


Abstract—Advances in computational power are enabling

high-precision numerical simulations of unsteady flows using

unstructured grids. The dynamic ray casting technique with the

aid of texture hardware can achieve high-accuracy volume

rendering of unstructured time-varying data from these

simulations. However, the existing approach does not pay

enough attention to temporal coherence, which depresses the

rendering rate. Besides this, the texture structure used to store

the mesh data results in a waste of GPU memory, which limits

the mesh scale of the rendering data. This paper presents a

high-efficiency dynamic ray casting algorithm for rendering

unstructured time-varying fields using temporal coherence.

Meanwhile, the pressure of GPU memory is effectually reduced

by a well-designed texture structure. The analysis and

experiments demonstrate that our approach gains a much lower

cost of both time and space than the existing method and allows

rendering time-varying data on a larger mesh scale in real time.

Index Terms—Temporal coherence, unstructured grids,

time-varying flows, GPU, ray casting

I. INTRODUCTION

n the field of CFD, unstructured grids are widely applied to

solve 3D flows for a high-precision numerical simulation.

Advances in computational power enable the simulation of

unsteady flows that produces time-varying data with hundreds

of time steps. Visualization of these unstructured time-varying

data offers the scientists powerful insight into the

characteristic of unsteady flows and the reliability of

simulation results.

Volume rendering, which is taken as the leading and

preferred method to visualize 3D scalar fields, has many

applications in flow visualization[1,2,7,9,11,16]. However, it

is a challenge to render the unstructured time-varying volume

data in real time by reason that: (1) volume rendering of even

static unstructured-grid data is expensive due to the large

mesh scale and the complicated topology, and (2) the dynamic

(time-varying) volume data with a large amount of time steps

(see Table 2) increase the difficulty in performing real-time

rendering. The availability of texture hardware support for

Manuscript received December 8, 2010; revised January 8, 2011. This

work is supported by the National Basic Research Program (No.

2009CB723803) and the National Science Foundation Program (No.

60873120) of China.

All the authors are with the College of Computer Science and Technology,

National University of Defense Technology, China. (e-mail: {maqianliemail,

liangzeng, huaxunxu, wenkewang, sikunli}@gmail.com).
Corresponding author: phn: +8613974936415, address: Team 7, College

of Computer Science and Technology, National University of Defense

Technology, Changsha 410073, China, e-mail: maqianliemail@gmail.com.

volume rendering enables real-time visualization of static

unstructured-grid data. The GPU-based ray casting (HRC)[1]

and the Hardware-Assisted Visibility Sorting (HAVS)[2] are

two of the fastest volume rendering techniques using texture

hardware for static unstructured-grid data. Recently,

Bernardon et al.[3] proposed an approach that coupled a

compression scheme[4] with these two techniques to render

dynamic unstructured-grid volume data (we call them the

dynamic HRC and the dynamic HAVS). Then they improved

the dynamic HAVS with the aid of multiple processors[5].

However, these approaches do not pay enough attention to

temporal coherence that plays an important role in visualizing

time-varying data[7,8,9,10,11], which depresses the

performance.

HAVS can render data on a larger mesh scale (main

memory scale) than HRC (GPU memory scale), while HRC

can lead to an image with higher accuracy[2,3] which is

especially important for scientists to analyze the

high-precision numerical resolutions. However, both the static

and the dynamic HRC algorithms use a cell-based texture

structure to store the whole mesh data. Each cell texture

includes all its vertex data although a cell vertex is usually

shared by a group of point-neighboring cells. This cell-based

layout results in an inefficient storage since many redundant

vertex data are stored in GPU memory. Moreover, the number

of the cells is much larger than that of the vertices for most 3D

unstructured-grid data from CFD simulations[1,2,3,5,6], so

the cell-based texture structure increases the pressure of GPU

memory even further.

This paper presents a novel dynamic ray casting algorithm

to perform high-efficiency rendering of unstructured

time-varying data using temporal coherence with the aid of

texture hardware. Besides this, the pressure of GPU memory

is effectually reduced by a well-designed texture structure.

The analysis and experiments demonstrate that our approach

gains a much lower cost of both time and GPU memory than

the existing method and achieves a real-time performance

even for time-varying data on a large mesh scale. To

summarize, the major contributions of this paper are:

 We provide a method to qualitatively analyze temporal

coherence of both the cell and the vertex data on unstructured

grids. Then the cell and the vertex temporal tables are built

based on the analysis result to achieve a lower time cost during

ray traversal.

