
 

  
Abstract—The identification of transcription factor binding 

sites (TFBSs) is important for understanding the genetic 
regulatory system, but weak conservation of TFBSs poses a 
challenge in computational biology. In this study, we propose a 
method based on the Ant Colony Optimization (ACO) and 
Expectation Maximization (EM) algorithm to discover DNA 
motifs (collections of TFBSs) in a set of bio-sequences. In our 
method, ACO builds candidate motifs to search for putative 
binding sites amid the given sequences. The EM algorithm is 
then applied to maximize the likelihood of a motif model being 
constructed from the corresponding binding sites. In ACO, each 
artificial ant mimics the foraging behavior of social insects to 
construct a possible motif by sensing the pheromones laid on 
each nucleotide. Due to stability issues with metaheuristic 
approaches, we incorporate the EM algorithm in our method to 
improve the reliability of binding site predictions. In the final 
step, a statistically-based procedure is applied to refine the 
predictions for compliance with real biological conditions. 
Experiments conducted on real test datasets indicate that the 
proposed method identifies binding sites with higher accuracy 
and reliability than two other motif discovery tools, namely 
GAME and GALF.  
 

Index Terms—Motif Discovery, TFBS Identification, Ant 
Colony Optimization, Expectation Maximization 
 

I. INTRODUCTION 
ENE expression is regulated by the binding of regulatory 
proteins, called Transcription Factors (TFs) [1], to their 

corresponding binding sites. TFs bind to specific DNA 
sequences, namely Transcription Factor Binding Sites 
(TFBSs) [2], [3], to initialize, assist, or suppress 
transcriptional activity. TFBSs are usually small DNA 
sequences in the range of 6 to 30 bps and mostly reside in the 
cis-regulatory regions which are usually 100-3000 bps 
upstream of the transcription start sites. Interaction of TFBSs 
and TFs has a strong influence on the transcription of DNA 
into RNA and consequently on gene expression. Thus 
identification of TFBSs is a crucial part of deciphering the 
underlying mechanism of genetic regulation. 

As of now, the most accurate and reliable method for 
detecting TFBSs remains biological experiments such as 
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DNAse footprinting assay [4] and Electrophoretic Mobility 
Shift Assay (EMSA) [5]. However, these methods are 
laborious and time-consuming. With rapid advances in 
biotechnology and large amounts of sequencing data, 
computational strategies for de novo TFBS identification are 
now a viable choice for pre-screening and prediction of 
unknown DNA motifs. Given a set of co-expressed / 
co-regulated sequences cut out upstream of the genes, the goal 
of de novo TFBS identification  is to find a collection of short 
fragments that could be recognized by a TF’s DNA binding 
domain(s). A pattern generalized from the collection, i.e., a 
DNA motif, can be later used to search for binding sites bound 
by the specific TF according to similarities to the obtained 
motif. Recently, the Chromatin immunoprecipitation (ChIP) 
[6] experimental technique uses microarray technology to 
measure the binding of specific proteins to their associated 
genomic regions in a high-throughput manner. The generated 
sequence data will serve as a reliable source for motif 
discovery. 

However, computational approaches to DNA motif 
discovery face two types of challenges. First, TFBSs are 
typically very short in comparison to upstream sequences 
(hundreds to thousands of bases). Second, the motif could be 
weakly conserved due to evolution and mutation. Given these 
considerations, both simple string comparison methods and 
exhaustive search of all combinations are unable to 
effectively provide an accurate identification of TFBSs. 
  Despite these difficulties, over the past few decades, a wide 
assortment of computational methods has been developed for 
predicting DNA motifs. The existing methods can be 
organized into two broad categories according to the 
representation used for modeling a DNA motif: 
(i) Consensus representation employs a DNA sequence to 
manifest the significant nucleotide at each position in a motif. 
The mismatch count between a motif instance and the 
consensus can be used as a simple criterion for evaluation. 
(ii) Matrix representation uses either a Position Weight 
Matrix (PWM) or a Position Frequency Matrix (PFM) to 
demonstrate the conservation of nucleotides in a motif. 
Information Content (IC) is a widely used measure for 
evaluating the conservation of a putative motif matrix. 

