 

the vertex data on unstructured grids. In the preprocessing 

stage, the cell and the vertex temporal tables are built with the 

aid of the analysis result. Then these temporal tables are used 

to reduce the time cost for sampling during ray traversal. 

A. The span space 

The variation of the cell extreme values over time can help 

to analyze temporal coherence of a cell[8]. The cell extreme 

values combined with the maximum and the minimum among 

the whole vertex data values of the cell can be characterized 

by the span space[13]. Since tetrahedral meshes are the most 

common forms of unstructured grids, and other types of 

unstructured-grid cells can be effectually divided into 

tetrahedra. Therefore we only consider tetrahedral meshes in 

the following discussion. For a tetrahedral cell t , let 
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tS  be its four vertex data values at the i th time step. 

Then the maximum value (denoted by ,max
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minimum value (denoted by ,min
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tS ) of cell t  at the i th step are 

obtained by 
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t t t t tS Max S S S S  and 

,min ,0 ,1 ,2 ,3( , , , )i i i i i

t t t t tS Min S S S S  respectively. In the span space, each 

cell is represented by a point whose x  coordinate represents 

its minimum value and whose y  coordinate represents its 

maximum value. For a time-varying field, a cell has multiple 

corresponding points in the span space, and each point 

represents the two extreme values of the cell at one time step. 

Fig.1 shows an example of the span space of cell t in the time 

interval [0,15] . 

 
Fig. 1 The span space of cell t in a time interval [0,15] 

 

B. Cell temporal coherence and cell temporal table 

Given a time interval [ , ]i j  ( , {0,1,..., 1} and i j n i j   ), a 

cell’s temporal coherence is determined by the spread of the 

cell’s 1j i   corresponding points in the span space. The 

narrower the spread is, the lower temporal variation and the 

stronger temporal coherence that the cell has. To quantify the 

spread, the lattice subdivision scheme[14] is applied to the 

span space. The scheme subdivides the span space into N N  

non-uniformly spaced rectangular elements. The subdivision 

should ensure that the points are evenly distributed among the 

elements. Fig.1 is an example of the lattice subdivision of 

8 8  lattice elements. 

With the aid of the lattice subdivision, we can quantify the 

spread with K K lattice elements ( {1,2,..., })K N . A cell 

has strong temporal coherence in the time interval [ , ]i j  if its 

corresponding points in this interval are located within a 

spread of 2 2 lattice elements. Using this strong temporal 

coherence condition, we can build the cell’s temporal (CT) 

table in the whole time interval of a time-varying field. For a 

time-varying field with n  time steps, each cell has an n -bit 

CT table with binary entries whose values are decided by the 



following principle. First, we find a series of consecutive 

subintervals (denoted by 
0[0, 1]n  , 

0 1[ , 1]n n  ,…, 

1[ , 1]m mn n  , [ , 1]mn n ) that divide the time interval 

[0, 1]n  into several parts. The division should make each 

subinterval include as many points as possible as long as they 

satisfy the strong temporal coherence condition. It guarantees 

that the cell has strong temporal coherence within each 

subinterval, and has weak temporal coherence between two 

consecutive subintervals. Then the cell’s CT table can be 

created as shown in Fig. 2. Here, if the i th bit is filled with 

“0”, it means that the cell has strong temporal coherence 

between the 1i  th and the i th time steps. Otherwise, it 

means that the cell has weak temporal coherence between the 

two steps. 

 
Fig. 2 A CT table in the time interval [0, 1]n   

C. Vertex temporal coherence and vertex temporal table 

The vertex temporal (VT) tables can be created from the CT 

tables. As mentioned above, temporal coherence of a cell is 

characterized by the variation of the cell extreme values which 

are the maximum and the minimum of the cell’s vertex data 

values. It means that if the cell has strong temporal coherence 

in the given time interval [ , ]i j , each of its vertices also has 

strong temporal coherence. In most cases, it comes to the 

conclusion that a vertex has the same temporal table as the cell 

it belongs to. However, a vertex is usually shared by several 

cells. Consequently, temporal coherence may be different in 

strength among these point-neighboring cells. 