 Taking the characteristic of CFD unstructured grids into

account, we design a novel texture structure that separates the

vertex data from the cell data to reduce the pressure of GPU

Hardware-Assisted High-Efficiency Ray Casting

of Unstructured Time-Varying Flows Using

Temporal Coherence

Qianli Ma

, Liang Zeng, Huaxun Xu, Wenke Wang, Sikun Li

I

mailto:maqianliemail,%20liangzeng,%20huaxunxu,%20wenkewang,%20sikunli%7D@gmail.com
mailto:maqianliemail,%20liangzeng,%20huaxunxu,%20wenkewang,%20sikunli%7D@gmail.com

memory, allowing the storage of a larger-scale data set than

the dynamic HRC.

 We propose to use 16 steps as a basic unit for data

compression which enables a smarter codebook than the

dynamic HRC, so that the codebook can be loaded faster to

avoid rendering stalls while switching codebooks. Moreover,

since there are two codebooks (corresponding to consecutive

32-step data) in GPU memory at a moment, they require 32-bit

temporal tables which can be nicely laid out inside the textures

leading to a compact and efficient storage (detailed in Sec. V).

II. RELATED WORK

Research so far in time-varying volume data visualization

has primarily utilized temporal coherence for fast rendering

data on structured grids[3,7,16]. To improve the rendering

performance, Shen[8] qualitatively analyzed temporal

coherence of each voxel on structured grids and devised a

temporal hierarchical index tree for fast isosurface extraction

in time-varying fields. However, the tree does not maintain the

spatial locality of the voxels and can not be readily adopted for

volume rendering. Shen[9] and Ellsworth[10] proposed a

time-space partition (TSP) tree for a better use of temporal

and spatial coherence to achieve volume rendering of

time-varying scalar fields on structured grids. They

quantitatively analyze temporal coherence of the subvolumes

on each spatial level and only use the mean values of the

subvolumes that satisfy the temporal and spatial error

tolerance to perform rendering. As a result, the amount of data

required to be loaded into the main memory is reduced. This

enables the algorithm to render a large-scale time-varying data

in real time. Ma[11] organized the structured time-varying

volume data with a group of octrees and used temporal

coherence to prune the branches for each octree. Thus the

demanding storage space is reduced, making it possible to

render time-varying data.

Bernardon[3] compressed unstructured time-varying

volume data into several codebooks with the vector

quantization(VQ) approach[4]. Temporal coherence is used to

gain a fast generation of the codebooks. Because the

compression is done in a preprocessing stage, temporal

coherence is not employed to save the time and space cost of

the algorithm. In addition, an important difference between

the static and the dynamic HRC algorithms is the

representation of the cell gradient for reconstruction purpose

during sampling. To reduce the usage of GPU memory, the

dynamic HRC stores a gradient matrix [12] to compute the

gradient of the scalar field in a cell (cell gradient) on line

instead of the pre-computed cell gradient.

III. TEMPORAL COHERENCE OF UNSTRUCTURED

TIME-VARYING FLOWS

Sampling is the major part of the ray casting algorithm.

During sampling, HRC reconstructs the field at a sample with

the cell gradient and a vertex data value[1,3,6,16]. Thus

temporal coherence of the cell and the vertex data can be used

to reduce the cost of sampling for high-efficiency ray casting.

To utilize temporal coherence, a method is presented to

qualitatively analyze the temporal coherence of the cell and

the vertex data on unstructured grids. In the preprocessing

stage, the cell and the vertex temporal tables are built with the

aid of the analysis result. Then these temporal tables are used

to reduce the time cost for sampling during ray traversal.

A. The span space

The variation of the cell extreme values over time can help

to analyze temporal coherence of a cell[8]. The cell extreme

values combined with the maximum and the minimum among

the whole vertex data values of the cell can be characterized

by the span space[13]. Since tetrahedral meshes are the most

common forms of unstructured grids, and other types of

unstructured-grid cells can be effectually divided into

tetrahedra. Therefore we only consider tetrahedral meshes in

the following discussion. For a tetrahedral cell t , let
,0

i

tS ,
,1

i

tS ,

,2

i

tS and
,3

i

tS be its four vertex data values at the i th time step.

