
Tree Pattern Matching Algorithm
Using a Succinct Data Structure
Yuko Itokawa,Masanobu Wada,Toshimitsu Ishii and Tomoyuki Uchida

Abstract—Two things are important in developing a fast,
memory-efficient graph mining method that extracts character-
istic graph structures from Web pages and other tree-structured
data. One is tree patterns that can express the features of a
graph structure and the other is data structures for tree patterns
and for representing tree-structured data. In this paper, we first
apply a depth-first unary degree sequence (DFUDS), which is
one succinct data structure for an ordered tree, as a succinct
data structure for tree patterns that express the features of a
graph structure. We then propose a pattern matching algorithm
that uses the DFUDS succinct data structure, to determine
whether or not a given tree-structured data has features of
tree pattern. We also implement the proposed algorithm on a
computer and evaluate the algorithm by experiment. The results
are reported and discussed.

Index Terms—pattern matching algorithm, succinct repre-
sentation, tree-structured data, edge-labeled ordered term tree.

I. I NTRODUCTION

I N recent years, with the rapid progress in networks
and information technology, Web documents and other

such material that does not have a clear structure and is
referred to as semi-structured data have become innumerous.
Semi-structured data that has a tree structure is called tree-
structured data, and can be represented by an ordered tree.
To extract useful information from tree-structured data, it
is necessary to extract tree patterns that are common to
tree-structured data (i.e., ordered trees). Moreover, to present
efficient tree mining tools, pattern matching algorithms for
determining whether or not given tree-structured data has
features represented by given tree pattern are necessary to
be efficient. Suzuki et alia [13] have proposed a matching
algorithm for determining whether or not an edge-labeled
ordered tree is generated by substituting all structural vari-
ables in given edge-labeled ordered tree pattern with arbitrary
edge-labeled ordered trees. The aim of this paper is to present
more efficient pattern matching algorithm for edge-labeled
ordered tree patterns than Suzuki’s.

To reduce the memory required to store an ordered tree,
succinct data structures for ordered trees have been proposed
[2], [3], [4], [5], [7], [8], [9], [11]. As one succinct data
structure for an edge-labeled ordered tree, Ferragina et alia
proposed thexbw transform and a path search algorithm for
an xbw transformed edge-labeled tree [4]. Using the xbw
transform enables both compact storage of tree-structured
data and fast path search. As a succinct data structure for
an ordered tree, Benoit et alia proposed a depth-first unary
degree sequence (DFUDS) representation [2]. The DFUDS
representation uses a string of parentheses constructed by a

Y. Itokawa is with the Faculty of Psychological Science, Hiroshima
International University, 555-36 Kurose-Gakuendai, Higashi-Hiroshima, Hi-
roshima Japan e-mail: y-itoka@he.hirokoku-u.ac.jp.

M. Wada, T. Ishii and T. Uchida are with Hiroshima City University.

depth-first traversal of all vertexes in which, if the index
of a vertex isk, the k-th (and its subsequent) are

output. By taking (to be ‘0’ and) to be ‘1’, the
ordered tree representation can be handled as a bit string.
Also proposed is supplementary data for an ordered tree
represented by DFUDS that enables use of therank and
select operations to tour the tree in constant time. Almost
of results about succinct data structures are from theoretical
viewpoints. However, most recently, a few practical results
are known [1].

In this paper, in order to represent structural features of
tree-structured data, firstly we propose a DFUDS represen-
tation for an edge-labeled ordered trees based on a DFUDS
representation of an ordered tree presented by Benoit et alia
[2]. Then, we also propose an efficient matching algorithm
for solving the membership problem for tree patterns having
structural variables using the DFUDS representation of an
edge-labeled tree as the data structure. The matching algo-
rithm we describe here performs top down matching, but the
method applied by Suzuki et alia performs bottom up. The
results in this paper leads us to design fast and memory-
efficient tree mining tools for tree-structured data.