In addition, motif discovery methods can also be classified 
with respect to the type of search technique employed: (i) 
enumerative search, (ii) deterministic methods, and (iii) 
stochastic methods.  
(i) Enumerative search is usually applied for consensus 
representations. Despite the prohibitive computational 
loading under long motif width conditions, this technique can 
still provide useful candidates for further analysis. One 
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well-known representative in this category is Weeder [7]. 
(ii) Deterministic methods such as MEME [8] and Consensus 
[9] rely on the Expectation Maximization (EM) [10] 
algorithm to optimize a motif matrix. According to the theory 
of binding affinity, a motif of real binding sites should possess 
the highest IC. One obvious disadvantage to these methods is 
that they are highly-dependent to the initial setting, potentially 
leading to suboptimal motif predictions. 
(iii) Stochastic methods iteratively align a set of TFBSs and 
generalize a motif matrix from the set. Methods such as 
BioProspector [11], AlignACE [12], and MotifSampler [13] 
that use Gibbs sampling [14] can be further categorized as 
single-point searches, whereas the recently developed 
evolutionary algorithms (EAs) [15] implemented by the 
GAME [16] and GALF [17] methods can be classified as 
population-based searches. Although these methods all 
perform global search, single-point searching usually requires 
more iterations for convergence. On the other hand, 
population-based search maintains a group of cooperative 
individuals to search for the global optima.  

In this study, we propose a motif discovery method based 
on Ant Colony Optimization (ACO) [18] and the Expectation 
Maximization (EM) algorithm. ACO is a global optimization 
metaheuristic originating from research on the foraging 
behavior of some ant species. Since its introduction, 
applications to several different NP-hard problems [19] have 
empirically shown its effectiveness. EM is a standard 
algorithm widely used for maximum likelihood and maximum 
a posterior parameter estimation in statistical models. The 
EM algorithm is used in Consensus, one of the earliest motif 
discovery methods, and a generalized mixture model was later 
implemented in MEME. We have modified the ACO 
algorithm such that each individual ant builds a potential 
motif using the consensus representation. At each iteration, 
ACO considers the total contribution from each of the 
potential motifs built by the ants and increases or decreases 
the pheromones accordingly. By sensing pheromone levels, 
the ants have higher probability of constructing a better motif 
at the next iteration. Given the stochastic nature of 
metaheuristic algorithms, the results provided by ACO could 
be further refined. The underlying principle of the EM 
algorithm guarantees that, starting from an initial setting, the 
likelihood of missing variables given the observed data only 
increases or remains even, thus we apply it to maximize the 
likelihood of ACO’s motif predictions. We have conducted 
experiments on real biological datasets to evaluate the search 
capabilities of our method, and the results indicate this 
combined approach has promise in motif discovery. 

II. FORMULATION OF MOTIF DISCOVERY  

A. Approaches to Motif Discovery 
The methods for motif discovery problems are broadly 

divided into two categories (i.e., consensus and positional) 
based on the approaches used to search the solution space. In 
the case of DNA motif discovery, a set of N sequences S = (S1, 
S2,…, SN) is given, where each letter is drawn from the finite 
alphabet Σ = {A, C, G, T}. The objective is to look for a set of 
w bp long subsequences in the input sequences such that the 
occurrences of these subsequences cannot be purely justified 

by a background model. The two general approaches to the 
motif discovery problem are as follows: 
(i)  Consensus Approach: Discovers a string Sc of width w 
from Σ and a set of subsequences M = {m1, m2,…, mN} each of 
which is of the same width w and extracted from 
corresponding sequence Si. The objective is to find a set that 
can minimize the sum of Hamming distances (dH). 
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(ii) Positional Approach: Discovers a set of subsequences M = 
{m1, m2,…, mN} where each one corresponds to the motif 
instance from sequence Si according to the set of starting 
positions A = {a1, a2,…, aN}. Each motif instance mi is a 
subsequence starting from position ai and of width w in the 
input sequence Si. The objective is to find a set that can 
maximize the information content (IC) [20]. 
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where fb(j) is the normalized frequency of nucleotide b in 
column j of all motif instances. The variable pb records the 
background frequency (calculated from S or the whole 
genome) of the same nucleotide. 