Then the maximum value (denoted by ,max

i

tS) and the

minimum value (denoted by ,min

i

tS) of cell t at the i th step are

obtained by
,max ,0 ,1 ,2 ,3(, , ,)i i i i i

t t t t tS Max S S S S and

,min ,0 ,1 ,2 ,3(, , ,)i i i i i

t t t t tS Min S S S S respectively. In the span space, each

cell is represented by a point whose x coordinate represents

its minimum value and whose y coordinate represents its

maximum value. For a time-varying field, a cell has multiple

corresponding points in the span space, and each point

represents the two extreme values of the cell at one time step.

Fig.1 shows an example of the span space of cell t in the time

interval [0,15] .

Fig. 1 The span space of cell t in a time interval [0,15]

B. Cell temporal coherence and cell temporal table

Given a time interval [,]i j (, {0,1,..., 1} and i j n i j  ), a

cell’s temporal coherence is determined by the spread of the

cell’s 1j i  corresponding points in the span space. The

narrower the spread is, the lower temporal variation and the

stronger temporal coherence that the cell has. To quantify the

spread, the lattice subdivision scheme[14] is applied to the

span space. The scheme subdivides the span space into N N

non-uniformly spaced rectangular elements. The subdivision

should ensure that the points are evenly distributed among the

elements. Fig.1 is an example of the lattice subdivision of

8 8 lattice elements.

With the aid of the lattice subdivision, we can quantify the

spread with K K lattice elements ({1,2,..., })K N . A cell

has strong temporal coherence in the time interval [,]i j if its

corresponding points in this interval are located within a

spread of 2 2 lattice elements. Using this strong temporal

coherence condition, we can build the cell’s temporal (CT)

table in the whole time interval of a time-varying field. For a

time-varying field with n time steps, each cell has an n -bit

CT table with binary entries whose values are decided by the

following principle. First, we find a series of consecutive

subintervals (denoted by
0[0, 1]n  ,

0 1[, 1]n n  ,…,

1[, 1]m mn n  , [, 1]mn n) that divide the time interval

[0, 1]n into several parts. The division should make each

subinterval include as many points as possible as long as they

satisfy the strong temporal coherence condition. It guarantees

that the cell has strong temporal coherence within each

subinterval, and has weak temporal coherence between two

consecutive subintervals. Then the cell’s CT table can be

created as shown in Fig. 2. Here, if the i th bit is filled with

“0”, it means that the cell has strong temporal coherence

between the 1i  th and the i th time steps. Otherwise, it

means that the cell has weak temporal coherence between the

two steps.

Fig. 2 A CT table in the time interval [0, 1]n

C. Vertex temporal coherence and vertex temporal table

The vertex temporal (VT) tables can be created from the CT

tables. As mentioned above, temporal coherence of a cell is

characterized by the variation of the cell extreme values which

are the maximum and the minimum of the cell’s vertex data

values. It means that if the cell has strong temporal coherence

in the given time interval [,]i j , each of its vertices also has

strong temporal coherence. In most cases, it comes to the

conclusion that a vertex has the same temporal table as the cell

it belongs to. However, a vertex is usually shared by several

cells. Consequently, temporal coherence may be different in

strength among these point-neighboring cells.

In fact, there is usually strong spatial coherence among the

neighboring cells by reason of the generation scheme for 3D

unstructured grids[15,18]. It results in the similar VT tables

among the point-neighboring cells. However, when there are

discontinuity phenomena (e.g., shock waves) in flows, the

state of the fluid as described by the density, pressure and

other primitive variables can change radically across the

discontinuity boundary. This also means that spatial

coherence will be locally broken when a discontinuity arises

during the development of an unsteady flow, which results in

weak spatial coherence among the point-neighboring cells

near the discontinuity boundary. To solve this conflict, we

stipulate that when there are two or more point-neighboring

cells with different temporal coherence at the i th time step

(corresponding to the i th bit of a CT table), the shared vertex

has weak temporal coherence with a VT table whose i th bit is

“1”. Suppose cell
1t and cell

2t are point-neighbors sharing

vertex v . Given their CT tables {1000 0110 0011 1100} and

{1000 0110 0010 0000}, the VT table of vertex v is {1000

0110 0011 1100}.

