
 

  
Abstract—In this paper, the descriptions on the development 

of a flow solver for the three-dimensional compressible Euler 
equations are presented. The underlying numerical scheme for 
the solver was based on the collisional Boltzmann model that 
produces the gas-kinetic BGK (Bhatnagaar-Gross-Krook) 
scheme. In constructing the desired algorithm, the convection 
flux terms were discretized by a semi-discrete finite difference 
method. The resulting inviscid flux functions were 
approximated by the gas-kinetic BGK scheme. To achieve 
higher order spatial accuracy, the cell interface primitive flow 
variables were reconstructed via the MUSCL (Monotone 
Upstream-Centered Schemes for Conservation Laws) 
interpolation method coupled with a min-mod limiter. As for 
advancing the solutions to another time level, an explicit-type 
time integration method known as the modified fourth-order 
Runge-Kutta was employed in the current flow solver to 
compute steady-state solutions. Two numerical cases were used 
to validate the flow solver where the computed results obtained 
were compared with available analytical solutions and 
published results from literature to substantiate the accuracy 
and robustness of the developed gas-kinetic BGK flow solver.  
 

Index Terms—Compressible inviscid flow, finite difference 
method, gas-kinetic scheme, three-dimensional flow 
 

I. INTRODUCTION 
HE development of gas-kinetic schemes for solving 
compressible flows in recent time has received a lot of 

attention and progress, especially in the last two decades. 
Among those notably promising ones are the Equilibrium 
Flux Method (EFM) [1], the Kinetic Flux Vector Splitting 
(KFVS) scheme [2] and the BGK scheme [3]. The KFVS 
scheme is very diffusive and less accurate in comparison 
with the gas-kinetic BGK scheme. The diffusivity of the 
KFVS scheme is mainly due to the particle or wave-free 
transport mechanism, which sets the CFL (Courant– 
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Friedrichs–Lewy) time step equal to particle collision time 
[3], [4]. In order to reduce diffusivity, particle collisions 
have to be modeled and implemented into the gas evolution 
stage. The collision effect is considered by the BGK model 
as an approximation of the collision integral in the 
Boltzmann equation. It is found that this gas-kinetic BGK 
scheme possesses accuracy that is superior to the flux vector 
splitting-type schemes and avoids the anomalies of flux 
difference splitting-type schemes [5]–[7]. 

To date, majority of the gas-kinetic schemes applications 
has been focused on solving the governing equations of 
fluid using finite volume method.  Zhang et al. [8] have 
developed a second-order KFVS scheme for shallow water 
flows in 1-D space using finite volume method. Xu et al. [9] 
used BGK scheme cast in a finite volume manner to study 
complicated flow phenomena that occur in a laminar 
hypersonic viscous flows, i.e. shock boundary layer 
interaction, flow separation and viscous/inviscid interaction. 
Most recently, May et al. [10] have applied the gas-kinetic 
BGK finite volume method for computing 3-D transonic 
flow with unstructured mesh, and Ilgaz and Tuncer [11] 
successfully applied the gas-kinetic BGK scheme for 3-D 
viscous flows on unstructured hybrid grids implemented via 
parallel computation. These are only few of the examples 
where the gas-kinetic schemes are widely applied through 
the finite volume framework where the list goes on.  On the 
contrary, only a limited number of applications of gas-
kinetic schemes have been found developed using the finite 
difference method. To name a few, Ravichandran [12] in 
1997 has developed higher order KFVS algorithms using 
compact upwind difference operators to compute 2-D 
compressible Euler equations. Ong et al. [7] in 2006 have 
successfully applied the BGK scheme to solve compressible 
inviscid hypersonic flow problems. Recently, Omar et al. 
published their findings for computing 2-D compressible 
inviscid flows [13] and extended their development to solve 
2-D compressible laminar viscous flow problems [14] using 
the gas-kinetic BGK scheme cast in a finite difference 
framework. 

