
 

 
Abstract— Network inversion has been studied as a neural 

network based solution of inverse problems. Complex-valued 
network inversion has been proposed as the extension of this 
inversion to the complex domain. Further, regularization is 
considered for solving ill-posed inverse problems. On the other 
hand, the estimation of the parameters of a distributed 
generation from observed data is a complex-valued inverse 
problem with ill-posedness. In this paper, we propose the 
application of a complex-valued network inversion with 
regularization to the inverse estimation of a distributed 
generation. 

 

 
Index Terms— Complex-valued neural networks, ill-posed 

inverse problems, distributed generation. 
 

I. INTRODUCTION 
The inverse problem of estimating causes from observed 
results has been studied in various engineering fields [1]. 
Network inversion has been studied as a neural network based 
solution of inverse problems [2]. While the original network 
inversion method has been applied to usual real-valued neural 
networks, the complex-valued network inversion method has 
been proposed to solve inverse problems on a 
complex-valued neural network [3]. Inverse problems are 
generally ill-posed, which implies that the existence, 
uniqueness, and stability of their solution are not guaranteed. 
Regularization imposes specific conditions on an ill-posed 
inverse problem to convert it into a well-posed problem [4]. In 
the case of complex-valued network inversion, regularization 
has been examined on simple inverse problems [5]. 
Distributed generation is an important technique that involves 
natural power sources or fuel cells. In distributed generation, 
it is important to estimate the parameters of several power 
supplies to control them. The problem of estimating the 
parameters from a large amount of observed data is an 
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ill-posed inverse problem featuring complex numbers [6]. In 
this paper, we propose the application of complex-valued 
network inversion with regularization to the ill-posed inverse 
estimation of the distributed generation. Specifically, we 
consider the problem of estimating the voltage of the power 
supply from the observed output voltage and current of a 
circuit with two power supplies. The problem of ill-posedness 
concerning the uniqueness of the solution appears in the 
inverse estimation of the distributed generation. To show the 
effect of the proposed method, we carry out a simulation using 
the complex-valued network inversion with regularization. 
 

II. INVERSE PROBLEMS AND NETWORK INVERSION 
The inverse problem refers to the problem of estimating the 

cause from the observed phenomenon. The cause is estimated 
from the fixed model and given result in the inverse problem. 
The solution of inverse problems is important in various 
engineering fields [1]. 

Network inversion is a method for solving inverse 
problems using multilayer neural networks. In this method, 
we estimate the corresponding input from a given output 
using a trained network. The network is typically trained 
using the error back-propagation method. In the trained 
network, we provide the observed output with fixed trained 
weights. The input can then be updated according to the 
calculated input correction signal. Essentially, the input is 
estimated from the output using an iterative update of the 
input based on the output error, as shown in Fig. 1. By doing 
so, the inverse problem of estimating input from the given 
output is solved using the multilayer neural network. 

To solve the inverse problem using network inversion, the 
network is used in two phases: forward training and inverse 
estimating. In the training phase, the weights w are updated 
using 
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where x, y, E, and εt are the training input, training output, 
output error, and training gain, respectively. It is assumed that 
the output error is caused by the inaccurate adjustments of the 
weights in the training phase. This is the procedure employed 
in the usual error back-propagation method. In the inverse 
estimation phase, the input x is updated using 
 

Solution of Ill-Posed Inverse Problem of 
Distributed Generation Using Complex-Valued 

Network Inversion 
Takehiko Ogawa, Kyosuke Nakamura, and Hajime Kanada* 



 

( ) ( )
x
Enxnx e ∂

∂
−=+ ε1  (2) 

 
where x, y, E, and εe are the random input, provided output, 
output error, and input update gain, respectively. It is assumed 
that the output error is caused by the maladjustments of the 
input during inverse estimation. By repeating this updating 
procedure, the input is estimated from the provided output 
[2]. 
 

 
 
 

A. Complex-Valued Network Inversion 
 The original network inversion procedure is a solution for 

inverse problems using a typical real-valued multilayer neural 
network. Recently, an extension of the multilayer neural 
network to the complex domain has been studied [7]. In 
addition, the complex-valued network inversion has been 
proposed to solve the general inverse problem involving 
complex values. 

