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Abstract—An optimal negotiation agent should have 

capability for maximizing its utility even for negotiation with 

incomplete information in which the agents do not know 

opponent’s private information such as reserve price (RP) and 

deadline. To support negotiation with incomplete negotiation, 

this work focuses on designing learning agents called Bayesian 

learning (BL) based negotiation agents (BLNA) adopting a 

time-dependent negotiation model. In BLNA, BL is used for 

estimating opponent’s RP and the corresponding deadline is 

computed using the estimated RP. BLNA also has the capability 

of maximizing its utility using estimated deadline information 

when its deadline is shorter than or equal to the estimated 

deadline. To evaluate the performance of BLNA, BLNA is 

compared to an agent with complete information and an agent 

with incomplete information. Empirical results showed that 

BLNA achieved: 1) always higher utility than the agent with 

incomplete information for all cases, 2) close to or slightly lower 

utility than the agent with complete information when its 

deadline is lower and equal to opponent’s deadline, and 3) lower 

utility than the agent with complete information when deadline 

is higher than opponent’s deadline. 

 
Index Terms—Automated negotiation, negotiation agents, 

intelligent agents, Bayesian learning, negotiation with 

incomplete information 

 

I. INTRODUCTION 

UTOMATED negotiation is defined as a process for 

resolving differences and conflicting goals among 

interacting agents. There are two types of negotiation 

environment, one for agents with complete negotiation 

settings and the other for agents with incomplete negotiation 

settings. While agents with complete information know 

opponent private information such as reserve price and 

deadline, agents with incomplete information do not know 

opponent private information. For negotiation with complete 

information, optimal solutions, for an agent can be easily 

determined using the interacting agent‟s private information, 

e.g., [1] and [2]. However, it is not easy for an agent with 

incomplete information to achieve optimal solutions. For 

optimal solutions in negotiation with incomplete information, 

a learning method is required. In this work, Bayesian learning 
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(BL) is adopted for supporting negotiation with incomplete 

information by finding an opponent‟s private information. 

There are some related works [1], [2], [3]  using BL for 

supporting negotiation with incomplete information. In [3], 

BL framework was first introduced to support negotiation. In 

[1] and [2], BLGAN uses the synergy of BL and a genetic 

algorithm (GA).  

A. Contribution of this work 

The differences between the above related works and this 

work are as follows: 

1) Compared to [1] and [2], this work suggests a new BL 

method for estimating an opponent‟s reserve price 

(RP) by designing a new conditional probability of BL. 

2) Since estimation of the exact RP using BL is not 

possible, there exist some estimation errors of RP. To 

compensate for the estimation errors, a GA was used in 

[2] for making tradeoff between an agent‟s proposal 

and its opponent proposal. However, negotiation using 

the GA can be finished quickly without reaching 

optimal results. Even though the agent adopting a 

GA-based tradeoff algorithm can increase the 

negotiation success rates, it should give up some 

amount of utility. As a primarily research report, this 

paper is focused on enhancing BL part only but not 

focusing using a GA-based tradeoff algorithm. 

3) Although this paper is based on [1] and [2], there exist 

several different points. Compared to [1] and [2], this 

work uses different equations in generating proposals 

for both learning and no-learning agents. While 

estimation of opponent RP and deadline in [1] and [2] 

is carried out separately, we calculate opponent 

deadline using estimated opponent RP because 

estimation of opponent RP and deadline is 

inter-dependent (see Section II-C). Furthermore, the 

calculated opponent deadline information is used for 

generating proposals to increase its utility when the 

calculated opponent deadline is longer than or equal to 

its deadline. 

The paper is organized as follows. The negotiation model 

in this work is described in Section II, and the design of 

proposed BL-based negotiation agents (BLNA) are described 

in Section III. Section IV shows experimental results and 

analyzes the performance. The final section concludes this 

work with summary and suggests future works. 
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II. NEGOTIATION MODEL 

A. Time-dependent Negotiation Model 

In this work, we consider bilateral negotiation between two 

self-interested agents over an issue, e.g., price, quality of 

service, etc. The two agents have conflicting roles such as 

seller (S) and buyer (B). The agents negotiate by exchanging 

proposals using Rubinstein‟s alternating-offers protocol [4]. 