In fact, there is usually strong spatial coherence among the 

neighboring cells by reason of the generation scheme for 3D 

unstructured grids[15,18]. It results in the similar VT tables 

among the point-neighboring cells. However, when there are 

discontinuity phenomena (e.g., shock waves) in flows, the 

state of the fluid as described by the density, pressure and 

other primitive variables can change radically across the 

discontinuity boundary. This also means that spatial 

coherence will be locally broken when a discontinuity arises 

during the development of an unsteady flow, which results in 

weak spatial coherence among the point-neighboring cells 

near the discontinuity boundary. To solve this conflict, we 

stipulate that when there are two or more point-neighboring 

cells with different temporal coherence at the i th time step 

(corresponding to the i th bit of a CT table), the shared vertex 

has weak temporal coherence with a VT table whose i th bit is 

“1”. Suppose cell
1t  and cell

2t  are point-neighbors sharing 

vertex v . Given their CT tables {1000 0110 0011 1100} and 

{1000 0110 0010 0000}, the VT table of vertex v  is {1000 

0110 0011 1100}. 

 
Fig. 3 Algorithm overview (sampling for one cell) 

IV. TEMPORAL COHERENCE BASED DYNAMIC HRC 

ALGORITHM 

We devise a high-efficiency dynamic ray casting algorithm 

for rendering unstructured time-varying data using temporal 

coherence. On each viewing ray, the algorithm does sampling 

once a cell during ray traversal (the sample is a ray-cell 

intersection) and transfers the reconstruction result (the field 

value at the sample) into color (RGBA) which is accumulated 

to the relevant pixel to form the image. Here, we focus on 

using temporal coherence to reduce the time cost of 

reconstruction which is the kernel part of sampling. The 

overview of our algorithm is illustrated in Fig. 3. Given the 

current time step i and cell t , it basically carries out the 

following steps: 

Step 1: Compute the location of a new sample. 

Step 2: Decompress the vertex data value(s) and compute the 

cell-gradient. 

  Step 2.1: Evaluate the necessity of gradient computation 

using the CT table. If necessary, jump to Step 2.3. 

  Step 2.2: Evaluate the necessity of data decompression for 

the reference vertex of cell t using the relevant TV table. If 

necessary, do decompression for the reference vertex, 

otherwise jump to Step 3. 

  Step 2.3: Evaluate the necessity of data decompression for 

all the vertices of cell t using the VT tables and decompress 

the vertex data value(s). Then compute the cell-gradient with 

the gradient matrix[12] and the decompressed vertex data. 

Step 3: Reconstruct the field at the sample. 

  Do reconstruction using the computed cell gradient (or the 

cell gradient at the previous time step) and the decompressed 

vertex data value (or the vertex data value at the previous time 

step) by the linear gradient reconstruction method. 

Step 4: Do color transfer and accumulation. 

A. Linear gradient reconstruction method 

 
Fig. 4 Principle of the linear gradient reconstruction  

The location of the sample (ray-cell intersection) can be 

obtained by using radial-polyhedron intersection [17]. Then 

the field at the sample is reconstructed by the linear gradient 

reconstruction method [6] (illustrated in Fig. 4) which is 

employed by the static and the dynamic HRC algorithms. 



Suppose the intersection S  is the sample of the current cell t . 

Given the sample location
Sr , the field (denoted by SQ ) at the 

sample can be reconstructed by the following linear gradient 

reconstruction equation: 

0 0( )S t SQ Q Q r r                            (1), 

 where the vector
tQ is the cell gradient with the three 

components ,t xQ , ,t yQ and ,t zQ , 0r and 0Q are 

respectively the location and the data value of a cell vertex 

(called the reference vertex). 

