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Abstract—In this study, we extend on work on the PtRNASS 

algorithm for which we previously only understood the defined 
maximum region in each substructure. We subsequently 
discovered another important factor, namely the fact that two 
results can be affected by a different combination of parameters. 
All tRNAs are characterized by structures resembling 
cloverleaves and have lengths mostly within 63-200 bases. 
Moreover, the sequence usually can be folded into more than 
one structure prediction. The limitations of these substructures 
mainly affect computational speed whereas the number of 
base-pairings achieved mainly affects the algorithm sensitivity. 
These parameters affect one another. For example, increasing 
the D-Loop parameter may reduce the length of one or more 
substructures, thus requiring a suitable combination of these 
parameters which we determine with a CPSO algorithm.  The 
results provide will allow biologists and researchers to more 
efficiently locate the tRNA gene. 
 

Index Terms—tRNA Secondary Structure, Particle Swarm 
Optimization, Chaos, Parameter Optimization.  
 

I. INTRODUCTION 

nderstanding non-coding RNA is very important in 
terms of the function or role of organisms  in cells. In 

order to understand the functions, RNA has to be constructed 
as its own stable secondary structure. All transfer RNA 
(tRNA) molecules can recognize the codons triplet in 
messenger RNA (mRNA) and carry the respective amino 
acid to the protein-building machinery. Recent research 
suggests that the conserved structure in tRNA is involved in 
some of the earliest and the most profound evolutionary 
events [1], [2]. Thus, tRNA is an important subject for 
evolutionary research.  

Fig. 1 illustrates tRNA’s secondary structure. The first line 
shows a predicted tRNA sequence in which the introns and 
extra bases of the non-numbering system [3] are represented 
in lower-case letters, and the “GTA” represents the anticodon 
(see Fig. 1 inset). The second line shows tRNA’s predicted 
secondary structure with the nested > and < symbols 
representing the stacked pairings. The four stacked pairs 
include acceptor stem (A-stem), dihydrouridine stem 
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(D-stem), anticodon stem (C-stem) and TΨC stem (T-stem), 
in which their respective general base-pairing length are 7, 4, 
5 and 5. The general lengths of the four types of hairpin loops, 
i.e., TΨC (T-loop), variable (V-loop), anticodon (C-loop), 
and dihydrouridine (D-loop), are 7, 5, 7 and 8, respectively. 
The intron may sometimes hide within a C-stem, and it 
always resides at sequence positions 37 and 38. Table I lists 
the constraint A, which was found through observation of the 
characteristics of the irregular tRNA structures and will be 
optimized in this study. 

In previous work we developed a tRNA prediction 
algorithm [4], [5]. The objective of the current research is to 
optimize the limited parameters for the regions of tRNA 
substructures and the minimum numbers of resulting 
base-pairings, in which they are the loosest limits, as shown 
in Table I. However, many interactions exist among the 
parameters, and each parameter has the potential to cause a 
false prediction. Indeed, all the known tRNAs, which are 
correctly predicted by our proposed algorithm, are predicted 
with certainty through the loosest limiting parameters. 
However, the volume of unnecessary computations also 
increased, resulting in increased search time. The total 
number of parameter combinations is 614,718,720, i.e., 2 
(A-stem) × 2 (AD-gap) × 11 (D-loop) × 3 (DC-gap) × 
28(V-loop) × 6 (T-loop) × 7 (A-stem base-pairing achieved) 
× 5 (D-stem base-pairing achieved) × 6 (C-stem base-pairing 
achieved) × 6 (T-stem base-pairing achieved) ×22 (All-stems 
base-pairing). For our purposes, the best combination has to 
satisfy all known tRNAs from the Sprinzl database, and 
should also require fewer computations to predict the tRNA 
secondary structure. However, finding a suitable parameter 
to limit tRNA prediction is a key point in the accurate 
recognition of the tRNA secondary structure. In our research, 
we used the Chaotic Particle Swarm Optimization (CPSO) 
algorithm to acquire an optimal parameter from among the 
large permutation of potential parameter combinations. The 
resulting parameter successfully achieved our goal for 
limited-parameter optimization.  

Limited-Parameter Optimization for PtRNASS 
using Chaotic Particle Swarm Optimization  

Li-Yeh Chuang, Yu-Da Lin, and Cheng-Hong Yang, Member, IAENG 

U



 
 

 

 

 

 
Fig.1  tRNA cloverleaf diagram. The illustration shows all substructures of a complete tRNA sequence with primary and 
secondary structures which include base pairings and loop structures. The “Anticodon” is shown as a block within the C-loop 
structure, i.e., GTA. The line “Seq.” is a predicted tRNA sequence, in which the introns and extra bases of non-numbering 
systems are printed in lower-case letters. The next line (Pair) displays the folding of the tRNA with the predicted secondary 
structure, using the nested > and < symbols to represent based pairings. 