This paper is organized as follows. In section II, we de-
scribe the tree structure that we deal with in this paper and the
tree pattern which represents the structural features of edge-
labeled ordered trees. In section III, we briefly describe the
DFUDS representation for ordered trees proposed by Benoit
et alia. In section IV, we formulate the membership problem
for edge-labeled trees and propose a matching algorithm
for solving it. In section V, the algorithm for solving the
membership problem is implemented on a computer. The test
results for the implementation are reported and discussed.
Section VI concludes the paper.

II. T REE PATTERNS

Let Σ andχ denote finite alphabets withΣ ∩ χ = ∅. Let
Vt be the set of vertexes andEt ⊆ Vt × (Σ ∪ χ) × Vt be
the set of edges. For edgee = (u, a, v) ∈ Et, let character
a ∈ (Σ∪χ) be theedge labelof e. In particular, whena ∈ χ,
a is a variable label and e is a variable. For variablee =
(u, x, v), u is theparent port of e and,v is achild port of e.
t = (Vt, Et) is called aedge-labeled term treeif t has only
one vertexu whose coming degree is0 and (Vt, {{u, v} |
(u, a, v) ∈ Et}) is a rooted tree havingu as its root. A edge-
labeled term tree whose all children of all internal vertexes
are ordered is called anedge-labeled ordered term tree.
The ordered term trees of concern in this paper are assumed
to have all mutually different variables. Trees that have no
variables are simplyedge-labeled ordered trees. In Fig. 1,
edge-labeled ordered term treep and edge-labeled ordered
tree t, g0, g1, g2 are shown.

10

b

9

Z

7

b

6

a

4

b

3

a

8

b

5

Y

2

X

0

1

a

2
g

1
g

g0

10

b

9

a

5

b

4

a

15

b

14

b

13

a

11

b

8

b

7

a

3

b

12

b

6

b

2

a
1

a

p t

a

b

r0

0l

a b b

b

1r

1l

a b

2r

2l

g0 g1 g2

Fig. 1. Edge-labeled ordered term treep and edge-labeled ordered treesg0, g1, g2, t ∼= pθ, whereθ = {X := [g0, (r0, l0)],Y := [g1, (r1, l1)],Z :=
[g2, (r2, l2)]}

For term treet and its vertexu, the tree consisting ofu
and all of its descendants is called asubtree of t and is
denoted ast[u]. In the same way, for edgee = (u, a, v) of
t, t[e] denotes the tree consisting ofe and t[v]. For edge-
labeled ordered term treest = (Vt, Et) andf = (Vf , Ef), if
bijection π : Vt → Vf that satisfies the following conditions
(1)-(3) exists, thent andf areisomorphic, which is denoted
as t ∼= f . For two childrenu′ andu′′ of vertexu of edge-
labeled ordered term treeh, u′ <hu u

′′ denotes that in the
ordering of the children ofu, u′ is lower thanu′′.
(1) For any a ∈ Σ, if and only if (u, a, v) ∈ Et,

(π(u), a, π(v)) ∈ Ef .
(2) If and only if there isx ∈ χ for which (u, x, v) ∈ Et,

there isy ∈ χ for which (π(u), y, π(v)) ∈ Ef .
(3) If and only if for vertexesu of t and the two children

u′ andu′′ of u, u′ <tu u
′′, π(u′) <fπ(u) π(u′′).

Let variable labelx ∈ χ and let r be the root of an
edge-labeled ordered term treeg, and l the leaf ofg. Then,
x := [g, (r, l)] is the binding of x and a finite set of
variable label bindings is asubstitution. A new edge-labeled
ordered term treef can be obtained by applying substitution
θ = {x0 := [g0, (r0, l0)], . . . , xn := [gn, (rn, ln)]} to an
edge-labeled ordered term treeg = (Vg, Eg) in the following
way. A new edge-labeled ordered term treef can be obtained
by regardingw0 to be the same asri and w1 to be the
same asli in edge e = (w0, xi, w1) that has variable
label xi, and exchanging them for each0 ≤ i ≤ n. The
resultant edge-labeled ordered term treef is denoted by
gθ. Edge-labeled ordered treet in Fig. 1 can be obtained
by applying substitutionθ = {X := [g0, (r0, l0)], Y :=
[g1, (r1, l1)], Z := [g2, (r2, l2)]} to edge-labeled ordered term
treep.