B. Relation between the Two Approaches 
In the consensus approach, a string representing the motif is 

used to scan the input sequences in search of subsequences 
similar to it. Theses subsequences represent a set of putative 
motif sites, akin to what would be provided by the positional 
approach. Similarly, a set of subsequences given by the 
positional approach can be summarized with a consensus 
string. Realizing that the motifs resulting from the consensus 
or the positional approaches are interchangeable, the choice 
between these two approaches is dependent upon the 
implementation of a motif discovery method. We have 
decided to use the consensus approach in our method because 
it is a concise way to portray a motif and a sensible choice 
when considering the underlying mechanism of ACO and, 
also, this approach searches the solution space extensively, 
raising the possibility that the global optima may be 
discovered.  

 

III. THE PROPOSED METHOD 
We have designed a framework for motif discovery with 

the combined ability of the Ant Colony Optimization (ACO) 
and Expectation Maximization (EM). ACO is a metaheuristic 
originally developed from research on the food foraging 
behavior of social insects. The algorithm mimics swarm 
intelligence to tackle problems in the combinatorial domain.  
After receiving successful results of theoretical problems, 
researchers have started to apply ACO to real-world practical 
problems and obtained pleasing resolutions. Because the 
ACO algorithm is effective in solving combinatorial problems, 
it is a reasonable and intuitive choice to adopt the consensus 
approach for motif discovery. Although ACO is a capable 
algorithm for global search, the underlying stochastic 
optimization process prompts us to integrate the EM 



 

algorithm into the motif discovery framework. The EM 
algorithm is itself a powerful motif discovery method that can 
guarantee to increase the likelihood of a motif model given an 
initial condition, i.e., a set of binding sites. However, 
computation of EM relies heavily on the initial conditions, 
which is the reason we combined ACO and EM to perform 
motif discovery: ACO is effective in global search while EM 
is efficient at maximizing likelihood of parameter estimates, 
which makes these two algorithms fairly complementary. 
Finally, we designed a suite of post-processing procedures to 
further improve motif predictions.  

A. Ant Colony Optimization for Motif Discovery 
ACO is derived from the research on the foraging behavior 

of ants which communicate with each other under a model 
termed  stigmergy. Stigmergy has two major properties: the 
communication is mediated by the exchange of information 
through the modification of the environment; and the 
information can only be accessed when an ant visits the locus. 
In many ant species, a substance called pheromone is 
deposited on the ground when ants walk to and from a food 
source. The presence of pheromone is perceived by other ants 
and paths carrying higher concentrations of pheromone tend 
to be followed more often. Thus, ants are remarkably efficient 
when it comes to choosing the shortest route between a food 
source and their nest. 

ACO was formalized into a metaheuristic for combinatorial 
optimization problems by Dorigo and co-workers [18]. Under 
the ACO algorithmic framework the optimization process is 
composed of two parts: (1) construction of solutions and (2) 
pheromone updating. In step (1), each artificial ant constructs 
a solution by choosing elements from a finite set of available 
solution components. In step (2), according to each solution’s 
quality, the pheromone levels associated with promising 
solutions are increased and those associated with inferior ones 
are decreased. This process is actually implemented by 
decreasing all the pheromone values through the pheromone 
evaporation process and then increasing the pheromone levels 
associated with good solutions. 

Since the introduction of the first ant algorithm, ACO has 
grown into a whole family of algorithms. In this study, we 
choose one of the most successful variants, namely Ant 
Colony System (ACS) [21], as the backbone of our method. 
The main characteristic of ACS is the introduction of a local 
pheromone updating process performed at the end of the 
construction step. This local pheromone updating process is 
executed in addition to the original updating process (offline 
pheromone updating). Equation (3) explains how ACS’s 
offline pheromone updating is performed,  
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In (3), τjb is the quantity of pheromone associated with a 
consensus string having nucleotide b (∈∑) in position j. The 
parameter ρ (∈ (0, 1]) is the pheromone evaporation rate. ∆τjb 
is the pheromone amount carried by an ant which constructs a 
solution consisting of nucleotide b in position j. The local 
pheromone updating is performed according the following 
equation: 

 0)1( τϕτϕτ ⋅+⋅−= jbjb , (4) 

where ϕ ∈ (0, 1] is the pheromone decay coefficient and  τ0 is 
the initial value of the pheromone.  