 

I. METHOD 

A. Particle Swarm Optimization (PSO) 
 Particle swarm optimization (PSO) was developed by 
Kennedy and Eberhart in 1995 [6] as an evolutionary 
algorithm based on population stochastic optimization 
techniques. PSO simulates the social behavior of organisms, 
such as flocks of birds or schools of fish. In PSO, each 
individual bird within the flock can be candidate for the 
solution, and PSO identifies which candidate is a particle in 
the search space. Each particle can make use of its memory 
and knowledge gained through the particle, thus finding the 
best solution for the whole swarm. Each particle contains two 
important properties: (i) its fitness value, which is evaluated 
with a designed fitness function, and (ii) its velocity, which 
affects the movement of the particle. During the search, each 
particle adjusts its position according to its own experience 
and the experience of a neighboring particle that has achieved 
the current best position. Other particles can then follow the 
current best particle in the search space. The operation is 
iterated until a predefined number of iterations are 
completed.  
    In PSO, the position of the ith particle can be represented as 
xi = (xi1, xi2, …, xiD), in which D represents the dimensions of 
the search space. The velocity of the ith particle can be 
represented as vi = (vi1, vi2, …, viD). The position X and 
velocity V of a particle is respectively confined within [Xmin, 
Xmax]

D and [Vmin, Vmax]
D. The best currently visited position 

of the ith particle is denoted as its individual best position pi = 
(pi1, pi2, …, piD), referred to as pbesti. On achieving the best 

fitness amongst all individuals, pbesti  is denoted as the 
global best position g = (g1, g2, …, gD), or gbest. In PSO, the 
position and velocity of the ith particle are updated in the 
swarm via pbesti and gbest. In PSO, the parameters w, r1 and 
r2 are the key factors affecting convergence behavior [7], [8]. 
The w controls the balance between the global exploration 
and the local search ability. A large w favors global search, 
whereas a small w favors local search. For this reason, a w 
that linearly decreases from 0.9 to 0.4 throughout the search 
process is widely used [9]. 
 
B. Chaotic Particle Swarm Optimizaiton (CPSO) 

Chaos has ergodic and stochastic properties; it can be 
described as a bounded nonlinear system with deterministic 
dynamic behavior [10]. The “butterfly effect” strategy holds 
that a small variation in an initial variable will result in huge 
differences in results after multiple iterations. 
Mathematically, chaos is random and unpredictable, yet it 
also possesses an element of regularity. Since logistic maps 
are frequently used as chaotic behavior maps, the chaotic 
sequences can be quickly generated and easily stored without 
need for storing long sequences [11]. In CPSO, sequences 
generated by a logistic map are substituted for the random 
parameters r1 and r2 in PSO. 
 
C. The Usages of Database 

The search for an optimal parameter is based on the known 
tRNA gene sequences obtained from tRNAdb, most recently 
updated in 2009 [3]. (http://trnadb.bioinf.uni-leipzig.de) The 
tRNAdb provides a set of reliable true tRNA sequences for 



 
 

 

testing the prediction sensitivity. It contains the most 
comprehensive tRNA sequences from a wide variety of 
organisms, and are divided into three different sets of tRNA 
genes, from Archaea (161 sequences), Bacteria (686 
sequences) and Eukaryota (443 sequences). 

 
D. Application of CPSO Algorithm 

 
In the CPSO algorithm, each particle represents a 

candidate solution to the problem. Detailed steps are shown 
below and in Fig. 2. 

 
a) Initialize the particle swarm 

 
First, all particles P = (AS, ADg, DL, DCg, VL, TL, ASp, 

DSp, CSp, TSp, AllSp) are randomly generated without 
duplicates as the initial particle swarm and their values are 
limited as in Fig. 3. We aim to understand their minimum or 
maximum length within the substructures. The VL is 
designed to find V-loop’s maximum length, while the AS, 
ADg, DL, DCg, and TL are designed to find its minimum 
length. The ASp, DSp, CSp, TSp, AllSp are designed to find 
the particle’s optimal limitations allowed for the minimum 
number of base-pairing. In this step, we intentionally set the 
loosest limitations to the parts of particles to both exploit all 
the loosest limiting positions from the designed particles and 
to guide or expand the particles to promising new areas. 
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Figure 2.  CPSO parameter optimization for tRNA search 
flowchart. 
 