III. SUCCINCT DATA STRUCTURES FORTREE PATTERNS

We explain the basic data structure for dealing with
ordered term trees. In this paper, a word RAM with a word
length of Θ(log n) bits is used as the computation model.
For sequenceS of length n on alphabetA, denote thei-
th character(0 ≤ i ≤ n − 1) in S as S[i]. For each
i, j (0 ≤ i < j ≤ n − 1), denote the sub-sequence from
the i-th character to thej-th character ofS as S[i . . . j].
For sequenceS of lengthn on alphabetA, characterc and
natural numberi (0 ≤ i ≤ n − 1), define arank function
and aselect function as follows.

(1) rankc(S, i) returns the number of occurrences of char-
acterc in sub-sequenceS[0 . . . i].

(2) selectc(S, i) returns the position of thei-th characterc
from the beginning ofS.

When the context makes it clear,S is omitted.
There are many succinct data structures for fast computa-

tion of the rank function and theselect function [5], [12].
One is the fully indexable dictionary (FID) [10]. The FID
is an n + o(n) bit data structure that allows therank and
select functions to be calculated in constant time for a bit
sequence on{0, 1} of lengthn with a word RAM model. The
FID has a bit sequence of lengthn and a supplementary data
structure. The supplementary data structure is a table that
stores responses for all inputs in advance, considering the fine
division of the character sequence as the problem of small
size. The responses for any bit sequence of length1

2 log n
in a bit array of lengthn are at most2

1
2 logn =

√
n, so all

responses can be stored in a(
√
n·polylog(n))bit table, which

can be searched in constant time. That area can be reduced
when there are few ’1’ inS. For a character sequence that
containsm ’1’, there is alog

(
n
m

)
+O(n log log n/ logn) =

m log n
m + Θ(m) + O(n log log n/ log n) bit data structure

for which therank and select functions can be calculated
in constant time. Ifm = O(n/ log n) bits, the size of that
data structure becomesO(n log log n/ log n).

Therank andselect functions can be expanded to a func-
tion for obtaining the number of occurrences and positions
of a character sequence pattern. Consider the representation
of an ordered tree ofn vertexes that allows execution
of the rank and select functions in constant time. There
exist

(
2n+1
n

)
/(2n + 1) ordered trees ofn vertexes, so the

information theoretical lower bound of the data structure
size is 2n − Θ(logn) bits. Many data structures that are
asymptotically consistent with that lower bound have been
proposed [5], [8].

One such data structure proposed by Benoit et alia [2] is
the depth-first unary degree sequence (DFUDS) representa-
tion, which is a succinct data structure for ordered trees. The
DFUDS representation for an ordered treet of m edges is
defined inductively as follows. The DFUDS representation
of the tree consisting only one vertex is() . The DFUDS
representation of at that hask subtreest1, . . . , tk is a
sequence of parentheses constructed by concatenatingk + 1
(, one) , k DFUDS representations oft1, . . . , and tk in

p’s DFUDS representation:
((((a ((X a b ((Y a b ((b Z b
0 1 2 3 4 5 6 7 8 9 10

t’s DFUDS representation :
((((a (a ((b a b (((b a ((b a b b (((b a b b

1413 1512109876543210 11

Fig. 2. Edge-labeled DFUDS representations forp and t

this order (here, the initial(of the DFUDS representation of
each subtree has been removed). The DFUDS representation
is a sequence of balanced parentheses of length2m.

