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Abstract—Preventing, diagnosing, and treating disease is
greatly facilitated by the availability of biomarkers. Recent
improvements in bioinformatics technology have facilitated
large-scale screening of DNA arrays for candidate biomarkers.
Here we discuss a gene analysis method that we call the
LEAve-one-out Forward selection method (LEAF) for discovering
informative genes embedded in expression data, and propose
an additional algorithm for extending LEAF’s capabilities. An
iterative forward selection method incorporating the concept
of leave-one-out cross validation (LOOCV), LEAF provides
a discrimination power score (DPS) for genes. We show that
LEAF identifies genes that correspond to known biomarkers.
Therefore, our method should provide a useful bioinformatics
tool for biomedical, clinical, and pharmaceutical researchers.

Index Terms—biomarkers, data mining, gene expression
profiles, cancer classification.

I. INTRODUCTION

Recent progress in bioinformatics technology has facili-
tated large-scale screening for candidate biomarkers [6]. A
biomarker, as the name implies, is a cell-derived substance
such as a gene, protein or enzyme that can be used to
elucidate physiological or pathological process [5]. In our
previous study, we have proposed a novel method called
LEAve-one-out Forward selection method (LEAF) for anal-
ysis of gene expression data [8]. This method enabled us
to construct a ranking system of informative genes using a
parameter reflecting the efficiency of the class discriminant
designated the Discriminant Power Score (DPS).

We applied LEAF to three public leukemia datasets
(ALL/AML, ALL/MLL, and MLL/AML) [1], [7]. The re-
sults show that our method yields a stable discriminant result
with 100% accuracy using a three-gene set. Furthermore,
some genes with high DPS values are cancer-related genes
(top-h genes), as clarified by research in recent years.

Nevertheless, two problems remain to be resolved, namely:
(1) We have not selected a criterion for defining the h-value.
(2) The candidate list of associated genes is insufficient to
assign a discrete biological function (correlation and causal
relation between genes).

Here we briefly introduce LEAF and then propose a
solution to address these problems. Thus, using public gene
function database, we propose a simple and straightfor-
ward method for determining the top-h genes (h-value)
and conduct a biological functional analysis of the genes.
Subsequently, we conduct a biological functional analysis of
the genes, using public gene function database.
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II. METHODOLOGY

A. Datasets

We used three well-known leukemia datasets provided by
Armstrong et al., which includes acute lymphocytic leukemia
(ALL), mixed lineage leukemia (MLL), and acute myeloge-
nous leukemia (AML) [1]. These datasets are available at the
Broad Institute [7]. Details of the datasets are summarized
in Fig. 1A.

Fig. 1B presents two datasets are arranged in the form of
a data matrix. The matrix size is CN ×TG, where CN de-
notes Class1 N +Class2 N . Furthermore, Class1 N and
Class2 N , respectively, represent the number of samples in
Class 1 and Class 2, and gk (k = 1, 2, . . . , TG) corresponds
to a gene expression value, and TG signifies the total number
of genes: TG = 12,582.

B. LEAF: LEAve-one-out Forward selection method

We have proposed a robust and accurate gene selection
method based on forward selection called forward selection
method (FSM) [10]. To satisfy a maximal variance ratio (F -
value) between two disease classes, FSM cumulatively se-
lects gene one-by-one and ultimately identifies a set of genes
(a gene ranking) that is informative for disease classification.

In fact, LEAF is an iterative FSM inspired by leave-one-
out cross validation (LOOCV) [9]. Details of the algorithm
have been published [8]. Figure 2 outlines the method. First,
one test sample is taken from the dataset. Then the remaining
samples are used as a learning set. Subsequently, we apply
FSM to the learning set and obtain a gene ranking. These
steps are repeated for every test sample.

Finally, we extract a highly robust set of genes in a
classification based on discriminant power, called DPS. DPS
is a parameter of the class discriminant ability defined for
all genes. DPS(k) (1 � k � TG) represents the DPS value
of the gene with the k-th gene-index-number.