In the present work, the BGK flow solver developed in 
the previous studies is extended to solve 3-D compressible 
inviscid flows using finite difference approach on structured 
grid. The relevant mathematical formulations leading to the 
inception of the current second-order accurate 3-D finite 
difference BGK scheme algorithm are provided in this 
paper. Two numerical test cases are presented to assess the 
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accuracy and robustness of the developed solver, namely, 10 
degrees cone at Mach 2.35, and normal shock at Mach 1.3. 
The computed results from these test cases are verified by 
comparing them against available analytical data and 
published results from literature. The outcome of these 
comparisons shows that the BGK flow solver is able to 
resolve the shock structures and the flows accurately where 
the results compare favorably with the analytical data and 
fair better than the numerical predictions presented by other 
schemes which will be shown later in this paper. 

II. GOVERNING EQUATIONS 
The normalized Euler equations for describing the three-

dimensional compressible inviscid flow written in strong 
conservative form are 
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With ρ, U, V, W, et and p as the macroscopic density, x-
component velocity, y-component velocity, z-component 
velocity, total energy and pressure, respectively. The 
normalization has been carried out by using the following 
free stream reference quantities: density ρ∞, velocity U∞, 
pressure ρ∞U∞

2, temperature T∞, reference length L∞ and 
reference time L∞/U∞. 

In order to employ the above governing equations for 
finite difference application, a transformation from the 
Cartesian coordinates (x, y) to generalized coordinates (ξ, η) 
is necessary. The resulting transformation yields the 
following form 
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Where,  
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The metric terms which appear in (4) are related to the 
derivatives of x, y, and z by  
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and the Jacobian of transformation is given by  
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The numerical formulations used to compute all the terms 
expressed via (5) and (6) are clearly described by  
Hoffmann and Chiang [15]. 

III. NUMERICAL METHODS 
The convection terms appearing in the Euler equations 

i.e. (3) are approximated with a semi-discrete finite 
difference scheme and the resulting relation can be written 
as 
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The resulting flux functions at the cell interface are then 
approximated by the corresponding numerical BGK scheme 
that assume the following general forms 
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Where φ is an adaptive parameter which is determined via 
physical flow quantities, the superscripts e and f correspond 
to equilibrium and free stream flux functions, respectively. 
The relevant description about the formulations of the BGK 
scheme are not shown in this paper because the current 
work is an extension of the flow solver from the previous 
studies to account for the additional convective term to 
facilitate the computation of 3-D flow. For a more detail 
explanation about the theoretical derivation of the BGK 
scheme from the collisional Boltzmann model and also the 
manners in which the various terms found in (8) are 
determined, readers are suggested to refer to [3, 6, 7, 13, 
14]. 

To increase the spatial accuracy of the BGK scheme to 
second-order, the MUSCL approach [16] is adopted 
together with the usage of a min-mod limiter. Hence, the left 
and right states of the primitive variables ρ, U, V, p at a cell 
interface (e.g. i+1/2, j, k) could be obtained through the 
non-linear reconstruction of the respective variables and are 
given as 
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Where Q is any primitive variables mentioned beforehand 
and ΔQi+1/2,j,k = Qi+1,j,k – Qi,j,k. The min-mod limiter Ф used 
in the reconstruction of flow variables found in (9) is given 
as 
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Where, the term ΔQratio represents the ratio term inside the 
parentheses of (9). Similarly, using the same technique as 
illustrated above, the reconstructed primitive flow variables 
at the cell interface along the j- and k-directions can be 
obtained. 

As for the time integration method for computing steady-
state flow problems, an explicit formulation is chosen for 
the current solver which utilizes a fourth-order Runge-Kutta 
scheme. Applying this method to the generalized 3-D Euler 
equations provides the following result 
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IV. RESULTS AND DISCUSSIONS 

A. 10 Degrees Cone at Mach 2.35 
In this test case, an effort is made to predict the classical 

conical flow field with an attached shock at the apex of the 
cone with conical rays of constant properties emanating 
from the apex.  