 

 
Figure 3.  Encoding of a single particle in PSO. 

 

 
b) Fitness evaluation 

 
We designed a fitness function to determine whether each 

particle region satisfies all known tRNA genes. The goal is to 
find the maximum fitness in the search space, and determine 
the number of parameters used to design the fitness function. 
The fitness value of each particle can be computed by the 
following fitness function: 
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where the Correct (P) is used to check for the number of 
correct predictions. When the anticodon of the predicted 
tRNA equals the known anticodon, it will give a score of one. 
The Correct (P) is multiplied by 1000 to differentiate 
between the number of correct predictions and the size of its 
substructures. For example, if two different sets of 
parameters both have the same score (Correct (P)), and then 
the larger substructure will be selected. The AS (P), AD (P), 
DL (P), DC (P), VL(P), TL (P), ASp (P), DSp (P), CSp (P), 
TSp (P) and AllSp (P) is represented as a value 
corresponding to a given particle’s respective dimensions. 

  
c) Update the velocity and position for each particle in the 
next iteration.  

 
In PSO, each particle has a memory for its own best 

experience. Through evaluation, each particle can find its 
best position and velocity and the global best position and 
velocity, and thus adjust its direction in the next iteration. 
When a particle’s fitness is better than that of the pbest, the 
pbest will be updated in the current iteration. The update 
equations are: 
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Cr(t +1) = kCr(t) (1 – Cr(t)) (3) 
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In (2), wmax is 0.9, wmin is 0.4 and Iterationmax is the 

maximum number of allowed iterations [12]. In equations (4) 
to (5), r1 and r2 are random independent numbers between (0, 
1); c1 and c2 are acceleration coefficients (both set at 2) which 
constantly control how far a particle will move in a single 

iteration. Velocities new
idv and old

idv respectively denote the 

velocities of the new and old particles.  old
idx is the current 



 
 

 

particle position, and new
idx is the new, updated particle 

position. In equation (3), Cr (0) is generated randomly for 
each independent run, with Cr (0) not being equal to {0, 0.25, 
0.5, 0.75, 1} and k equal to 4. The parameter k controls the 
behavior of Cr (t) in the logistic map. In equation (3), Cr is a 
function based on the logistic map with output values 
between 0.0 and 1.0.  

 

II. RESULTS AND DISCUSSION 

A. CPSO Parameter Settings 

 
In our experiment, the maximum iteration was set to 1000; 

the population size was set to 50. The parameter set was 
assigned for PSO, i.e. c1=c2=2. Vmax was set equal to (Xmax – 
Xmin) and Vmin was set equal to – (Xmax – Xmin). The inertia 
weight w was recommended by Shi and Eberhart [12], and 
linearly decreased from 0.9 to 0.4. 

 

B. Result of Parameter Optimization for the tRNA 
Substructure and Each Base-pairing Allowed 

 
Table II shows the optimized parameters for the size of 

each tRNA substructure and the number of each base-pairing 
allowed. In this section, we compare the non-optimized 
parameters and optimized parameters in Tables I and II. The 

three species are described separately as follows:  
 

(i). Archaea: Four stacked pairs - A-stem is 6 to 7 bp long, 
D-stem is 4 bp long, C-stem is 5 bp long, T-stem is 5 bp 
long. Four hairpin loops - T-loop is 5 to 8 bases long, 
V-loop is 3 to 20 bases long, C-loop is 7 bases long, and 
D-loop is 6 to 13 bases long. AD-gap is 2 bases long and 
DC-gap is 0 to 2. Minimum base-pairing achieved in each 
stem - A-stem is 4 bp, D-stem is 2 bp, C-stem is 3 bp, 
T-stem is 4 bp and All-stem is 17 bp. 

(ii). Bacteria: Four stacked pairs - A-stem is 6 to 7 bp long, 
D-stem is 4 bp long, C-stem is 5 bp long, T-stem is 5 bp 
long. Four hairpin loops - T-loop is 6 to 7 bases long, 
V-loop is 4 to 23 bases long, C-loop is 7 bases long, and 
D-loop is 6 to 13 bases long. The AD-gap is 1 to 2 bases 
long and DC-gap is 1 to 2. Minimum base-pairing achieved 
in each stem - A-stem is 4 bp, D-stem is 1 bp, C-stem is 2 bp, 
T-stem is 2 bp, and All-stem is 19 bp. 