The fixed (no learning) agent { , }x B S  generates proposals 

at a time round t, 0   xt , as follows: 

( 1)




 
    

 

x
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t x x x
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where 1   for S and 0   for B. IPx and RPx is the initial 

price (the most favorable price that can afford) and reserve 

price (the least favorable price that can afford) of x, 

respectively.  x
is the deadline and 

x
 , 0

x
   , is the 

time-dependent strategy of x. The concession behavior of x is 

determined by the values the time-dependent strategy [5] and 

is classified as follows: 

1) Conciliatory (0 1)
x

  : x makes larger concession in 

earlier negotiation rounds and smaller concessions in 

later rounds. 

2) Linear ( 1)
x

  : x makes a constant rate of concession. 

3) Conservative (1 )
x

   : x makes smaller concession 

in earlier negotiation rounds and larger concessions in 

later rounds. 

Let D be the event in which x fails to reach an agreement. 

The utility function of x is defined as 

:[ , ] [0,1] x x xU IP RP D such that ( ) 0xU D  and for 

any [ , ],x

t x xP IP RP ( ) ( ).x

x t xU P U D  ( )x

x tU P  is given as 

follows: 

min min( ) (1 )


  


x

x tx

x t

x x

RP P
U P u u

RP IP
,        (2) 

where minu is the minimum utility that x receives for reaching 

an agreement at RPx. For experimental purpose, the value of 

minu is set as 0.1. At x

t xP RP , ( ) 0.1 ( ) 0.  x x xU RP U D  

For the bilateral negotiation in this work, it is assumed that 

S starts the negotiation by making proposals to B. The 

negotiation process between the two agents will be 

terminated: 1) in making an agreement when an offer or a 

counter-offer is accepted, or 2) in a conflict when one of the 

two agents‟ deadlines is reached. An agreement is reached 

when one agent proposes a deal that matches or exceeds what 

another agent asks for, i.e., 1( ) ( )B S

S t S tU P U P  or 

1( ) ( )B S

B t B tU P U P  . 

B. Optimal Negotiation Strategy with Complete Information 

The optimal strategy of x is defined as the strategy that 

maximizes the utility of x at agreement time Tc. Let Pc be the 

agreement price (i.e., 
cT

x

cP P ). The maximum strategy 

ensures ( ) ( ) x

x c x tU P U P  for all . ct T  

For negotiation with complete information between S and B, 

[1] and [2] proved the following Theorems 1 and 2 (refer [1] 

and [2] for detailed illustrations): 

Theorem 1 ( ) B S
: S achieves maximal utility when it 

adopts the strategy 

log







B

S

S B

S

S S

IP RP

IP RP
. 

Theorem 2 ( ) B S
: B achieves maximal utility when it 

adopts the strategy 

log







S

B

S B

B

B B

RP IP

RP IP
. 

C. Negotiation with Incomplete Information 

For a negotiation with incomplete information, if an agent 

can estimate opponent‟s RP and deadline exactly, the agent 

can find an optimal strategy using its corresponding theorem 

between Theorems 1 and 2.  

The relationship between RP and deadline is given as 

follows. The formulas for calculating RP in (3) and deadline 

in (4) are derived from (1). 


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 
 
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              (3) 
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P IP
t
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              (4) 

For the given
xIP , t , x

tP and , x the calculation of RPx is 

related with
x and the calculation of 

x is related with RPx. 

Hence, calculation of RPx and  x
 is not separable but closely 

related with each other. If we can estimate either RP or 

deadline, the other can be calculated from the estimated 

variable using (3) or (4). 