A DFUDS representation can be regarded as a bit sequence
by replacing (with ‘0’ and) with ‘1’. Representing
an ordered tree with a bit sequence DFUDS representation
makes it possible to execute therank andselect functions in
constant time. Furthermore, a supplementary data structure
that allows execution of the following operations in constant
time by usingrank andselect functions on DFUDS repre-
sentationP has been proposed[9], [2].
(1) findclose(x) return the position of the closing paren-

theses for an opening parenthesis inP [x].
(2) findopen(x) return the position of the opening paren-

theses for a closing parenthesis inP [x].
(3) enclose(x) return the position of the opening parenthe-

ses of the pair that most tightly enclosesP [x].
The three operations above can be used to express the

following operations for touring the ordered treet.
(4) degree(x) return the number of children of vertexx.
(5) child(x, i) return the position of thei-th child from the

left of vertexx.
(6) subtree(x) return the pair of the start and the end

positions of the interval representing the subtree for
which vertexx is the root.

(7) id(x) return the visiting order of vertexx.
(8) label(x) return the position of the closing parenthesis

of the id(x)-th vertex.
child takes O(i) time, but the other operations can be
executed in constant time using ano(n) bit supplementary
data structure [3], [11], [2]

The DFUDS representation proposed by Munro et alia [2]
is a data structure for an ordered tree with no edge labels.
Therefore, we consider a DFUDS representation for an edge-
labeled ordered term tree. In the DFUDS representation of
Munro et alia,) must occupy the rightmost position for
each vertex. Therefore, a hash function that returns the edge
label that corresponds to that vertex for each) makes
a DFUDS representation of an edge-labeled ordered tree
possible. DFUDS representations for edge-labeled ordered
term treep and edge-labeled ordered treet are shown in
Fig. 2. For convenience in this example, a hash function that
returns the edge labels that correspond to all of the) has
been executed.

The sequence of parentheses that is a DFUDS representa-
tion can be interpreted as the result of visiting all vertexes in
pre-order and outputtingk (for each vertex whose index

is k the following one) [2]. Hence, the following theorem
obviously holds.

TABLE I
M ISMATCH CASES OFT [j] AND P [i]

Case1 Case2 Case3 Case4 Case5

P [i] EL VL OP VL EL

T [j] EL EL EL OP OP

EL, VL and OP denote edge label inΣ, variable label inχ and open
parenthesis(, respectively.

theorem 1:Given edge-labeled treet of m edges, the
edge-labeled DFUDS representation fort can be computed
with O(m).

IV. M EMBERSHIP PROBLEM FOR EDGE-LABELED TREES

OT Σ denotes a set of edge-labeled ordered trees onΣ
andOT T Σ∪χ denotes a set of edge-labeled ordered term
trees onΣ∪χ. In this section, we formulate the membership
problem forOT T Σ∪χ and propose a matching algorithm
that uses a DFUDS representation as a data structure for
solving that problem. Given edge-labeled ordered term tree
p ∈ OT T Σ∪χ and edge-labeled ordered treet ∈ OT Σ,
the problem of determining whether or not there exists
a substitutionθ for which t ∼= pθ is referred to as the
membership problem forOT T Σ∪χ.

Membership problem for OT T Σ∪χ
Instance: Edge-labeled ordered term treep ∈

OT T Σ∪χ and edge-labeled ordered tree
t ∈ OT Σ

Problem: Determine if there exists aθ for which
t ∼= pθ.

A matching algorithm PatternMatching that determines
whether or not there exists a substitutionθ for which t ∼= pθ
given edge-labeled ordered term treep ∈ OT T Σ∪χ and
edge-labeled ordered treet ∈ OT Σ, t ∼= pθ is listed in
Algorithm 1.