(iii). Eukarya: Four stacked pairs - A-stem is 6 to 7 bp long, 
D-stem is 4 bp long, C-stem is 5 bp long, T-stem is 5 bp 
long. Four hairpin loops - T-loop is 5 to 8 bases long, 
V-loop is 3 to 19 bases long, C-loop is 7 bases long, and 
D-loop is 6 to 13 bases long. The AD-gap is 1 to 2 bases 
long and DC-gap is 1 to 2. Minimum base-pairing achieved 
in each stem - A-stem is 4 bp, D-stem is 1 bp, C-stem is 2 bp, 
T-stem is 2 bp, and All-stem is 20 bp. 

 
TABLE I. Non-optimized constraints and parameters in the search of tRNA secondary structure. 

The loosest constraint A: Substructure length 
 A-stem AD-gap D-stem D-loop DC-gap C-stem C-loop V-loop T-stem T-loop 

Default 6 to 7 2 4 4 to 11 1 5 7 4 to 21 5 4 to 7 
Region 6 to 7 1 to 2 4 3 to 13 0 to 2 5 7 3 to 30 5 3 to 8 

The loosest constraint B: Number of base-pairing achieved 
 A-stem D-stem C-stem T-stem All stems 

Default 5 2 3 3 15 
Region  0 to 6 0 to 4 0 to 5 0 to 5 0 to 21 

 
TABLE II. Optimized parameters and constraints. 

Constraint A: Size of the each substructure 
 Length A-stem AD-gap D-stem D-loop DC-gap C-stem C-loop V-loop T-stem T-loop 

Non-optimize
d 

Minimum 6 1 4 3 0 5 7 3 5 3 

 Maximum 7 2 4 13 2 5 7 30 5 8 
Archaea Minimum  6 2 4 6 0 5 7 3 5 5 

 Maximum 7 2 4 13 2 5 7 20 5 8 
Bacteria Minimum  6 1 4 6 1 5 7 4 5 6 

 Maximum 7 2 4 13 2 5 7 23 5 7 
Eukarya Minimum  6 1 4 6 1 5 7 3 5 5 

 Maximum 7 2 4 13 2 5 7 19 5 8 
Constraint B: Number of base-pairing allowed 

Archaea A-stem D-stem C-stem T-stem All stems 
Minimum  4 2 3 4 17 
Bacteria A-stem D-stem C-stem T-stem All stems 

Minimum  4 1 2 2 19 
Eukarya A-stem D-stem C-stem T-stem All stems 

Minimum  4 1 2 2 20 
 



 
 

 

 
 

C. Comparison of optimized and non-optimized parameter 
performance efficiency  

 
The performance comparison of optimized and 

non-optimized parameters is shown in Table III, which is 
divided into two parts: results that do and do not use the 
optimized parameters for prediction of tRNA’s secondary 
structure. For the number of detected tRNAs, both the 
non-optimized parameter and the optimized parameters are 
the same, which indicates that all tRNA genes in the Sprinzl 
database are effectively predicted by this optimized 
parameter. Different inputting sequences require different 
search iterations. Hence, we used the minimum and the 
maximum numbers of times to demonstrate that the search 
time is effectively improved. Table III shows promising 
performance for search time in which the constraint B was 
used to demonstrate the considerable impact on its 
parameter. The substructure parameter optimization from 
Table II does not consider the constraint B. For the 
minimum number of times, the parameters optimized for the 
three species are 263, 184, and 244, respectively. For the 
maximum number of times, the optimized parameters for the 
three species are 9490, 8611, and 10113, respectively. Next, 
the constraint B was considered within the substructure 
parameter optimization from Table II. These numbers of 
times using the constraint B represent that the combination 
is satisfied with these constraints, i.e., A-stem, D-stem, 
C-stem, D-stem, and All-stem allowed. For the minimum 
number of times, the optimized parameters for the three 
species are 3, 3, and 6, respectively. For the maximum 
number of times, the optimized parameters for the three 
species are 3126, 4731, and 7455, respectively. Thus, the 
advantage of parameter optimization is clearly displayed 
with less time required than in the non-optimized situation.  
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Figure. 4  Chaotic Cr value using a logistic map for 300 
iterations; Cr(0) = 0.001 

 