If it is assumed that IPx is known (it can be easily assumed 

if the first proposal is IPx), 
x  can be calculated using IPx and 

two proposals with different time rounds as follows: 

( )
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By dividing (5) by (6), the following equation is achieved. 

1 1
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Finally, the following x  is calculated. 

11

log ,   where 3



 



x

t x

x t x

t xt

P IP
t

P IP
,         (7) 

In summary, if IPx is known, exact x can be calculated by 

(7) when 3t . Then, if either RP or deadline is estimated, 

the other can be computed using (3) or (4). In this work, we 

estimated RP and the corresponding deadline calculation is 

conducted using (4). 

 

III. BAYESIAN LEARNING BASED PROPOSED APPROACH 

In this section, we will describe the design of BLNA to 

support negotiation with incomplete information. 



 

A. Bayesian Learning of opponent’s RP 

Let the price range be in [MINP, MAXP]. An agent 

adopting BL forms a set of hypotheses {Hi} of opponent‟s RP, 

where (MAX MIN ) /  i P P HH i N and 
HN is the number 

of hypotheses. The i-th hypothesis of an opponent‟s RP is 

defined as opp

iRP and the estimated opponent RP is defined as 

.
opp

iRP  

The following relation (domain knowledge) between x

tP  

and RPx is derived from (3). 

,
( )


 

x

t x

x xx

d

P IP
RP IP

R t
              (8)

where ( )x

dR t  is the discount ratio of x and measured by 

( ) .





 
  
 

x

x

d

x

t
R t  

For example, given IPB = 5, RPB = 85, 50 B
 and 5, B

 

the following Figs. 1 and 2 show simulation results of B‟s 

proposals and corresponding discounting ratio at 

0,1,..., Bt  , respectively. At 25t , the results shows 

25 7.5BP  and 

5
25

(25) 0.03125.
50

B

dR
 

  
 

Hence, 
( )

x

t x

x

d

P IP

R t


 

7.5 5
80

0.03125


   and it equals to 85 5 80.   x xRP IP  
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Fig. 1.  B‟s proposals at 0,1, ...,

B
t   
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Fig. 2.  Discounting ratio ( )B

d
R t at 0,1, ...,

B
t   

 

Using the formula in (8) representing relation between 
x

tP  

and RPx, the conditional probability (likelihood) distribution 

is designed as follows: 

( )
( )

( ) 1

( )


 

 


opp opp
opp oppt

i
x

dopp opp

t i opp opp

t

x

d

P IP
RP IP

R t
P P RP

P IP

R t

,  (9) 

where ( )x

dR t is the estimated discounting ratio at time round t. 

To achieve accurate conditional probability in (9), it is crucial 

to obtain an appropriate ( )x

dR t . ( )x

dR t is obtained by the 

following formula: 

( )
( 1)





 
    

opp

x

d

opp

t
R t

t
,              (10) 

where opp is calculated by (7) when 3t . Due to the same 

dimensionality and difficulty of estimating opponent deadline 

as opponent RP, ( 1) opp t is the estimated opponent 

deadline at time round 1t  , and is calculated using (4) from 

the estimated opponent RP at previous time round 1t , 

( 1).
opp

RP t  

In some cases, ( )opp opp

t iP P RP  should be zero as follows. 

For S estimating opponent RP using BL, if 

,opp opp

t iP RP then ( ) 0opp opp

t iP P RP  because B will not 

generate proposals higher than its RP. Similarly, for B 

estimating opponent RP using BL, if 

,opp opp

t iP RP then ( ) 0opp opp

t iP P RP  because S will not 

generate proposals lower than its RP. 

When x receives ,opp

tP  the Bayesian updating formula 

revises its belief about opponent RP with prior probability 

distribution is defined as follows: 

1

11

( ) ( )
( )

( ) ( )








H

opp opp opp

t i t iopp opp

i t N opp opp opp

t i t ii

P RP P P RP
P RP P

P RP P P RP
,  (11) 

where the prior probability 1( )

opp

t iP RP is defined as 

1 1( ) ( ) opp opp opp

t i i tP RP P RP P  and initially, it is assumed 

uniform distribution over all hypotheses. 