Figure 3 displays the DPSs of genes calculated from the
respective pairs of the leukemia datasets. The horizontal
axis shows the gene index number, and the vertical axis
indicates the DPS given for each gene. The DPS graph
can help visualize genes’ statistical importance. Genes with
higher DPSs can be regarded as those contributing more
significantly to discrimination between the classes. That is,
significant genes are represented as peaks in the DPS graph.

C. Determination method of h-value (top-h genes)

Because previous work [8] has not provided any criterion
(cut-off threshold) for obtaining a set of discriminative genes,
here we introduce an interactive method for extracting the
top-h genes that are used to generate a final discriminant
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Fig. 2. Overview of LEAF’s methodology.

function. The identification method of the h-value is illus-
trated in Fig. 4. The h-value is calculated by the following
steps:

1) Descending sort of DPS (Fig. 4A).
2) Decision of h-value.

a) Normalize the horizontal and vertical axes by di-
viding by their respective maximum values (Fig.
4B).

b) Find the shortest Euclidean distance on the DPS
graph to the origin. The abscissa value of the
point is called the h-value.

c) Extract the set of genes having DPSs � h-value.
d) Recreate a DPS graph using only the gene set

obtained in Step (c).
e) Repeat from Step (a) to Step (d) unless the num-

ber of points is 1 or all points take an identical

distance.
Thus, we employ the nearest neighbor point (h-value) from

the origin for detecting drastic curvature in the descending
sorted-DPS graph. We can then extract genes having high
DPSs, which are ranked higher than the h-value. This
method narrows down top-h-genes by interactively iterating
the above procedure. Obviously, many iterations drastically
decrease gene numbers, potentially eliminating biologically
meaningful genes. In this study, therefore, the number of
iterations in the decision of h-value is set to two (the
respective h-values are referred to as h1 and h2).

III. BIOLOGICAL FUNCTION ANALYSIS

The h-values of each dataset are presented in Table I.
Ideally, it is preferred that the extracted genes provide
biologically useful information in addition to imparting high
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Fig. 3. DPS vs. gene-index-number of leukemia dataset.
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TABLE I
h-VALUES AND DPS OF LEUKEMIA DATASET

Dataset h1 DPS h2 DPS
ALL vs. AML 104 0.0168 10 0.1287
ALL vs. MLL 123 0.0192 11 0.1030
MLL vs. AML 139 0.0179 9 0.1042

discriminatory power to different classes. We conducted
a biological function analysis of gene group in reference
to the Gene ontology tool [2], [3] and the University of
Washington’s L2L microarray analysis tool [11]. Below we
focus on the top-h2 genes’ biological function.

In the L2L program, a p value for the significance of
overlap between the given list and the function list of the
databases is calculated by using the binomial distribution.
Tables III, IV and V summarizes the L2L results. In the
three datasets, we can observe that functions related to human
cancer, such as colon carcinoma, gastric cancer, and breast
cancer, exhibit statistical significance.

Table. II summarizes the primary functions of the top-
h2 genes obtained using Gene ontology. As expected, genes

related to leukemia in addition to leucocyte communication,
such as TCL1A, RPL38, CALLA, and IL8RB [4], are
selected from every dataset pair. In particular, it should
be noted that ribosomal protein L38 (RPL38) is highly
expressed in pancreatic cancer cell lines [12].

IV. GENE ANALYSIS FRAMEWORK

For basic biomedical and translational research purposes,
it is not sufficient to list informative candidate genes without
knowing the pathways in which their products participate.
Our method for mining biomarkers is based upon differen-
tial gene expression analysis, thereby providing functional
information. We propose this as a gene-analysis framework,
which applies LEAF. An overview of the framework (Fig. 5)
illustrates the processes by which it operates.

1) Analysis of the dataset using LEAF, and display of
DPS (Figs. 5A and B).

2) Calculation of h-values (Fig. 5C).
3) Extraction of the genes based on the h-value (Fig. 5D).
4) Analysis of top-h2 genes (Fig. 5E).

a) Construction of a discriminant model.