B. Temporal coherence based time-varying data 

reconstruction 

Since the static HRC algorithm already uses texture 

memory to store the data, adding the time-varying data 

consume even more GPU memory. To reduce the memory 

consumption, the dynamic HRC algorithm uses the 

compressed 0Q and the on-line computed
tQ instead of the 

original 0Q and the pre-computed
tQ to perform 

reconstruction. This does assist in reducing the pressure of 

GPU memory. However, the on-line gradient computation and 

data decompression make reconstruction cost more time, 

which depresses the rendering rate. To maximize the rate, we 

use the CT and VT tables to accelerate gradient computation 

and data decompression during reconstruction. With the CT 

table, we can evaluate the necessity of gradient computation 

for reconstruction of a new sample. This helps to reduce the 

times of both gradient computation and data decompression. 

Given the time step i and cell t , if the i th bit of cell t ’s CT 

table is ”0”, the gradient of cell t  at the i th step (denoted by 
i

tQ ) is approximately equal to the one at the 1i  th step 

(denoted by 1i

tQ  ). Thus the gradient 1i

tQ  can be reused to 

perform reconstruction at the i th step instead of on-line 

gradient computation. With the VT table, we can evaluate the 

necessity of data decompression for the relevant vertices. This 

can also help to accelerate the gradient computation requiring 

the decompressed vertex data. Similarly, if the i th bit of 

vertex kv ’s VT table is “0”, the data value of vertex kv at 

the i th step (denoted by i

kQ ) is approximately equal to the one 

at the 1i  th step (denoted by 1i

kQ  ). Thus the data 

value 1i

kQ  can be reused to perform reconstruction or gradient 

computation at the i th step instead of on-line data 

decompression. 

V. HARDWARE-ASSISTED IMPLEMENTATION 

The mesh scale of the data that HRC can render is limited 

by the capacity of GPU memory. This also means that special 

care must be taken when choosing how to layout the data 

inside textures.  Moreover, a remarkable difference between 

the structured-grid and the unstructured-grid data is that the 

number of the cells is much larger than that of the vertices for 

most unstructured-grid data from CFD simulations 

[1,2,3,5,6,15]. Keeping this in mind, we design a novel data 

structure so that the time-varying fields can be nicely laid out 

and fit in the textures to save GPU memory space, allowing 

the storage of a larger mesh scale data set. Our data structure 

separates the vertex data from the cell data in a different 

manner from both the static and the dynamic HRC algorithms 

that merge the vertex data with the cell data inside the textures. 

This is very important for reducing the pressure of GPU 

memory. In addition, time-varying data with a large amount of 

steps make data loading (from the hard disk to GPU memory) 

the bottleneck of the volume rendering pipeline. We employ 

the same VQ approach[4] as the dynamic HRC does to 

compress the unstructured time-varying fields. An important 

difference is the scheme of data loading. We propose 32 steps 

as a basic unit (different from the dynamic HRC using 64 steps) 

for data loading which need the temporal tables 32 bits in 

length and thus leads to a compact and efficient texture 

structure (detailed in Sec. V)  

A. Data compression and management 

In the preprocessing stage, the VQ approach is employed to 

do the compression. It divides the time-varying data into 

several groups, each of which includes data within m  

consecutive time steps (where m  is considered to be a square 

number for simplicity). Then the data in each group are 

compressed into a codebook (packed with 2D textures). 

During rendering, the codebook is loaded into GPU memory 

and accessed by its two indices for data decompression. To 

avoid rendering stalls while loading the codebook, the first 

two codebooks (corresponding to the first two groups of data) 

and the 32-bit temporal tables are loaded into GPU memory at 

the beginning of rendering. After the last time step data of the 

first codebook are accessed, the texture references are 

swapped to the second one which is already in GPU memory. 

The rendering process continues, while the next codebook and 

temporal tables are loaded in place of the first ones, so that the 

texture data of the next time step can be prepared before it is 

required. 