Finally, the expected value of 
oppRP at time round t, 

( )
opp

RP t , is computed using the following formula. 

( ) ( )
opp

opp opp opp

i t it
RP t P RP P RP        (12) 

B. BL-based Negotiation Agents 

BLNA x generates the next proposal using the following 

formula [2]: 

1 1

1
( 1)

( 1)





 

 
    

  

x

x x x

t t x t

x

P P RP P
t

,    (13) 

where 1   for S and 0   for B. Compared to (1), the 

main difference is that (13) treats the previous proposal 1

x

tP  

as its new initial price at time round t. 

Until now, all materials for generating (optimal) strategy 

are studied and prepared. The procedure for generating 

optimal strategy is described in Algorithm 1. 
 



 

Set x as BLNA 

Part 1 (BL stage): Generating Proposals using BL information 

If time round 3t  

Compute ( )
opp

RP t  as an average value in feasible price range. 

Compute  opp  using (4) and ( )
opp

RP t . 

Compute 
x
 using Theorem 1 or 2 with ( )

opp

RP t and opp . 

Generate a proposal 
x

t
P  using (13) with 

x
. 

If time round 2t   

Set 
1
( )



opp

t i
P RP  as ( 2)

opp

RP t  for all i. 

If time round 3t  

 Compute ( 1) opp t  using ( 1).
opp

RP t  

Compute  opp  using (7). 

Compute ( )
x

d
R t  using (10). 

Compute ( )
opp opp

t i
P P RP  using (9) for all i. 

Compute ( )
opp opp

i t
P RP P  using (11) for all i. 

Set 
1 1
( ) ( ).

 


opp opp opp

t i i t
P RP P RP P  

Compute ( )
opp

RP t  using (12). 

Compute  opp  using (4) and  ( )
opp

RP t . 

Compute 
x
 using Theorem 1 or 2 with ( )

opp

RP t and opp . 

Generate a proposal 
x

t
P using (13) with 

x
. 

 

Part 2: Generating Proposals using Deadline Information 

(Case 1: the case when x started the negotiation first) 

If 
x

t   and ˆ
x opp

   

If x started the negotiation first 

 If   1 1
and( )  ( ) ( ) ( )

 
 

x opp x

x t t t
U RP U P U P U P  

Generate a proposal 
x

t
P as

1

opp

t
P . 

Else, 

Generate a proposal 
x

t
P as its 

x
RP . 

(Case 2: the case when opponent started the negotiation first) 

If 
x

t   and ˆ
x opp

   

If opponent started the negotiation first 

 Accept a proposal 
x

opp
P


. 

Algorithm 1.  BL-based Negotiation Agents 

 

Algorithm 1 consists of two parts. Part 1 for generating 

proposals using BL information is the main part of the 

algorithm as discussed in Section III-A. Part 2 is the 

procedure for generating proposals using deadline 

information. If BLNA can learn its deadline is lower than or 

equal to opponent deadline exactly ( ˆ
x opp  ), it can still 

maximize its utility even though it reaches its deadline xt  . 

Depending on which agent started the negotiation first, Part 2 

is divided into the following two cases: 

(Case 1) If BLNA x started the negotiation first, there is 

still room for x to achieve its maximum utility at time round 

.xt   This can be carried out by making the proposal 
x

xP  as 

opponent proposal 
x

oppP  at 
xt  on the condition that 

1 1
( ) ( ).each ( ) and ( ) opp x

t t

x

x x x t x xU P U PU RP U P
 

  However, 

because estimating the opponent proposal will be difficult and 

there will exist errors in estimating the proposal using BL, 

BLNA x will generate the proposal x

tP  as the opponent 

proposal 
x

oppP  at ( 1)xt   . 