TABLE II
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1 39318_at / TCL1A T-cell leukemia/lymphoma 1A 33412_at / --- --- 35307_at / GDI2 GDP dissociation inhibitor 2 

Input name / Gene name 

2 AFFX-M27830_5_at / --- --- 1984_s_at / ARHGDIB Rho GDP dissociation inhibitor (GDI) beta 31397_at / --- ---
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b) Output of a summary (i.e., Table II).
5) Gene-network analysis for top-h1 genes.
6) Output of the dependency rules based on probabilistic

reasoning.
Interaction between genes can be inferred using the model

of dependency structure (correlation and causal relationship).
Figure 5G shows that gene-network analysis expresses a
dependency using a graphical structure.

A graph node is a gene; an arrow represents the existence
of dependency between nodes. One method of building
gene networks uses a Bayesian network [13], [14]. We
can apply probabilistic reasoning [15] and search for the
biological process that supports discovery of a biomarker.
Moreover, in this framework, we use biological ontology for

the construction and interpretation of a Bayesian network.
Gene Ontology (GO) is a popular gene function database

consisting of three independent ontologies: Biological pro-
cess, molecular functions, and cellular components. Each
node of the ontology corresponds to a certain biological
function and includes one or more genes.

Actually, GO does not have only a common vocabulary in
biological science. It does provide a classification tree of the
concept of generalization and specialization (i.e., the “part-of
link” for which biological process A consists of a molecular
interaction X and Y.).

We prepare software agents [16], [17] that searches for
a candidate biological process to built, BN. They change
the node value of a gene network variously, and perform



probabilistic reasoning. We store the candidate of a biological
process sought by the agent as a general knowledge format
(OWL ontology).

V. CONCLUSION

LEAF is an iterative FSM incorporating the concept of
LOOCV; it also provides a DPS of genes. Moreover, we
can determine the top-h according to the distribution of
DPS value for each dataset using a simple algorithm for
determining h-values. The h-values can be used as criteria
for identifying candidate or informative genes. Our method
shows that the biological functions of extracted genes cor-
respond well with those reported in the literature. Finally,
we propose a gene analysis framework for using LEAF for
basic biomedical research and drug discovery. From these
results, we expect that our method will provide a powerful
tool to explore biomarker candidates and as a new method
for disease diagnosis.

We plan to develop an automatic detection method of h-
value based on information criterion such as AIC (Akaike
Information Criterion) [18] and evaluate the usefulness of
the method by applying it to other datasets.
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TABLE III
FUNCTION ENRICHMENT ANALYSIS (L2L) FOR THE TOP-h2 GENES OF ALL VS AML DATASET

Function name p-Value Description

Downregulated in MES cells from elongin-A knockout mice5.33e-04elongina_ko_dn

Upregulated by UV-B light in normal human epidermal keratinocytes, cluster 1 4.08e-03uvb_nhek1_c1

Down-regulated in models of both replicative (high-passge human foreskin fibroblast) 
and induced (repression of E7 in HeLa) cellular senescence.

5.11e-03senescence_rep-ind_dn

Downregulated by TSA at 48 hrs in SW260 colon carcinoma cells5.19e-03hdaci_colon_tsa48hrs_dn

TABLE IV
FUNCTION ENRICHMENT ANALYSIS (L2L) FOR THE TOP-h2 GENES OF ALL VS MLL DATASET

Function name p-Value Description

Downregulated by curcumin at 12 hrs in SW260 colon carcinoma cells4.57e-03hdaci_colon_cur12hrs_dn

Downregulated in samples of gastric cancer refractory to 5-FU/cisplatin treatment, 
compared to chemosensitive controls 

9.12e-03refractory_gastric_dn

TABLE V
FUNCTION ENRICHMENT ANALYSIS (L2L) FOR THE TOP-h2 GENES OF MLL VS AML DATASET

Function name p-Value Description

Gene set that can be used to differentiate BRCA1-linked, BRCA2-linked, 
and sporadic primary breast cancers

8.83e-04breastca_three_classes

Genes known to be induced by hypoxia 3.04e-03hypoxia_review

Gene set that can be used to differentiate BRCA1-linked and BRCA2-linked breast cancers9.99e-03breastca_two_classes