To formulate a motif discovery problem under the ACO 
framework, we have elected to use an ant’s route for encoding 
the consensus string. For example, a “TATAA” consensus 
string is encoded as illustrated in Fig. 1. The route starts with 
a null initial node s and each subsequent edge corresponds to 
one nucleotide in the consensus string. The route is 
represented by s→T→A→T→A→A→e, where e is the null 
final node and TATAA are five edges chosen by the ant. The 
iterative ACO procedure in our method works as follows: The 
ants first build a set of potential consensuses by randomly 
extracting subsequences from the input sequences. Each 
consensus string is compared to the input sequences to find a 
set of potential binding sites which minimizes the sum of 
hamming distances as shown in (1). The set of binding sites is 
used to compute the IC value by (2), and we assume that the 
quality of a constructed consensus is directly proportional to 
the IC value. Then ACO applies (3) and (4) to update the 
pheromone levels and the added pheromone for each 
constructed consensus is equal to the corresponding IC value. 

B. Expectation Maximization 
In the motif discovery problem, a set of observed data 

(mostly sequences from the upstream region of co-expressed 
or co-regulated genes) is given and we seek the missing 
positions for motif instances. The EM algorithm finds the 
maximum likelihood estimate (MLE) of the unknown motif 
sites conditional to the observed data by iteratively applying 
the following two steps: 
(i)  Expectation step: Calculate the expected value of the log 
likelihood function given the observed data under the current 
estimate of the missing motif sites. 
(ii) Maximization step: Find the positions of motif instances 
that can maximize the log likelihood function. 

Although the EM algorithm does not decrease the value of 
the likelihood function of the observed data, the process does 
not guarantee convergence to the maximum likelihood 
estimator. Thus some heuristic or metaheuristic approaches 
like random restart, swarm intelligence, and evolutionary 
computation are needed to reach global maxima. We chose to 
apply the EM algorithm to the preliminary motif site 
predictions resulting from the ACO step. We did not fully 
integrate ACO and EM for two reasons: first, the added 
computational load is quite heavy; second, the experimental 
data (not shown here) only demonstrate marginal 
improvement over the current setting.  
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Fig. 1  An example for the consensus string “TATAA” can be represented 
by the route s→T→A→T→A→A→e.   



 

C. Post-processing Procedures for Motif Site Predictions 
Having obtained results from ACO and the EM algorithm, 

we apply a series of procedures to refine their quality. The 
post-processing procedures include three components: (i) 
masking the binding sites of a convergent motif, (ii) site shift, 
and (iii) addition and removal of putative binding sites. Each 
procedure is described in detail as follows: 
(i)  Masking the binding sites of a convergent motif: To cut 
the computational cost and broaden the motif search, we 
apply this technique to ensure the proposed method does not 
repeatedly predict the same motif. The binding sites of the 
motif with the best fitness value will be hidden when the 
initial consensus strings are initialized. The detailed 
implementation uses a count cnt_cov (3, in our case) to 
indicate how many rounds are required for a motif to be 
tagged as convergent. With the masking technique, we can 
start a new round to find additional motifs.   
 (ii) Site shift: To prevent a common premature convergence 
scenario where all the predicted binding sites converge to 
positions some nucleotides apart from the real binding sites, 
this procedure simultaneously shifts all the predicted sites left 
or right one to a specific base and replaces the original 
prediction with the trial that achieves a higher IC value. 