D.  Advantage of the Chaos algorithm 

 
The standard PSO, together with each individual and the 

whole population, evolves towards best fitness in which the 
fitness function is evaluated with the objective function. 
Although this scheme has the property to increasing 
convergence capability (i.e., evolving the population toward 
better fitness), if the convergence speed is too fast, the 
population may get stuck in a local optimum since the 
swarms diversity rapidly decreases. On the other hand, the 
search speed cannot be set at an arbitrarily slow speed if we 
want PSO to be effective. The chaotic map is a very 
powerful tool for avoiding entrapment in local optima, and it 
does not increase complexity. The computational 
complexity for CPSO and PSO can be derived as O(PG), 
where P is the population size and G is the number of 
iterations. In Eq. 4, the chaotic map is only used to amend 
the PSO updating equation. Chaos is a non-linear system 
with ergodic, stochastic and regularity properties, and is 
very sensitive to its initial conditions and parameters. 
Consequently, CPSO is more efficient than the standard 
PSO because of the chaotic property, i.e., a small variation in 
an initial variable will result in a huge difference in the 
solutions after several iterations. Fig. 4 shows how the 
behavior of the chaos system for the logistic map is sensitive 
to initial conditions. Since logistic maps are frequently used 
as chaotic behavior maps and the chaotic sequences can be 
quickly generated and easily stored, there is no need to store 
long sequences [13]. 

  
 
 
Table III.  Optimized and non-optimized parameter performance comparison. 

Sequence 
source 

No. of 
tRNAs 

Non-optimized parameter  Optimized parameter 

Number of times   Number of times  

 Minimum   Maximum   

Number 
of 

tRNAs 
detected 

    

Minimum  

 

Maximum  

 

Number 
of 

tRNAs 
detected Use constraint B?  Use constraint B ? 

 No  Yes  No  Yes   

Archaea 161    793  39974  161 
(100%)  263  3  9490  3126  161 

(100%)

Bacteria 686    793  40980  686 
(100%)  184  3  8611  4731  686 

(100%)

Eukaryota 443    793  39974  440 
(99%)  244  6  10113  7455  440 

(99%)

 



 
 

 

E. Analysis parameter optimized 

 
The size of the substructures is improved in terms of the 
search time. During the search process, we noticed that an 
identical sequence appearing in several different 
configurations had the same anticodon. This unexpected 
finding brought our attention to the length of a secondary 
structure, which suggests that the correct anticodon may be 
folded through many of the substructures’ combinations and 
they are all able to satisfy the tRNA rules. Although many 
published methods use these common features to predict 
tRNA secondary structures, the substructures’ size from the 
known tRNA genes are the key to predicting the tRNA’s 
secondary structure. As seen in Table III, the tRNA 
characteristic relationship between the number of 
 times and the number of base-pairs achieved shows an 
unexpected result, i.e.,  of the three species, the Archaea has 
the lowest number of times at 3126. This should not be 
smaller than the number of times for bacteria because the 
archaea has to consider the intron structure, in which the 
archeae’s intron may be from 6 to 121 bases long, whereas 
bacteria have no introns. In analysis, the limits on the 
number of base-pairs is achieved is mainly by reducing 
required computation. The comparison between the bacteria 
and the eukaryota can also be observed. 

 

F. Summary of contribution of this work to tRNA research 
field 

 
In summary, the advantages of parameter optimization are 

as follows:  
(i).   Based on the tRNA cloverleaf model, this work 

provides a reliable prediction of tRNA secondary 
structure. The sizes of the substructures are optimized 
according to different species to increase the likelihood 
of detecting any tRNA genes. 

(ii). Reliable limits for substructure base-pairing are 
provided to help tRNA research. Experimental results 
suggest the need for a deeper investigation when the 
predictions disagree with different tRNA search tools. 
For instance, an unknown tRNA gene was predicted by 
PtRNASS, but the result could be a false state. Hence, 
other computer programs, e.g., tRNAscan-SE [14], 
ARAGORN [15], were also used to enhance the 
completeness and accuracy of the prediction. These 
programs complement each other by either giving a 
secondary structure of tRNA identification when 
predicting the same result, or by suggesting a deeper 
investigation when the results disagree. 

III. CONCLUSION 

We have presented a computational method, based on 
Chaotic Particle Swarm Optimization, for optimizing the 
substructure and rule restriction allowed in three species. 
The experimental results demonstrate that this parameter can 
predict the correct anticodon and to reduce unnecessary 
computations in the tRNA secondary structure search 
process. In addition, the base-pairing limits the tRNA 
cloverleaf folding procedure, in which this parameter is 
considered according to the known tRNA secondary 

structure in the Sprinzl database. The results increase the 
analysis effectiveness of structural accuracy and anticodons 
from tRNA genes. We believe this work to be first use of 
artificial intelligence techniques for the task of tRNA 
parameter optimization, and it allows biologists and 
researchers to locate tRNA gene with greater efficiency.  
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