The dynamic HRC algorithm uses 64 steps ( 64m  ) per 

group as a basic unit for data loading. Each codebook uses 

72 256 64 4B+256 8 4BKB      [3]. Instead, we propose 

16 steps per group ( 16m  ) whose codebook uses 

20 256 16 4B+256 4 4BKB      . Fig. 5 shows the layout 

of the codebook texture. This important change brings three 

main advantages. First, it reduces usage of GPU memory since 

the time of rendering 16-step time-varying data is enough to 

perform loading of the next group data. Second, there are 

always 32-step data be in GPU memory at a moment (there are 

two codebooks corresponding to two consecutive groups in 

GPU memory at a moment) that need a 32-bit temporal tables 

and thus leads to a compact and efficient texture structure 

(detailed in Sec. V.B). Third, compared to the 64-step data per 

group, the 16-step data can be compressed into a smarter 

codebook leading to faster data loading which can help to 

avoid rendering stalls while switching codebooks. 

 
Fig. 5 Layout of the codebook texture for 16-step data  

B. GPU texture structure 

As mentioned above, the texture structures of both the static 

and the dynamic HRC algorithms merge the cell data with the 



vertex data and use the cell as a basic unit to store the 

fields[1,3]. They store the locations and the field values (or 

the codebook indices) of the cell’s vertices and the cell 

gradient together in each cell texture. However, this texture 

structure is extravagant for HRC for a large amount of vertex 

data redundantly stored in GPU memory. To reduce the 

memory consumption, a texture structure is designed to 

separate the vertex data from the cell data as shown in table 1. 

The cell and the vertex textures respectively include the CT 

and the VT tables with a length of 32 bits (see the green part).  

The CT table is used to evaluate the necessity of gradient 

computation during reconstruction. If not necessary, the 

gradient 1i

tQ   (cell t ’s gradient at the ( 1)i  th step) can be 

reused to perform reconstruction at the i th step. So the cell 

gradient 1i

tQ  (12B) should be stored in the cell texture and 

be updated with the lapse of time (see the red part in Table 

1.(a)). It is combined with the 32-bit CT table (4B), nicely 

fitting in a texture vector (16B), which leads to a compact and 

efficient texture structure. Besides this, the gradient matrix[12] 

in the dynamic HRC is employed for on-line computation of 

the cell gradient. Therefore, the matrix should be stored in the 

cell texture (64B). In addition, the texture coordinates of the 

relevant vertices (for building the relationship between a cell 

and its vertices) and the face-neighboring cells (for ray 

traversal) should also be stored in the cell texture. 

Similarly, we use the VT table to evaluate the necessity of 

data decompression. So the vertex data value at the previous 

time step (denoted by 1i

NQ  ) should be stored in the vertex 

texture and be updated with the lapse of time (see the red part 

in Table 1.(b)). Besides this, the vertex texture should store 

the location of the vertex (12B) to compute the sample 

location [17] and the cell gradient. We combine it with 1i

NQ   

(4B) to form a texture vector. To decompress the vertex data 

value, we use 12B to store the codebook indices which are 

combined with the 32-bit VT table just to form a texture 

vector. 
Table 1 GPU texture structure used in our algorithm 

(a) Cell texture (for one cell) 

 

(b) Vertex texture (for one vertex) 

  

C. Analysis of the space cost 

With our texture structure, the data stored per cell use 

144B = 9 16 B , and the data stored per vertex use 

32B = 2 16 B . Suppose there are c  cells and v  vertices in 

the tetrahedral mesh. Then the storage of the mesh data is 

given by 144 32c B v B   . For 16-step data per group, the 

codebook takes up the storage of 20KB (mentioned in Sec. 

V.A). At a moment, there are two codebooks corresponding to 

two consecutive groups (32 steps) in GPU memory. As a 

result, the space cost of our approach is given by 

144 32 40c B v B KB    . 

The dynamic HRC[3], which combines the cell data with 

the vertex data and use the cell as a basic unit to store the mesh 

data, costs 192B storage per tetrahedron. Since it uses 64-step 

data per group, at a moment, the codebooks of two groups 

uses 144 2 72KB KB  . So the space cost of the dynamic 

HRC is given by 192 144c B KB  . 

As mentioned above, for most 3D unstructured-grid data 

from CFD simulations, the number of the cells is much larger 

than that of the vertices. As a result, our approach achieves a 

lower cost of GPU memory than the dynamic HRC, which 

allows the storage of dynamic data on a larger mesh scale. 