(iii) Adding and removing putative binding sites: In the ACO 
and EM steps, we assumed that there would be one binding 
site per sequence, but this assumption sometimes fails in real 
biological conditions. We addressed this problem through a 
statistical approach. First, we defined the similarity score (sim) 
with the following function: 
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where fjb corresponds to the normalized frequency of 
nucleotide b appearing at the position j of a motif. The sim 
score can be used to calculate the similarity of a subsequence 
to the motif. Therefore we use (5) to compute sim scores of all 
the binding sites of a predicted motif, and calculate the mean, 

median, and standard deviation (std) values for the sim scores. 
Using these statistics, all input sequences are re-scanned and 
the subsequences with sim scores higher than “median – std” 
are added to the set of predicted binding sites. Predicted 
binding sites with sim scores lower than “mean – std” are 
removed.  

The overall framework of our DNA motif discovery 
method is illustrated in Fig. 2.  

IV. EXPERIMENTS 
To evaluate our method, we conducted experiments on 

eight real datasets previously constructed by the authors of 
GAME  [16]. Most of these datasets are composed of 
sequences of 200 bps, and the embedded motif instances are 
within the range of 6-22 bps. Table I lists detailed information 
about the test datasets. In addition, we compared our method 
with GAME and GALF [17], two recently developed methods 
that use the Genetic Algorithm (GA) to approach the motif 
discovery problem.  

The evaluation criteria used here include precision, recall, 
and F-score. These metrics are formulated as the following 
equations: 
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where nc is the number of binding sites that were correctly 
predicted, np is the total number of predicted binding sites, 
and nt is the total number of actual binding sites. These 
criteria are of site level comparison, where a correctly 
predicted binding site is allowed to differentiate from the true 
site with a shift up to 3 bps. As it can consider both the 
Precision and the Recall of a predicted motif, the F-score acts 
as a suitable metric for evaluating the quality of a prediction.  

A. Setting of Parameters 
To fairly compare each method’s performance, we set the 

parameters so that the average execution time of our method 
does not exceed that of GAME or GALF. Therefore, we 
configured our method as follows: the population has 20 
individuals, the maximal generation is set as 100, and the 
criterion of convergence is that there be no improvement for 
50 consecutive generations. Additionally, we have configured 
both the parameters ρ and ϕ for ACO as 0.8. The results of 
GAME and GALF reported here are from experiments 
conducted in [22] where the running configuration is as 
follows: the population sizes of GAME and GALF are both 

Table I 
THE 8 REAL DATASETS 

 
CREB CRP E2F ERE MEF2 MyoD SRF TBP 

N 17 18 25 25 17 17 20 95 
# 19 23 27 25 17 21 36 95 
w 8 22 11 13 7 6 10 6 
L 215 105 200 200 200 200 215 200 

N is the number of input sequences, # is the occurrences of binding sites 
in a dataset, w is the width of embedded binding sites, and L is the  length 
of each input sequence. 

Yes

Initialization: Randomly extracts 
potential binding sites from the given 

sequences.

ACO: Iteratively applies solution 
construction and pheromone update 

steps to search for good motifs.

EM: Uses expectation and 
maximization steps to refine 

predictions from ACO.

Post-processing procedures (ii) and 
(iii): Further improves the quality of 

the predicted binding sites.

Maximum restarts 
reached?

Post-processing procedure (i) : 
Masks the binding sites of a 

convergent moitf.

Motif predictions 
output

Occurences of the top 
motif > cnt_con?

Yes

No

No

 
 
Fig. 2  The framework of the proposed motif discovery method. 



 

set at 500 and the maximal generations allowed for GAME 
and GALF are 3000 and 300, respectively. All the 
experiments were run 20 times to determine whether the given 
motif method can produce stable predictions. 

B. Results and Discussion 
This section compares the performance of our method with 

GAME and GALF. The evaluation is divided into two 
categories: average results by each method for the eight 
datasets and best results achieved in each configuration.  

The average performance on the eight datasets is listed in 
Table II, with both the mean and standard deviation of each 
experiment calculated from 20 runs. In comparison with 
GALF, our method predicted motifs of better or equal quality 
with respect to  precision for the CRP, E2F, ERE, and TBP 
datasets. According to the evaluation based on recall, our 
method outperformed GALF in six out of the eight datasets, 
and only provided inferior predictions for the CRP and MEF2 
datasets. In comparison with GAME, our method provided 
predictions of better or equal quality with respect to  precision 
for all the datasets with one exception (the SRF dataset). 
According to the evaluation based on recall, our method 
outperformed GAME in six out of the eight datasets, and only 
provided inferior predictions for the CRP and SRF datasets.  