(Case 2) If opponent started the negotiation first, x will 

achieve its maximum utility at time round 
xt   by not 

making a proposal 
1

( ) ( )
opp x

txx xU P U P
 

  and accepting the 

opponent proposal opp

x
P


 at time round .xt   

 

IV. EXPERIMENTAL RESULTS 

To evaluate the effectiveness and performances of BLNA 

empirically, three types of negotiation scenarios between S 

and B were studied as in Table I. Throughout the three 

negotiation scenarios, B is set as a fixed and no-learning agent 

in which it generates proposals using (1) and a strategy 

randomly fixed at start of negotiation. S has three types 

according to the following scenarios. 
 

TABLE I 

THREE NEGOTIATION SCENARIOS 

Scenario Agent S Agent B 

Complete Complete information Incomplete information 

Incomplete Incomplete information Incomplete information 

Incomplete 

with BL 

Incomplete information   

S learns opponent‟s RP using BL 
Incomplete information 

 

Scenario 1 (S as the optimal agent): S has complete 

information about B and B has incomplete information about 

S. Since S knows B‟s RP and deadline, S generates proposals 

by adopting its optimal strategy using Theorem 1. The 

negotiation result corresponds to the best-case scenario that 

BLNA is targeting for. 
 

Scenario 2 (S as the fixed and no-learning agent): Both S and 

B have incomplete information about each other. S does not 

know B‟s RP and deadline. S and B generate proposals using a 

strategy randomly fixed within the possible strategy range at 

the start of negotiation. The negotiation result corresponds to 

the worst-case scenario. 
 

Scenario 3 (S as BLNA): Both S and B have incomplete 

information about each other. However, S generates proposals 

by adopting estimated strategies using Theorem 1 with 

estimated B‟s RP using BL and the corresponding calculation 

of B‟ deadline. Furthermore, S uses some deadline 

information for generating proposals (see Part 2 in Algorithm 

1) 

A. Experimental Settings 

The agents‟ parameter settings are summarized in Table II. 

Initially, S and B‟s IPs, RPs and deadlines were randomly 

selected in the given ranges at start of negotiation. Three type 

of deadlines „Short‟, „Mid‟, and „Long‟ were used. (Short, 

Mid), (Mid, Mid) and (Long, Mid) were used for comparing 

negotiation results with respect to deadline effects (i.e., with 

different bargaining advantage). The representation 

(Deadline of S, Deadline of B) means S sets the first element 



 

and B sets the second element as their deadlines. For example, 

(Short, Mid) means S adopts the „Short‟ deadline and B 

adopts „Mid‟ deadline. 

In the experiments of (Short, Mid), (Mid, Mid) and (Long, 

Mid), 1000 random runs for each scenario were carried out, 

and in each run, agents used the same IPs, RPs, deadlines and 

initial strategies for all the scenarios. In the random 

generation of B and S‟s strategies at the start of negotiation, 

the probabilities of generating conciliatory (conceding 

rapidly) and conservative (conceding slowly) strategies are 

same. 
 

TABLE II 

AGENTS‟ PARAMETER SETTINGS 

Parameter type Possible Parameter values 

Minimum possible 

price (MINP) 
1 

Maximum possible 

price (MAXP) 
100 

RPS 
[MINP + 5,  

MINP+ (MAXP – MINP)/2]  

RPB [RPS + 10, MAXP–5] 

IPS [RPB, MAXP] 

IPB [MINP, RPS] 

Possible strategy range [0.002, 10] 

Deadline 

Short 25 

Mid 50 

Long 100 

H
N  100 

B. Experimental Results 

The following four performance measures were used: 1) 

Success rate, 2) Failure type, 3) Average negotiation round, 

and 4) S‟s normalized average utility. Success rate (SR) is 

defined as SR = Nsuccess/Ntotal, where Nsuccess is the number of 

successful deals and Ntotal is the total number of deals. To 

identify the reasons of negotiation failure, two types of 

negotiation failure were considered: „Type I‟ and „Type II‟ to 

represent infeasible deals due to 1) B‟s infeasible high 

strategy settings and 2) S‟s wrong strategy estimation, 

respectively. Average negotiation round (ANR) is measured 

by the average number of negotiation rounds required to reach 

an agreement for all successful deals. S‟s normalized average 

utility (NAUS) is defined as  

 successN

0

max

success

1
NAU  

N

final

x

S t

S

S

U P

U



,  

where ( )finalP t is the final proposal at the final negotiation 

time round finalt and 
max

SU is the maximum utility of S. 