Fig. 3 Algorithm overview (sampling for one cell)

IV. TEMPORAL COHERENCE BASED DYNAMIC HRC

ALGORITHM

We devise a high-efficiency dynamic ray casting algorithm

for rendering unstructured time-varying data using temporal

coherence. On each viewing ray, the algorithm does sampling

once a cell during ray traversal (the sample is a ray-cell

intersection) and transfers the reconstruction result (the field

value at the sample) into color (RGBA) which is accumulated

to the relevant pixel to form the image. Here, we focus on

using temporal coherence to reduce the time cost of

reconstruction which is the kernel part of sampling. The

overview of our algorithm is illustrated in Fig. 3. Given the

current time step i and cell t , it basically carries out the

following steps:

Step 1: Compute the location of a new sample.

Step 2: Decompress the vertex data value(s) and compute the

cell-gradient.

 Step 2.1: Evaluate the necessity of gradient computation

using the CT table. If necessary, jump to Step 2.3.

 Step 2.2: Evaluate the necessity of data decompression for

the reference vertex of cell t using the relevant TV table. If

necessary, do decompression for the reference vertex,

otherwise jump to Step 3.

 Step 2.3: Evaluate the necessity of data decompression for

all the vertices of cell t using the VT tables and decompress

the vertex data value(s). Then compute the cell-gradient with

the gradient matrix[12] and the decompressed vertex data.

Step 3: Reconstruct the field at the sample.

 Do reconstruction using the computed cell gradient (or the

cell gradient at the previous time step) and the decompressed

vertex data value (or the vertex data value at the previous time

step) by the linear gradient reconstruction method.

Step 4: Do color transfer and accumulation.

A. Linear gradient reconstruction method

Fig. 4 Principle of the linear gradient reconstruction

The location of the sample (ray-cell intersection) can be

obtained by using radial-polyhedron intersection [17]. Then

the field at the sample is reconstructed by the linear gradient

reconstruction method [6] (illustrated in Fig. 4) which is

employed by the static and the dynamic HRC algorithms.

Suppose the intersection S is the sample of the current cell t .

Given the sample location
Sr , the field (denoted by SQ) at the

sample can be reconstructed by the following linear gradient

reconstruction equation:

0 0()S t SQ Q Q r r   (1),

 where the vector
tQ is the cell gradient with the three

components ,t xQ , ,t yQ and ,t zQ , 0r and 0Q are

respectively the location and the data value of a cell vertex

(called the reference vertex).

B. Temporal coherence based time-varying data

reconstruction

Since the static HRC algorithm already uses texture

memory to store the data, adding the time-varying data

consume even more GPU memory. To reduce the memory

consumption, the dynamic HRC algorithm uses the

compressed 0Q and the on-line computed
tQ instead of the

original 0Q and the pre-computed
tQ to perform

reconstruction. This does assist in reducing the pressure of

GPU memory. However, the on-line gradient computation and

data decompression make reconstruction cost more time,

which depresses the rendering rate. To maximize the rate, we

use the CT and VT tables to accelerate gradient computation

and data decompression during reconstruction. With the CT

table, we can evaluate the necessity of gradient computation

for reconstruction of a new sample. This helps to reduce the

times of both gradient computation and data decompression.

Given the time step i and cell t , if the i th bit of cell t ’s CT

table is ”0”, the gradient of cell t at the i th step (denoted by
i

tQ) is approximately equal to the one at the 1i  th step

(denoted by 1i

tQ ). Thus the gradient 1i

tQ  can be reused to

perform reconstruction at the i th step instead of on-line

gradient computation. With the VT table, we can evaluate the

necessity of data decompression for the relevant vertices. This

can also help to accelerate the gradient computation requiring

the decompressed vertex data. Similarly, if the i th bit of

vertex kv ’s VT table is “0”, the data value of vertex kv at

the i th step (denoted by i

kQ) is approximately equal to the one

at the 1i  th step (denoted by 1i

kQ ). Thus the data

value 1i

kQ  can be reused to perform reconstruction or gradient

computation at the i th step instead of on-line data

decompression.

V. HARDWARE-ASSISTED IMPLEMENTATION

The mesh scale of the data that HRC can render is limited

by the capacity of GPU memory. This also means that special

care must be taken when choosing how to layout the data

inside textures. Moreover, a remarkable difference between

the structured-grid and the unstructured-grid data is that the

number of the cells is much larger than that of the vertices for

most unstructured-grid data from CFD simulations

[1,2,3,5,6,15]. Keeping this in mind, we design a novel data

structure so that the time-varying fields can be nicely laid out

and fit in the textures to save GPU memory space, allowing

the storage of a larger mesh scale data set. Our data structure

separates the vertex data from the cell data in a different

manner from both the static and the dynamic HRC algorithms

that merge the vertex data with the cell data inside the textures.