Complex-valued network inversion involves the use of a 
complex-valued multilayer neural network. It is an extension 
of the usual network inversion to the complex domain. The 
complex input is estimated from the provided complex output 
using a trained network. 

In the training phase, the complex weight w=wR+iwI is 
updated using 
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where x = xR + ixI, y = yR + iyI, E = ER + iEI, and εt are the 
complex training input, training output, output error, and 
training gain, respectively. By repeating this updating 
procedure, a forward relation is obtained. This is the usual 
complex error back-propagation method. In the inverse 
estimation phase, the complex input x = xR + ixI is updated 
using  
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where x = xR + ixI, y = yR + iyI, E = ER + iEI, and εe are the 
complex random input, provided output, output error, and 
input update gain, respectively. By repeating this procedure, 
the complex input approaches the corresponding value of the 
provided output. When the error becomes sufficiently small, 
the input correction is completed and the obtained complex 
input becomes a solution. As a result, the complex input can 
be inversely estimated from the complex output using the 
trained complex weights [3, 5].   
 

B. Ill-Posedness and Regularization 
In the inverse problem, the existence, uniqueness, and 

stability of solution are not guaranteed. The problem that does 
not satisfy these three conditions is referred to as being 
ill-posed. The ill-posedness of a problem is an important issue 
in complex-valued network inversion.  

In this paper, we consider the regularization for 
complex-valued network inversion. The method is based on 
Tikhonov regularization [4]. We use a regularization 
functional that is minimized in accordance with the output 
error in the inverse estimation phase in order to impose the 
constraint condition. For real-valued network inversion, we 
define the energy function E with the regularization functional 
K(x) as 
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where rIrRr yiyy ′+′=′ , rIrRr iyyy += , and kIkRk ixxx +=  are 
the r-th tutorial output, r-th network output, and k-th input, 
respectively. The first and second terms represent the output 
error and regularization functional, respectively. The 
parameter λ is the regularization coefficient.   

Next, we extend the regularization to complex-valued 
network inversion as 
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where rIrRr yiyy ′+′=′ , rIrRr iyyy += , and kIkRk ixxx +=  are 
the r-th complex provided output, r-th complex network 
output, and k-th complex input, respectively [5]. 

Dynamic regularization is also applicable to the 
complex-valued network inversion. We consider the decay of 
the regularization coefficient λ(t) from λ(0) to zero with the 
epoch number t. 
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Fig. 1.  Iterative update of input using network inversion. 



 

III. INVERSE ESTIMATION OF DISTRIBUTED GENERATION 
One example of distributed generation is the small-scale 

power supply allocated near a consumer. The distributed 
generation system can be expected to decrease the 
environmental load and power cost and to increase the 
stability of the power supplies. However, it is difficult to 
maintain the quality of the electric power and to detect the 
incidents in case of numerous power supplies. 

 In this study, we consider the inverse problem of 
estimating the voltage of the power supplies from the 
observed voltage and current data. We compose an inverse 
estimation problem using a simple AC electric circuit model 
that consists of several power supplies. In this circuit, we 
assume that the impedance element is driven by many AC 
power supplies. Concretely, we use a model that includes two 
power supplies with complex impedance and output complex 
impedance, as shown in Fig. 2. The circuit parameters are as 
follows. The values of each impedance are Z1 = Z2 = Z3 = 1 + 
i [Ω]. The parameters in the power supplies VG1 and VG2 are 
varied to obtain the training data. In addition, we prepare the 
test data by changing the output voltage and current. The 
amplitudes of VG1 and VG2 are varied from 30 to 180 [V] in 
steps of 30 [V]. Their phase is also varied from -150° to 180° 
in 30° steps. 