 

 

TABLE III 

RESULTS OF [SHORT, MID] CASE 

(Short, Mid) Complete Incomplete 
Incomplete 

with BL 

Success rate 0.659 0.659 0.659 

Failure type
 a

 - Type I Type I 

Average 

negotiation rounds 
25 19.68 24.84 

S's normalized 

average utility 
0.5746 0.4661 0.5715 

a As B has a higher strategy value (e.g., 10), there is a higher possibility 

that the negotiation can fail to generate appropriate proposals before the 

shorter (S‟s) deadline reaches (i.e., B‟s final proposal is lower than RPS at S‟s 

deadline). In this case, S cannot make the successful negotiation and „Type I‟ 

counts the kind of negotiation failures. 

 

 

TABLE IV 

RESULTS OF [MID, MID] CASE 

(Mid, Mid) Complete Incomplete 
Incomplete 

with BL 

Success rate 1 1 1 

Failure type - - - 

Average 

negotiation rounds 
50 36.12 48.13 

S's normalized 

average utility 
0.9473 0.5649 0.9032 

 

 

TABLE V 

RESULTS OF [LONG, MID] CASE 

(Long, Mid) Complete Incomplete 
Incomplete 

with BL 

Success rate 1 0.536 0.651 

Failure type
 b

 - Type II Type II 

Average 

negotiation rounds 
50 37.83 42.33 

S's normalized 

average utility 
0.9997 0.5998  0.7271  

b If S learns inexact RP and deadline having higher error rates, the 

negotiation can fail to generate appropriate proposals before the shorter (B‟s) 

deadline reaches (i.e., S‟s final proposal is higher than RPB at B‟s deadline). 

In this case, S cannot make the successful negotiation and „Type II‟ counts 

the kind of negotiation failures. 

 

C. Analysis and Discussion 

The goal of BLNA is to achieve the results that are close to 

the “Complete” scenario that shows the optimum results for 

the given settings. Since in (Short, Mid) and (Mid, Mid) cases, 

S has shorter than or equal to the deadline of B, Part 2 in 

BLNA algorithm will have significant role to improve the 

performance. Specifically, (Case 2) in Part 2 will have effect 

in this case because S will start the negotiation first. In 

contrast, in (Long, Mid) case, Part 1 will have significant role 

for achieving good performance. 

 

Observation 1 - (Short, Mid) Case: “Incomplete with BL” 

scenario achieved very close results to the “Complete” 

scenario. 

Analysis: Since S has a shorter deadline than B, if S 

appropriately learns B‟s RP ( )BRP and computes B‟s 

deadline ˆ
B

 ( )
S
  in “Incomplete with BL” scenario, S will 

propose B‟s previous proposal at the deadline and successful 

agreement will be made at the shorter deadline (see Part 

2-(Case 1) in Algorithm 1). 

As shown in Table III, in “Complete” scenario, the 

negotiation was terminated at time rounds 25 and S achieved 

normalized average utility 0.5746. Even though in 



 

“Incomplete” scenario, S achieved normalized average utility 

0.4661 at average time rounds 19.68, in “Incomplete with 

BL” scenario S achieved normalized average utility 0.5715 at 

average time rounds 24.84. The values of “Incomplete with 

BL” scenario are very close to “Complete” scenario. The 

results showed that S (the BLNA) can learn its opponent‟s 

(B‟s) RP and deadline when B has longer deadline than S 

ˆ( )
S B
  almost exactly in (Short, Mid) case. 