This is very important for reducing the pressure of GPU

memory. In addition, time-varying data with a large amount of

steps make data loading (from the hard disk to GPU memory)

the bottleneck of the volume rendering pipeline. We employ

the same VQ approach[4] as the dynamic HRC does to

compress the unstructured time-varying fields. An important

difference is the scheme of data loading. We propose 32 steps

as a basic unit (different from the dynamic HRC using 64 steps)

for data loading which need the temporal tables 32 bits in

length and thus leads to a compact and efficient texture

structure (detailed in Sec. V)

A. Data compression and management

In the preprocessing stage, the VQ approach is employed to

do the compression. It divides the time-varying data into

several groups, each of which includes data within m

consecutive time steps (where m is considered to be a square

number for simplicity). Then the data in each group are

compressed into a codebook (packed with 2D textures).

During rendering, the codebook is loaded into GPU memory

and accessed by its two indices for data decompression. To

avoid rendering stalls while loading the codebook, the first

two codebooks (corresponding to the first two groups of data)

and the 32-bit temporal tables are loaded into GPU memory at

the beginning of rendering. After the last time step data of the

first codebook are accessed, the texture references are

swapped to the second one which is already in GPU memory.

The rendering process continues, while the next codebook and

temporal tables are loaded in place of the first ones, so that the

texture data of the next time step can be prepared before it is

required.

The dynamic HRC algorithm uses 64 steps (64m ) per

group as a basic unit for data loading. Each codebook uses

72 256 64 4B+256 8 4BKB      [3]. Instead, we propose

16 steps per group (16m ) whose codebook uses

20 256 16 4B+256 4 4BKB      . Fig. 5 shows the layout

of the codebook texture. This important change brings three

main advantages. First, it reduces usage of GPU memory since

the time of rendering 16-step time-varying data is enough to

perform loading of the next group data. Second, there are

always 32-step data be in GPU memory at a moment (there are

two codebooks corresponding to two consecutive groups in

GPU memory at a moment) that need a 32-bit temporal tables

and thus leads to a compact and efficient texture structure

(detailed in Sec. V.B). Third, compared to the 64-step data per

group, the 16-step data can be compressed into a smarter

codebook leading to faster data loading which can help to

avoid rendering stalls while switching codebooks.

Fig. 5 Layout of the codebook texture for 16-step data

B. GPU texture structure

As mentioned above, the texture structures of both the static

and the dynamic HRC algorithms merge the cell data with the

vertex data and use the cell as a basic unit to store the

fields[1,3]. They store the locations and the field values (or

the codebook indices) of the cell’s vertices and the cell

gradient together in each cell texture. However, this texture

structure is extravagant for HRC for a large amount of vertex

data redundantly stored in GPU memory. To reduce the

memory consumption, a texture structure is designed to

separate the vertex data from the cell data as shown in table 1.

The cell and the vertex textures respectively include the CT

and the VT tables with a length of 32 bits (see the green part).

The CT table is used to evaluate the necessity of gradient

computation during reconstruction. If not necessary, the

gradient 1i

tQ  (cell t ’s gradient at the (1)i  th step) can be

reused to perform reconstruction at the i th step. So the cell

gradient 1i

tQ  (12B) should be stored in the cell texture and

be updated with the lapse of time (see the red part in Table

1.(a)). It is combined with the 32-bit CT table (4B), nicely

fitting in a texture vector (16B), which leads to a compact and

efficient texture structure. Besides this, the gradient matrix[12]

in the dynamic HRC is employed for on-line computation of

the cell gradient. Therefore, the matrix should be stored in the

cell texture (64B). In addition, the texture coordinates of the

relevant vertices (for building the relationship between a cell

and its vertices) and the face-neighboring cells (for ray

traversal) should also be stored in the cell texture.