To model this flow successfully, a steady, inviscid, 
adiabatic flow at Mach 2.35 is assumed to flow over a cone 
with a semi-vertex angle of 10 degrees. In addition, other 
flow conditions specified for this flow problem at the free 
stream are: pressure p∞ = 81289.2 Pa, temperature T∞ = 
305.6 K and reference length L∞ = 0.3048 m. A structure 
grid is created by an algebraic grid generation method with 
clustering near the surface and at region with expected high 
flow gradient. The resulting mesh has a size of 121 by 81 by 
5 grid points and is shown in Fig. 1. As for the specification 
of flow conditions along its boundaries, the following are 
enforced: at the left- and top-side planes, their conditions 
are set to free stream; at the right-side plane, its conditions 
are determined by means of extrapolation from the interior 
domain; and the bottom-, rear- and front-side planes, their 
conditions are determined by prescribing an inviscid wall 
condition. 

For this test case, the predicted results from the BGK 
flow solver is verified against available analytical data that 
can be obtained through the Taylor-Maccoll differential 
equations as described in most compressible flow textbooks, 



 

e.g. [17]. A sample of these analytical solutions obtained via 
the mentioned differential equations is contained in Table 1. 
The subscript 1 refers to the free stream conditions. The 
subscript 2 refers to the conditions behind the shock. The 
subscript 3 refers to the conditions on the surface of the 
cone. The angle of the shock is 27.18 degrees. In addition, 
comparisons are also made between the results of the BGK 
flow solver with WIND code from NPARC (National 
Project for Application-oriented Research in CFD) Alliance 
to assess the computational characteristics of the developed 
flow solver. The Mach number contour plots of the flow 
over the cone predicted by the BGK flow solver is shown in 
Fig. 2. Comparing this result with the prediction by the 
WIND code as shown in Fig. 3, it can be observed that both 
results are comparable to each others. Figure 4 shows the 
Mach number distributions taken at the outflow section of 
the flow field domain, i.e. at the right-side plane. In this 
figure, the computed Mach number by the BGK flow solver 
is compared against the analytic data and illustrated that a 
very good agreement is achieved. However, the predicted 
shock location is about a step downstream of the domain 
compared to the actual location. Also from the figure, the 
value of the Mach number (i.e. M2) predicted by the BGK 
flow solver after the shock is about 2.2667. Comparing this 
value against the analytical value, it has about 0.03 % error 
which can be considered relatively very low. In Table 2, the 
average flow properties calculated along the surface of the 
cone which simply sums up the values after x of 0.06 m and 
averages them, where the values obtained, should be fairly 
constant. In addition, the percentage of errors generated by 
the two numerical flow solvers against the analytical data is 
also shown in the same table. By comparing the various 
results contained in the table, the errors produced by both 
solvers are marginally the same, with WIND showing better 
accuracy for the Mach number and pressure properties, 
while the BGK proved to have a better resolution in terms 
of temperature property. Even so, the value of the errors 
produced by both solvers is significantly very low. Hence, 
this would imply that the BGK solver is able to provide 
good resolution of the flow along the surface of the cone. 

B. Normal Shock at Mach 1.3 
This flow problem would serve as the subsequent 

verification case involving steady, inviscid, adiabatic flow at 
Mach 1.3 with formation of a normal shock in the flow field 
where supersonic flow enters the normal shock and 
subsonic flow exits the shock. This flow is a classic, 
fundamental supersonic flow whose analytic solution is 
exact and can be found in any compressible flow textbook, 
such as the book by Anderson [17]. 

The flow conditions at the free stream described for the 
initiation of the computation are set as follows: Mach 
number M∞ = 1.3, pressure p∞ = 68947.57 Pa, temperature 
T∞ = 288.89 K and reference length L∞ = 0.3048 m. The 
computational domain for this flow problem has a size of 
202 by 11 by 5 grid points and the generated mesh is shown 
in Fig. 5. As for the enforcement of boundary conditions, 
the following conditions are stated: the left- and top-side 
planes are free stream; the bottom-, front-, and rear-side 
planes are inviscid wall; and the right-side plane is subsonic 

outflow with prescribed Mach number (i.e. M = 0.876).  
The predicted Mach contours by the BGK flow solver is 