By treating the DFUDS representation of an edge-labeled
tree as a data structure, we can consider pattern matching for
the character sequence that consists of(and edge labels. We
therefore execute the pattern matching from the beginning of
the DFUDS representation in the touring order from the root
of the tree. Given the DFUDS representationP [0 . . .m− 1]
of edge-labeled ordered term treep as the pattern and the
DFUDS representationT [0 . . . n−1] of edge-labeled ordered
tree t as the text, matching begins with the first characters
of p and t. If charactersP [i] and T [j] match, matching is
performed for the next characters. If charactersP [i] andT [j]
do not match, the following procedure is performed (line 4
- line 19). The five pattern cases for whichP [i] and T [j]
do not match are shown in Table I. Mismatch for which
the condition of line 4 of the algorithm applies relates to
Case 1 in Table I, so edge-labeled ordered term treep and
edge-labeled ordered treet are not the same. Accordingly,
PatternMatching algorithm returnsfalse. The first half of
the condition of line 6 relates to Case 5 in Table I; the second
half of the condition is the case in which parent and child
have sequential variables in edge-labeled ordered term tree
p. In that case, it is determined whether on not subtrees

Algorithm 1 PatternMatching

Require: DFUDS representationsP [0 . . .m− 1] andT [0 . . . n− 1] of ordered term treep and ordered treet, respectively.
Ensure: true if there exists a substitutionθ with t ∼= pθ, otherwisefalse.

1: i← 0, j ← 0
2: while i < m and j < n do
3: if P [i] 6= T [j] then
4: if P.label(i) ∈ Σ and T.label(j) ∈ Σ {/* Case 1 */} then
5: return false
6: else ifP.label(i) ∈ Σ and T [j] is an open parenthesis{/* Case 5 */} then
7: if (PatternMatching(P [P.subtree(i)], T [T.subtree(j)]) ==false) then
8: return false
9: else

10: i = P.subtree(i).second
11: j = T.subtree(j).second
12: end if
13: else
14: if (for any k ∈ [0 . . . T.degree(j)], PatternMatching(P [P.subtree(i)], T [T.subtree(T.child(j, k))]) ==false)

{/* Cases 2,3,4 */} then
15: return false
16: else
17: i = P.subtree(i).second
18: j = T.subtree(j).second
19: end if
20: end if
21: end if
22: i+ +, j + +
23: end while
24: if m− i > 0 or n− j > 0 then
25: return false
26: end if
27: return true

p[P.id(i)] and t[T.id(j)] match. If they do not match, then
PatternMatching algorithm returnsfalse. Line 13 relates to
Cases 2, 3 and 4 in Table I, where, subtreep[P.id(i)] is not
found in subtreet[T.id(j)] and PatternMatching algorithm
returnsfalse. If either character sequencep or t has not
been examined to the end (line 24) when the while statement
ends, then there exists no substitutionθ for which t ∼= pθ. If
none of the above cases hold, then there exists aθ such that
t ∼= pθ.

When DFUDS representations of edge-labeled ordered
term treep and edge-labeled ordered treet in Fig. 2 are
given, we illustrate the process of PatternMatching algo-
rithm. SinceP [0 . . . 5] and T [0 . . . 5] are same, line 4 of
PatternMatching algorithm is firstly executed ati = 6 and
j = 6. Since P [6] = (, T [6] = a ∈ Σ, that is Case
3, line 13 is executed. Then, since there exists the subtree
t[3] which is isomorphic to the subtreep[2](= p[P.id(6)]),
after lines 17 and 18 are executed,i = 9 and j = 11
are obtained. Next,p[10 . . . 11] and t[12 . . . 13] are same,
and P [12] = Y ∈ χ and T [6] = (, that is Case 2.
Hence, line 13 is executed again. Then, since there exists
the subtreet[8] which is isomorphic to the subtreep[5](=
p[P.id(12)]), after lines 17 and 18 are executed,i = 14
and j = 22 are obtained. Next, sinceP [17] = b ∈ Σ and
T [25] = (, that is Case 5, line 6 is executed. when the
subtreep[(P.id(P.parent(17)), b, P.id(17))](= p[(1, b, 8)])
of p and the subtreet[(T.id(T.parent(25)), b, T.id(25))](=

((((a((X ab ((Y ab ((b Z b

((((a(a ((b ab (((ba((b ab b (((b ab b
=25j=14jj=6

=17i=12i=6i

0 1 2 3 4 5 6 7 8 9 10

1413 1512109876543210 11

Fig. 3. Illustration of process of PatternMatching algorithm when DFUDS
represents ofp and t are given.

t[(1, b, 12)]) of t are given, PatternMatching returnstrue.
Hence, after lines 10 and 11 are executed,i = 19 andj = 29
are obtained. Finally, PatternMatching algorithm exitswhile
loop, returnstrue, and terminates.