Our method predicted better motifs with higher F-scores 
than GAME or GALF on five (CRP, E2F, ERE, MyoD, and 
TBP) of the eight datasets. The average leads of F-scores for 
these five datasets for GAME and GALF are 0.29 and 0.07, 
respectively. For the CREB and MEF2 datasets, our method 
predicted motifs inferior to those from GALF, but still slightly 
outperformed GAME’s. The results indicate that our method 
trails the other two methods for the SRF dataset. In summary, 
the F-scores of the average results show that our method 
predicts better motifs under most circumstances. 

In addition to comparing average performance, we 
recorded the predicted motifs with the highest F-scores. The 
best motifs that can possibly be obtained by each method are 
listed in Table III. The fractions in Table III are written in 
accordance with (5) while the numeric values in parentheses 
correspond to the precision and recall. These data show that, 
for most of the datasets, our method can achieve better motif 
predictions with the exception of the E2F and TBP datasets. 
Observation of the predicted motifs with the highest F-scores 
obtained by our method indicates that they are further 
improved in the cases of the CREB, CRP, ERE, MEF2, and 
SRF datasets. Though our method still leads in five out of 
eight datasets, the lead with respect to the averaged F-scores 
over GAME and GALF has increased. We note that the SRF 

Table III 
BEST RESULTS IN TERMS OF F-SCORES ON EIGHT REAL DATASETS 

  GAME  GALF  Our Method 

Dataset  Precision Recall F-score  Precision Recall F-score  Precision Recall F-score 
CREB  14/18 (0.78) 14/19 (0.74) 0.76  13/17 (0.76) 13/19 (0.68) 0.72  14/17 (0.82) 14/19 (0.74) 0.78 
CRP  18/21 (0.86) 18/23 (0.78) 0.82  17/18 (0.94) 17/23 (0.74) 0.83  18/18 (1.00) 18/23 (0.78) 0.88 

E2F  24/30 (0.80) 24/27 (0.89) 0.84  20/25 (0.80) 20/27 (0.74) 0.77  24/31 (0.77) 23/27 (0.85) 0.81 

ERE  20/38 (0.53) 20/25 (0.80) 0.63  19/25 (0.76) 19/25 (0.76) 0.76  25/26 (0.96) 25/25 (1.00) 0.98 

MEF2  17/19 (0.89 17/17 (1.00) 0.94  17/17 (1.00) 17/17 (1.00) 1.00  17/17 (1.00) 17/17 (1.00) 1.00 

MyoD  10/21 (0.48) 10/21 (0.48) 0.48  15/17 (0.88) 15/21 (0.71) 0.79  17/20 (0.85) 17/21 (0.81) 0.83 

SRF  33/45 (0.73) 33/36 (0.92) 0.81  19/20 (0.95) 19/36 (0.53) 0.68  28/36 (0.78) 29/36 (0.80) 0.79 

TBP  81/101 (0.80) 81/95 (0.85) 0.83  88/95 (0.93) 88/95 (0.93) 0.93  85/96 (0.89) 85/95 (0.89) 0.89 

Average              0.73           0.81 0.76            0.88            0.76 0.81             0.88            0.86 0.87 

These results are collected from 20 experiments on each dataset. Bolded part represents predictions that achieve best performance with respect to the 
specific metric precision, recall, or F-score. 
 

Table II 
AVERAGE RESULTS ON EIGHT REAL DATASETS 

  GAME  GALF  Our Method 

Dataset  Precision Recall F-score  Precision Recall F-score  Precision Recall F-score 
CREB  0.34 ± 0.37 0.35  ± 0.36 0.34  ± 0.36  0.76  ± 0.00 0.68  ± 0.00 0.72  ± 0.00  0.72  ± 0.00  0.68  ± 0.00  0.70  ± 0.00  

CRP  0.79 ± 0.02 0.78  ± 0.00 0.78  ± 0.01  0.93  ± 0.03 0.73  ± 0.02 0.82  ± 0.03  0.94  ± 0.02  0.72  ± 0.03  0.82  ± 0.02  