Moreover, from the experimental results (Sec. VI), it is easy to 

find that the rendering rate can be considerably improved by 

using temporal coherence of time-varying flows. 

Table 2 Comparisons of the rendering rates between our approach and the 

Dynamic HRC 

 
 

VI. EXPERIMENTS 

Our algorithm is implemented on Red Had Enterprise 

Linux 5 with an nVIDIA GeForce GTS 250 graphics card 

(1024MB) and a 2.67GHz Intel® Core™ i7 920 processor 

(2048MB RAM). To test the validity of our approach, we 

render the following data from CFD simulations by our 

algorithm and the dynamic HRC. Table 2 shows the 

comparisons of the performances between these two 

algorithms. The experimental results demonstrate that our 

approach gains a much higher rendering rate and allows 

rendering time-varying data on a larger mesh scale than the 

dynamic HRC. 

A. Forward step shocks 

The flow of forward step shocks is a classic unsteady flow 

in the wind tunnel experiments. The ultrasonic flow comes 

from left and form an arched shock before the step (see Fig. 6). 

The shock is reflected back from top to bottom for its great 

strength. After three times of reflection, the final state of the 

unsteady flow forms as shown in Fig. 6. 

 
Fig. 6 The final state of the forward step shocks 

 
The time-varying data from the simulation of the forward 

step shocks are rendered by our approach. The user is allowed 



to slow down or pause the dynamic rendering for further 

analysis of the fields. Fig.7 shows the rendering results 

(pressure fields) of some important steps when the flow 

pauses.  

B. Pitching NACA 0012 airfoil 

Fig. 8 displays the rendering results of the time-varying 

density fields from the simulation of the unsteady transonic 

flow past a pitching NACA 0012 airfoil. This is a benchmark 

case that includes hundreds of time steps, some of which are 

shown here. 

C. Supersonic aircraft 

Fig. 9 shows the rendering results ( u velocity fields) of the 

flow fields around a supersonic aircraft. The flow rounds the 

aircraft and develops into complicated swirling vortices at the 

tail. The time-varying data on a large mesh scale of 892K cells 

and 207K vertices can not be rendered with the dynamic HRC 

due to memory limitations of storing the mesh on GPU. 

VII. CONCLUSION 

Volume rendering of dynamic unstructured-grid fields is a 

challenging problem in flow visualization. To maximize the 

rendering rate, temporal coherence of the time-varying data 

should be effectively utilized. However, research so far has 

primarily utilized temporal coherence to render time-varying 

data on structured grids. In this paper, we devise a scheme for 

using temporal coherence to achieve high-efficiency volume 

rendering of dynamic unstructured-grid data. We choose to 

perform rendering on the framework of the ray casting 

technique by reason of its high accuracy, which is especially 

important for flow visualization. Unfortunately, the mesh 

scale of the data that GPU-based ray casting algorithm can 

render is limited by the capability of texture memory. To make 

full use of GPU memory, a texture structure is designed to 

separate the vertex data from the cell data, which allows 

rendering time-varying data on a larger mesh scale. The 

experiments demonstrate that our approach achieves a much 

higher performance on both time and space, and allows 

rendering a larger mesh-scale time-varying data than the 

existing method. 

   
(a) Step 45                                                                     (b) Step 90                                                                  (c) Step 135 

   
(d) Step 170                                                                  (e) Step 210                                                                 (f) Step 240 

Fig. 7 Rendering results of different time steps using our approach (forward step shocks) 

    
(a) Step 120                                         (b) Step 150                                    (c) Step 180                                  (d) Step 210 

    
(e) Step 240                                    (f) Step 270                                      (g) Step 300                                         (h) Step 330 

Fig. 8 Rendering results of different time steps using our approach (pitching NACA 0012 airfoil) 



   
(a) Step 30                                                                     (b) Step 90                                                                    (c) Step 120 

   
(d) Step 180                                                                 (e) Step 230                                                                   (f) Step 290 

Fig. 9 Rendering results of different time steps using our approach (supersonic aircraft) 
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