The following theorem is hold.

theorem 2:The membership problem forOT T Σ∪χ can
be computed inO(mn) time.

Proof: The PatternMatching algorithm for solving the
membership problem forOT T Σ∪χ is presented in Algo-
rithm 1. Let the respective DFUDS representations for edge-
labeled ordered term treep and edge-labeled ordered tree
t be P [0 . . .m − 1] and T [0 . . . n − 1], and let i and j be
natural numbers that satisfy0 ≤ i < m and 0 ≤ j < n.
Consider anm× n table that holds information on whether
or not the subtree whose root is a child vertex of the edge
that corresponds to the positionP [i] matches the subtree
whose root is a child vertex of the edge that corresponds to

the positionT [j]. The PatternMatching algorithm can be
understood as a repeated process of referring to the certain
parts of the table to determine the uncertain parts of the
table. In other words, the table is filled in by repeating the
part of the PatternMatching algorithm from line 2 to line
23, incrementingi and j. Thus, whether or not the subtree
whose root is a child vertex of the edge that corresponds to
the position ofP [0] (namely,p) matches the subtree whose
root is a child vertex of the edge that corresponds to the
position of T [0] (namely, t) can be calculated inO(nm)
time.

V. EXPERIMENT AND DISCUSSION

We implemented the algorithm for generating a DFUDS
representation from an edge-labeled ordered term tree de-
scribed in section III and the algorithm described in section
IV on a computer. In this section, we describe the experimen-
tal setup, present the results, and discuss what was learned.

The algorithms listed below were implemented in C++
on a computer equipped with a 3.16 GHz Intel XEON
X5460 processor, main memory of 4.00 GB and running the
Microsoft Windows Vista SP1 operating system.

1) Algorithm for generating the DFUDS representation of
an edge-labeled tree.

2) PatternMatching algorithm, described in section IV,
for determining whether or not there exists a substitu-
tion θ for which t ∼= pθ, given DFUDS representations
of edge-labeled ordered term treep and edge-labeled
ordered treet .

To avoid effect of the edge label count, we set the edge
label count to 1. Leta be an edge label inΣ. We artificially
created apattern collection Dr

Σ∪χ(m) of one hundred each
of edge-labeled term trees inOT T Σ∪χ that has the edge la-
bela,m edges includingrm variables, and maximum degree
5, and adata collectionDΣ(n) of one hundred each of edge-
labeled trees inOT Σ that has the edge labela, n edges and
maximum degree5. We remark thatr denotes aratio of the
variable count for the edge count in an edge-labeled term tree
in Dr(m). From the design of PatternMatching algorithm,
since PatternMatching algorithm may returnfalse as soon
as finds mismatch positions of given edge-labeled term tree
p and edge-labeled treet, we can see that, in general,
the execution time of PatternMatching algorithm may not
depend on the edge count ofp and t even if quit huge
data collections are used. Hence, we artificially created data
collectionDΣ(n) from Dr

Σ∪χ(m) in the following way. For
each edge-labeled term treep in Dr

Σ∪χ(m), we add an edge-
labeled treet in OT {a} so thatt has edge counts ofn and
there exists a substitutionθ with t ∼= pθ to DΣ(n).

First of all, for eachn ∈ {1000, 2000, 3000, 4000, 5000,
6000, 7000, 8000, 9000, 10000}, DFUDS representations for
100 trees in data collectionsDΣ(n) were generated and
the average generation time was obtained. Those results
are shown in Fig. 4. An equation that approximates the
average execution timey of the DFUDS representation
generating algorithm for an edge-labeled ordered tree is
y = 7.83m × 10−1. That is, we can see that the DFUDS
representation generation time varies linearly with the edge
count. By the above experiments, we can demonstrate that
theorem 1 holds.