Similarly, we use the VT table to evaluate the necessity of

data decompression. So the vertex data value at the previous

time step (denoted by 1i

NQ ) should be stored in the vertex

texture and be updated with the lapse of time (see the red part

in Table 1.(b)). Besides this, the vertex texture should store

the location of the vertex (12B) to compute the sample

location [17] and the cell gradient. We combine it with 1i

NQ 

(4B) to form a texture vector. To decompress the vertex data

value, we use 12B to store the codebook indices which are

combined with the 32-bit VT table just to form a texture

vector.
Table 1 GPU texture structure used in our algorithm

(a) Cell texture (for one cell)

(b) Vertex texture (for one vertex)

C. Analysis of the space cost

With our texture structure, the data stored per cell use

144B = 9 16 B , and the data stored per vertex use

32B = 2 16 B . Suppose there are c cells and v vertices in

the tetrahedral mesh. Then the storage of the mesh data is

given by 144 32c B v B   . For 16-step data per group, the

codebook takes up the storage of 20KB (mentioned in Sec.

V.A). At a moment, there are two codebooks corresponding to

two consecutive groups (32 steps) in GPU memory. As a

result, the space cost of our approach is given by

144 32 40c B v B KB    .

The dynamic HRC[3], which combines the cell data with

the vertex data and use the cell as a basic unit to store the mesh

data, costs 192B storage per tetrahedron. Since it uses 64-step

data per group, at a moment, the codebooks of two groups

uses 144 2 72KB KB  . So the space cost of the dynamic

HRC is given by 192 144c B KB  .

As mentioned above, for most 3D unstructured-grid data

from CFD simulations, the number of the cells is much larger

than that of the vertices. As a result, our approach achieves a

lower cost of GPU memory than the dynamic HRC, which

allows the storage of dynamic data on a larger mesh scale.

Moreover, from the experimental results (Sec. VI), it is easy to

find that the rendering rate can be considerably improved by

using temporal coherence of time-varying flows.

Table 2 Comparisons of the rendering rates between our approach and the

Dynamic HRC

VI. EXPERIMENTS

Our algorithm is implemented on Red Had Enterprise

Linux 5 with an nVIDIA GeForce GTS 250 graphics card

(1024MB) and a 2.67GHz Intel® Core™ i7 920 processor

(2048MB RAM). To test the validity of our approach, we

render the following data from CFD simulations by our

algorithm and the dynamic HRC. Table 2 shows the

comparisons of the performances between these two

algorithms. The experimental results demonstrate that our

approach gains a much higher rendering rate and allows

rendering time-varying data on a larger mesh scale than the

dynamic HRC.

A. Forward step shocks

The flow of forward step shocks is a classic unsteady flow

in the wind tunnel experiments. The ultrasonic flow comes

from left and form an arched shock before the step (see Fig. 6).

The shock is reflected back from top to bottom for its great

strength. After three times of reflection, the final state of the

unsteady flow forms as shown in Fig. 6.

Fig. 6 The final state of the forward step shocks

The time-varying data from the simulation of the forward

step shocks are rendered by our approach. The user is allowed

to slow down or pause the dynamic rendering for further

analysis of the fields. Fig.7 shows the rendering results

(pressure fields) of some important steps when the flow

pauses.

B. Pitching NACA 0012 airfoil

Fig. 8 displays the rendering results of the time-varying

density fields from the simulation of the unsteady transonic

flow past a pitching NACA 0012 airfoil. This is a benchmark

case that includes hundreds of time steps, some of which are

shown here.

C. Supersonic aircraft

Fig. 9 shows the rendering results (u velocity fields) of the

flow fields around a supersonic aircraft. The flow rounds the

aircraft and develops into complicated swirling vortices at the

tail. The time-varying data on a large mesh scale of 892K cells

and 207K vertices can not be rendered with the dynamic HRC

due to memory limitations of storing the mesh on GPU.

VII. CONCLUSION

Volume rendering of dynamic unstructured-grid fields is a

challenging problem in flow visualization. To maximize the

rendering rate, temporal coherence of the time-varying data

should be effectively utilized. However, research so far has

primarily utilized temporal coherence to render time-varying

data on structured grids. In this paper, we devise a scheme for

using temporal coherence to achieve high-efficiency volume

rendering of dynamic unstructured-grid data. We choose to

perform rendering on the framework of the ray casting

technique by reason of its high accuracy, which is especially

important for flow visualization. Unfortunately, the mesh

scale of the data that GPU-based ray casting algorithm can

render is limited by the capability of texture memory. To make

full use of GPU memory, a texture structure is designed to

separate the vertex data from the cell data, which allows

rendering time-varying data on a larger mesh scale. The

experiments demonstrate that our approach achieves a much

higher performance on both time and space, and allows

rendering a larger mesh-scale time-varying data than the

existing method.