 

Observation 2 - (Mid, Mid) Case: “Incomplete with BL” 

scenario achieved results that are close to the “Complete” 

scenario. 

Analysis: Since S and B have the same deadline, if S learns 

B‟s RP ( )BRP and computes B‟s deadline ˆ
B

 ( )
S
  

appropriately in “Incomplete with BL” scenario, S will 

propose B‟s previous proposal at the deadline and successful 

agreement will be made at the deadline (see Part 2-(Case 1) in 

Algorithm 1). 

As shown in Table IV, in “Complete” scenario, the 

negotiation was terminated at time rounds 50 and S achieved 

normalized average utility 0.9473. Even though in 

“Incomplete” scenario, S achieved normalized average utility 

0.5649 at average time rounds 36.12, in “Incomplete with 

BL” scenario S achieved normalized average utility 0.9032 at 

average time rounds 48.13. The values of “Incomplete with 

BL” scenario are close to “Complete” scenario. The results 

showed that  S (the BLNA) can learn the opponent‟s (B‟s) RP 

and deadline when B‟s does not have shorter than S‟s 

deadline ˆ( )
S B
   appropriately with some errors in (Mid, 

Mid) case. 

 

Observation 3 - (Long, Mid) Case: “Incomplete with BL” 

scenario achieved results not close to the “Complete” 

scenario but achieved results better than “Incomplete” 

scenario. 

Analysis: Since S has the longer deadline than B, if S 

appropriately learns B‟s RP ( )BRP and computes B‟s 

deadline ˆ( )
B S
   appropriately in “Incomplete with BL” 

scenario, S will make proposals using the strategy by 

Theorem 1 with BRP  and ˆ
B

 . 

As shown in Table V, in “Complete” scenario, the 

negotiation was terminated at time rounds 50 and S achieved 

normalized average utility 0.9997. Although S has longer 

deadline than B, S cannot achieved the maximum utility 1. 

This is because if S starts negotiation first, B will decide 

whether it accept S‟s proposal or not. In “Incomplete” 

scenario, S achieved normalized average utility 0.5998 at 

average time rounds 37.83. In “Incomplete with BL” scenario 

S achieved normalized average utility 0.7271 at average time 

rounds 42.33. The values of “Incomplete with BL” scenario 

are not close to “Complete” scenario but they are higher than 

“Incomplete” scenario. The results show that S (the BLNA) 

can learn the opponent‟s (B‟s) RP and deadline with some 

errors in (Long, Mid) case. 

 

V. CONCLUSION AND FUTURE WORKS 

In this paper, we showed the performance of proposed 

BLNA by considering the case that one agent uses BL and 

deadline information for generating its next proposal in the 

three deadline combinations, (Short, Mid), (Mid, Mid) and 

(Long, Mid). The performance showed that:  

1) In (Short, Mid) case, BLNA can learn the opponent 

deadline is longer than its opponent almost exactly. 

2) In (Mid, Mid) case, BLNA can learn the opponent 

deadline is not shorter than its opponent with some 

errors. 

3) In (Long, Mid) case, BLNA can learn the opponent‟s 

RP and deadline with more higher errors. 

From the results 1) to 3), we conclude BLNA can support 

the negotiation with incomplete information. However, we 

need to improve the performance, especially in the case of 

(Long, Mid) case, in terms of both the success rate and utility. 

Due to the space limitation, we only considered one fixed 

case of deadline (Mid case) for B. There are still plenty of 

deadline combinations such as (Short, Short), (Mid, Short), 

(Long, Short), (Short, Long), (Mid, Long) and (Long, Long) 

to figure out the whole system performance of proposed 

BLNA. Furthermore, although we only considered the case 

that one agent (S) learns opponent‟s information using BL and 

deadline information, it will be interesting to analyze the case 

that both agents can learn each other. In our future work, we 

will consider the above issues. Moreover, the research for 

supporting negotiation with incomplete information is still 

being carried out to increase the performance of BLNA by 

incorporating evolutionary algorithms in BL stage of BLNA. 
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