The problem of ill-posedness, which concerns the 
uniqueness of the solution, arises in the inverse estimation of 
the power supplies VG1 and VG2. This problem is ill-posed 
because we cannot distinguish between VG1 and VG2 and 
hence treat them as the same performances. In this study, we 
examine the ill-posed inverse estimation of the parameters of 
the power supply using complex-valued network inversion 
under conditioning using regularization. We use the following 
regularization term 
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where k is the number of neurons that we impose on a specific 
condition . Here, we provide the correct value of VG1 or VG2 
as xk' = xkR' + ixkI'. This implies that the restraint condition that 
VG1 or VG2 is correct is considered to be the regularization. 
The input of the complex-valued network inversion with 
regularization is also updated based on equation (4). The 
input has to be updated in the real and imaginary parts of the 
complex-valued network inversion. The ill-posedness in the 

complex domain can be reduced by iterative correction of the 
input. 
 

IV. SIMULATION 
We carry out the inverse estimation of the power supply 

parameters of the distributed generation circuit shown in Fig. 
4. We use a complex-valued neural network with two input 
neurons and two output neurons, which correspond to the 
complex voltages of the two sources and the measured 
complex current and voltage, respectively. These values are 
normalized by each maximum and minimum value and used 
as an input and output value for the network. The network 
architecture and network parameters are shown in Fig. 3 and 
Table 1, respectively. 

To confirm the regularization, we perform the following 
simulation. First, we examine the inverse estimation without 
the regularization. Next, we perform regularization for VG1 
and VG2. We carry out each simulation five times and show 
the plots of the five estimated results. 

 

 
Fig. 3.  The network architecture used in simulation 

 

 
 

A. Results 
The inversely estimated inputs without regularization are 

shown in Fig. 4. Fig. 4(a) and 4(b) shows the estimated results 
of VG1 and VG2, respectively. We found that both the 
estimated inputs are not the correct voltages of VG1 and VG2. 
This is because the solution cannot be computed in the correct 
manner because of the ill-posedness of the problem with 
respect to the uniqueness of the solution. 

The estimated inputs with regularization are shown in Figs. 
5 and 6. Fig. 5(a) and 5(b) shows the estimated results of VG1 
and VG2, respectively, when the limitation is imposed to VG2 
by the regularization. Similarly, Fig. 6(a) and 6(b) shows the 
estimated results of VG2 and VG2, respectively, when the 
limitation is imposed on VG1. The results showed that the 
input correction is sufficiently suitable and the input is 

  Complex training 
input pattern x 

Complex training 
output pattern y 

Complex initial 
random input 
pattern x 

Complex test 
output pattern y 

Training  

Inverse estimation  

Table 1  Network Parameters 
 

Number of input neurons 2  
Number of hidden neurons 10  
Number of output neurons 2  

Training rate εt 0.0001  
Input correcting rate εe 0.0001  
Max. number of training epochs 10000  
Max. number of estimating epochs 10000  
Training error to be attained 0.0001  
Estimation error to be attained 0.0001  
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Fig. 2.  Circuit model of distributed generation for simulation. 



 

correctly estimated when the limitation is imposed on one of 
the inputs. Therefore, the problem of ill-posedness is not the 
initial-value problem, and we confirmed the effectiveness of 
the regularization method.  

 

 
 
 

 

 

V. CONCLUSION 
In this study, we proposed the application of a 

complex-valued network inversion to the ill-posed inverse 
estimation of the distributed generation. We carried out the 
simulation of the inverse estimation of the voltage source 
using a simple distributed generation model. To investigate 
the effect of ill-posedness, we examined the complex-valued 
network inversion with regularization. Consequently, we 
confirmed that the complex-valued network inversion method 
with regularization was effective in solving the ill-posed 
inverse estimation problem of distributed generation. In 
future studies, we will attempt to increase the number of 
voltage sources and improve their estimation accuracy. 
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Fig. 6  Estimated results of the power supplies (a) VG1 and (b) VG2  

with regularization for VG1. 
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Fig. 5  Estimated results of the power supplies (a) VG1 and (b) VG2  

with regularization for VG2. 
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Fig. 4  Estimated results of the power supplies (a) VG1 and (b) VG2  

without regularization. 
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