0

1

2

3

4

5

6

7

8

9

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of edges of an edge-labeled ordered tree

R
u
n
n
in

g
ti

m
e

(m
s)

Fig. 4. Running times of the DFUDS representation generating algorithm

In order to show efficiency of PatternMatching algorithm,
we evaluated PatternMatching algorithm by experiments us-
ing data collections and pattern collections. Lett be an edge-
labeled tree selected inDΣ(10000). Secondly, for eachm ∈
{100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}, when t
and an edge-labeled term treep in D0.1

Σ∪χ(m) are given,
the average execution time of PatternMatching algorithm
was shown in Fig.5. When the edge count of given edge-
labeled tree is fixed, we can demonstrate that theorem 2
holds, because the matching time varies linearly with the
edge count of given edge-labeled term tree.

Conversely, let p be an edge-labeled term tree in
D0.1

Σ∪χ(100). Thirdly, by varying edge countsn from 1000 to
10000, whenp and edge-labeled tree inDΣ(n) are given, the
average execution time of PatternMatching algorithm was
shown in Fig.6. From Fig.6, we can also demonstrate that
theorem 2 holds.

For eachd ∈ {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45,
0.50}, we artificially created a pattern collection
D0.5

Σ∪χ(100, d) from D0.5
Σ∪χ(100) as follows. For each edge-

labeled term treep in D0.5
Σ∪χ(100), by replacing(0.5− d)m

variables with edges whose labeled witha we added the
resultant edge-labeled term tree havingdm variables to
D0.5

Σ∪χ(100, d). Let t be an edge-labeled tree selected in
DΣ(10000). Fourthly, by varying ratior from 0.10 to
0.50, whenp in D0.5

Σ∪χ(100, d) and t are given, the average
execution times of PatternMatching algorithm was shown
in Fig.7. We can see that the variable counts and execution
time of PatternMatching algorithm is proportional. The
reason may be that the more variable count in edge-labeled
term tree increases, the more number of calls of the line 7
or the line 14 of PatternMatching algorithm increases.

Suzuki et alia [13] have proposed a matching algorithm
for determining whether or not, given an edge-labeled term
tree p and an edge-labeled treet, there exists a substitu-
tion θ so that t ∼= pθ. The strategy of Suzuki’s match-
ing algorithm differs from ours. The matching algorithm
we describe here performs top down matching, but the
method applied by Suzuki et alia performs bottom up.
Let p be an edge-labeled term tree inD0.1

Σ∪χ(100) and t
an edge-labeled tree inDΣ(n) obtained by varying edge
countsn from 1000 to 10000. In order to show the ad-
vantage of PatternMatching algorithm for Suzuki’s match-
ing algorithm, we compared PatternMatching algorithm
with Suzuki’s matching algorithm for each data collec-

R
u
n
n
in

g
ti

m
e

(m
s)

Number of edges of given edge-labeled term tree

10

11

12

13

14

15

16

17

100 200 300 400 500 600 700 800 900 1000

Fig. 5. Running times of PatternMatching algorithm for the edge count
of given edge-labeled ordered term tree.

R
u
n
n
in

g
ti

m
e

(m
s)

Number of edges of given edge-labeled tree

0

2

4

6

8

10

12

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 6. Running times of PatternMatching algorithm for the edge count
of given edge-labeled ordered tree.

tion. The results are shown in Fig.8. Fig.8 shows that
PatternMatching algorithm is faster than Suzuki’s matching
algorithm. The reasons are follows. (1) If there exists no
substitution θ with t ∼= pθ, PatternMatching algorithm
returnsfalse faster than Suzuki’s matching algorithm. (2)
PatternMatching algorithm are implemented using DFUDS
as data structure.

These experimental results leads us to give faster tree
mining tools using PatternMatching algorithm proposed in
this paper than using Suzuki’s matching algorithm.