E2F  0.76 ± 0.09 0.84  ± 0.10 0.80  ± 0.10  0.76  ± 0.02 0.70  ± 0.01 0.73  ± 0.02  0.76  ± 0.01  0.85  ± 0.01  0.81  ± 0.01  

ERE  0.53 ± 0.00 0.80  ± 0.00 0.63  ± 0.00  0.76  ± 0.01 0.76  ± 0.01 0.76  ± 0.01  0.91  ± 0.02  0.92  ± 0.01  0.91  ± 0.02  

MEF2  0.65 ± 0.29 0.75  ± 0.33 0.69  ± 0.30  0.97  ± 0.09 0.97  ± 0.09 0.97  ± 0.09  0.95  ± 0.10  0.95  ± 0.10  0.95  ± 0.10  

MyoD  0.13 ± 0.10 0.16  ± 0.10 0.14  ± 0.10  0.88  ± 0.00 0.71  ± 0.00 0.79  ± 0.00  0.85  ± 0.00  0.81  ± 0.00  0.83  ± 0.00  

SRF  0.71 ± 0.02 0.87  ± 0.04 0.78  ± 0.03  0.88  ± 0.12 0.49  ± 0.07 0.63  ± 0.09  0.67  ± 0.00  0.51  ± 0.00  0.58  ± 0.00  

TBP  0.80 ± 0.08 0.75  ± 0.12 0.77  ± 0.09  0.88  ± 0.03 0.88  ± 0.03 0.88  ± 0.03  0.89  ± 0.00  0.89  ± 0.00  0.89  ± 0.00  

Average  0.59   0.64   0.61     0.85   0.74   0.79    0.84   0.79   0.81   

These measurements are averaged separately over eight datasets. Values before ± are the mean of 20 runs and the values following ± indicate 
corresponding standard deviation. Bolded part represents predictions that achieve best performance with respect to the specific metric precision, recall, or 
F-score. 

 



 

dataset poses a problem for our method, but the difference 
decreases sharply when predicted motifs besides the top 
prediction are considered. 

Overall, these comparisons suggest that our method can 
provide better predictions for DNA binding sites. In addition, 
the low standard deviations (the average is less than 0.02 for 
average results), indicates stable performance despite the 
stochastic nature of ACO. This achievement could be 
attributed to an ideal complement provided by the EM 
algorithm to ACO for finding the putative transcription factor 
binding sites.  

V. CONCLUSIONS 
In this study, we propose a motif discovery method based 

on the cooperation of ACO, the EM algorithm, and a 
specifically designed post-processing procedure for 
discovering the transcription factor binding sites. Our method 
is evaluated with real biological datasets, and the promising 
results show that our approach can predict binding sites with 
high precision and recall. Based on the analysis of both the 
average and best results, in most cases our method 
outperforms GAME and GALF in accordance with higher 
F-scores. By integrating both ACO’s stochastic global search 
ability and EM’s likelihood maximization procedure, our 
experiments show that this hybrid approach is very promising 
in addressing DNA motif discovery problems. 

In the course of developing this motif discovery method, 
several issues has attracted our attention. The critical issue is 
the need to design a more effective fitness function that can 
distinguish false binding sites from true ones. The 
widely-used information content (IC) is prone to misleading 
motif searches into false binding sites, implying that the 
global search ability of metaheuristics cannot be fully utilized. 
Thus, a more realistic motif evaluation model giving 
appropriate consideration to the domain knowledge could 
provide better motif predictions.  

Another issue is the assumption, made in the Ant Colony 
Optimization (ACO) and Expectation Maximization (EM) 
process, that there is only one binding site per sequence. This 
assumption is contradicted by reality under some 
circumstances, prompting us to design a post-processing 
procedure specifically for handling situations where motif 
instances do not exist or appear more than once in some 
sequences. However, we believe this procedure can be further 
improved with a more sophisticated mechanism. 
Considerably improved performance could be achieved by 
implementing a procedure that can self-adjust the addition 
and the removal of putative binding sites and by designing an 
efficient criterion for testing convergence. 
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