(a) Step 45 (b) Step 90 (c) Step 135

(d) Step 170 (e) Step 210 (f) Step 240

Fig. 7 Rendering results of different time steps using our approach (forward step shocks)

(a) Step 120 (b) Step 150 (c) Step 180 (d) Step 210

(e) Step 240 (f) Step 270 (g) Step 300 (h) Step 330

Fig. 8 Rendering results of different time steps using our approach (pitching NACA 0012 airfoil)

(a) Step 30 (b) Step 90 (c) Step 120

(d) Step 180 (e) Step 230 (f) Step 290

Fig. 9 Rendering results of different time steps using our approach (supersonic aircraft)

REFERENCES

[1] F.F. Bernardon, C.A. Pagot, J.L.D. Comba, C.T. Silva. Gpu-based tiled

raycasting using depth peeling. Journal of Graphics Tools, 2006, 11(4):

1–16.

[2] S.P. Callahan, M. Ikits, J.L.D. Comba, C.T. Silva. Hardware-Assisted

Visibility Sorting for Unstructured Volume Rendering. IEEE

Transactions on Visualization and Computer Graphics, 2005, 11(3):

285–295.

[3] F.F. Bernardon, S.P. Callahan, J.L.D. Comba, C.T. Silva. Volume

rendering of time-varying scalar fields on unstructured meshes.

Technical Report UUSCI-2005-006, SCI Institute, 2005.

[4] J. Schneider, R. Westermann. Compression domain volume rendering.

In Proceedings of IEEE Visualization 2003: 293-300.

[5] F.F. Bernardon, S.P. Callahan, C.T. Silva. An adaptive framework for

visualizing unstructured grids with time-varying scalar fields. Parallel

Computing 2007, 33(6):391-405.

[6] M. Weiler, M. Kraus, M. Merz, T. Ertl. Hardware-based ray casting for

tetrahedral meshes. In Proceedings of IEEE Visualization 2003:

333–340.

[7] K.-L. Ma. Visualizing time-varying volume data. Computing in

Science and Engineering, 2003, 5(2): 34–42.

[8] H.-W. Shen. Isosurface extraction in time-varying fields using a

temporal hierarchical index tree. In Proceedings of IEEE Visualization

1998: 159–166.

[9] H.-W. Shen, L.-J. Chiang, and K.-L. Ma. A fast volume rendering

algorithm for time-varying field using a time-space partitioning (tsp)

tree. In Proceedings of IEEE Visualization 1999: 371–377.

[10] D. Ellsworth, L.-J. Chiang, H.-W. Shen. Accelerating time-varying

hardware volume rendering using tsp trees and color-based error

metrics. In Proceedings of Volume Visualization Symposium 2000:

119–128.

[11] K.-L. Ma, H.-W. Shen, Compression and Accelerated Rendering of

Time-Varying Volume Data. International Computer Symposium

Workshop on Computer Graphics and Virtual Reality, 2000: 82–89.

[12] C. Lurig, R. Grosso, T. Ertl. Implicit Adaptive Volume Ray Casting. In

Proceedings of the International Conference on Computer Graphics and

Visualization 1997: 114–120.

[13] Y. Livnat, H.-W. Shen, C.R. Johnson. A near optimal isosurface

extraction algorithm using the span space. IEEE Transactions on

Visualization and Computer Graphics, 1996, 2(1): 73-84.

[14] H.-W. Shen, C.D. Hansen, Y. Livnat, C.R. Johnson. Isosurfacing in

span space with utmost efficiency(ISSUE). In Proceedings of IEEE

Visualization 1996: 287–294.

[15] Dimitri J. Mavriplis. Unstructured-mesh discretizations and solvers for

computational aerodynamics. AIAA Journal, 2008, 46(6): 1281-1298.

[16] C.T. Silva, J.L.D. Comba, S.P. Callahan, F.F. Bernardon. A survey of

GPU-based volume rendering of unstructured grids, Brazilian Journal

of Theoretic and Applied Computing, 2005, 12(2): 9–29.

[17] Schneider, P. J., Eberly, D. H.: Geometric Tools for Computer Graphics.

Morgan Kaufmann, 2003: 9-16.

[18] Joe F. Thompson, B. K. Soni, N. P. Weatherill. Handbook of grid

generation, CRC Press, 1999: 693-701.