VI. CONCLUSION

We propose a DFUDS representation of edge-labeled
ordered term trees that applies the DFUDS representation
for ordered trees of Benoit et alia [2]. We also used the
DFUDS representation as a data structure to formulate the
membership problem for edge-labeled trees and propose a
matching algorithm that solves that problem in polynomial
time. Evaluation experiments performed with computer im-
plementation of the algorithm demonstrated its efficiency.

Miyoshi et alia analyzed a TTSP graph and proposed
its representation as a series of edge-labeled ordered trees
(forest representation) [7]. Miyoshi et alia further proposed
use of the xbw transform for the forest representation of
a TTSP graph, as well as an xbw transform path search
algorithm for a TTSP graph. As applications of this research,
we are considering adaptation of the DFUDS representation
proposed here to succinct data structures of TTSP graphs
based on forest representation proposed by Miyoshi et alia
[7] and the compressed tree proposed by Katoh et alia [6].

R
u
n
n
in

g
ti

m
e

(m
s)

Ratio of variables in given edge-labeled term tree (%)

0

0.5

1

1.5

2

2.5

3

3.5

10 15 20 25 30 35 40 45 50

Fig. 7. Running times of PatternMatching algorithm for ratios of the
variable count in given edge-labeled ordered term tree.

0

100

200

300

400

500

600

700

800

900

1000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Suzuki’s Matching Algorithm

Our Matching Algorithm

R
u
n
n
in

g
ti

m
e

(m
s)

Number of edges of given edge-labeled tree

Fig. 8. PatternMatching algorithm vs Suzuki’s matching algorithm.

Moreover, we are considering graph mining algorithms for
semi-structured data using a succinct data structure.

REFERENCES

[1] D. Arroyuelo, B. Ćanovas, G. Navarro, and K. Sadakane. Succinct
trees in practice. InALENEX, pages 77–83, 2010.

[2] D. Benoit, E. D. Demaine, J. I. Munro, and V. Raman. Representing
trees of higher degree.Algorithmica, 43(4):275–292, 2005.

[3] Y.-T. Chiang, C.-C. Lin, and H.-I. Lu. Orderly spanning trees with
applications.SIAM Journal on Computing, 34(4):924–945, 2005.

[4] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring
labeled trees for optimal succinctness, and beyond. InIEEE FOCS
2005, pages 184–196, 2005.

[5] R. F. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal
representation for balanced parentheses. InCPM, pages 159–172,
2004.

[6] Y. Itokawa, K. Katoh, T. Uchida, and T. Shoudai.Algorithm using
Expanded LZ Compression Scheme for Compressing Tree Structured
Data, pages 333–346. Lecture Notes in Electrical Engineering.
Springer, 2010.

[7] Y. Itokawa, J. Miyoshi, M. Wada, and T. Uchida. Succinct represen-
tation of ttsp graphs and its application to the path search problem.
In Sixth IASTED International Conference on Advances in Computer
Science and Engineering, pages 33–40, 2010.

[8] G. Jacobson. Space-efficient static trees and graphs. InIEEE FOCS,
pages 549–554, 1989.

[9] J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinct representation
of ordered trees. InACM-SIAM SODA 2007, pages 575–584, 2007.

[10] J. I. Munro. Table. InFSTTCS, LNCS 1180, pages 37–42. Springer,
1996.

[11] J. I. Munro and V. Raman. Succinct representation of balanced
parentheses and static trees.SIAM Journal on Computing, 31(3):762–
776, 2001.

[12] R. Pagh. Low redundancy in static dictionaries with constant query
time. SIAM Journal on Computing, 31(2):353–363, 2001.

[13] Y. Suzuki, K. Inomae, T. Shoudai, T. Miyahara, and T. Uchida. A
polynomial time matching algorithm of structured ordered tree patterns
for data mining from semistructured data. InILP-2002, LNAI 2583,
pages 270–284. Springer, 2003.