shown in Fig. 6, which is identical to the one produced by 
[18]. The resolution of the Mach number by the solver at the 
bottom wall of the flow field domain is determined and 
contained in Fig. 7. Through this figure, the predicted shock 
location is clearly shown to be placed at the desired 
location, i.e.  x = 0.3048 m. It also revealed that the 
distribution of the Mach number produced by the BGK flow 
solver is of high quality where the resolution of the flow 
property, especially near the vicinity of the shock is 
captured without any numerical instability such as pre- or 
post-shock oscillation. Table 3 presents the analytic 
solutions for a Mach 1.3 supersonic flow through a normal 
shock [18], where the subscript 1 refers to the supersonic 
side of the shock and subscript 2 refers to the subsonic side 
of the shock. While in Table 4, it contains the average flow 
properties calculated along the bottom surface of the flow 
domain which simply sums up the values after x of 0.36576 
m and averages them, which should be fairly constant. The 
purpose of Table 4 is to compare the numerical results and 
their respective percentage of errors from the analytical 
values (i.e. Table 3) for the two flow solvers i.e. BGK and 
WIND, respectively. From the comparisons, the errors 
produced by both solvers are marginally the same with the 
BGK shown to have a better accuracy in predicting the flow 
field. Even so, the values of the errors produced by both 
solvers are significantly low. 

V. CONCLUSION 
In this paper, a numerical flow solver based on the BGK 

scheme has been successfully developed to compute three-
dimensional compressible inviscid flow. Two benchmark 
cases of this flow realm have been chosen to assess and to 
validate the computational results of the developed flow 
solver. The findings for the test cases as recorded in this 
paper clearly show that the BGK flow solver is able to 
provide a very good resolution of the flow which contains 
complex shock waves formation with reflections. This claim 
is substantiated by comparing the numerical results against 
available analytical solutions and published numerical 
results (i.e. WIND). In brief, this paper concludes that the 
BGK scheme formulated via the finite difference method is 
an accurate and robust numerical scheme for computing 
three-dimensional compressible inviscid flow.  
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Fig. 1  Computational mesh generated for the 10 degrees cone at Mach 

2.35. 
 

TABLE 1 
ANALYTICAL SOLUTION FOR THE 10 DEGREES CONE AT MACH 

2.35 
Property 2 3 

M 2.2677 2.1469 
p / p1 1.1781 1.4234 
T / T1 1.0481 1.1063 
ρ / ρ1 1.1240 1.2867 

 

 
Fig. 2  Mach contours by the BGK scheme. 

 

 
Fig. 3 Mach contours by the WIND code. 

 

 
Fig. 4  Mach number distributions at the outflow section. 

 
TABLE 2 

COMPARISONS OF AVERAGE FLOW PROPERTIES ON THE CONE 
SURFACE 

Solver M3 Error 
% 

p3 / p1 Error 
% 

T3 / T1 Error 
% 

BGK 2.14788
3 

0.0458 1.36996 3.7545 1.10945
3 

0.2850 

WIND 2.14674
9 

0.0070 1.37410
0 

3.4635 1.09514
1 

1.0087 

 

 
Fig. 5  Computational mesh generated for the normal shock at Mach 1.3 

flow. 
 



 

 
Fig. 6  Mach contours by BGK scheme. 

 

 
Fig. 7  Mach number distribution along the bottom wall. 

 
 

TABLE 3 
ANALYTICAL SOLUTION FOR THE NORMAL SHOCK AT MACH 

1.3 
Property Exact 

M2 0.7860 
p2 / p1 1.8050 
T2 / T1  1.1909 
ρ2 / ρ1 1.5157 

 
TABLE 4 

COMPARISONS OF AVERAGE FLOW PROPERTIES ON THE 
BOTTOM SURFACE OF NORMAL SHOCK TEST CASE 

Solver M2 Error 
% 

p2 / p1 Error % T2 / T1 Error 
% 

BGK 0.78600
9 

0.001
1 

1.80500
1 

0.00006
2 

1.19086
9 

0.002
6 

WIND 0.78598
9 

0.001
4 

1.80490
6 

0.0052 1.19085
7 

0.003
6 

 
 




