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Abstract—The n-dimensional augmented cube, denoted as AQn, 

a variation of the hypercube, possesses some properties superior 

to those of the hypercube. In this paper, we show that every 

vertex in AQn lies on a fault-free cycle of every length from 4 to 

2n, even if there are up to 2n  3 link faults. We also show that 

this result is optimal. 

 

Index Terms—hypercubes, augmented hypercubes, 

fault-tolerant, pancyclic, vertex-pancyclic, interconnection 

network. 

I. INTRODUCTION 

A graph G is a triple consisting of a vertex set V(G), an 

edge set E(G), and a relation that associates with each edge 

two vertices called its endpoints [26]. We usually use a graph 

to represent the topology of an interconnection network 

(network for short). The hypercube is one of the most 

versatile and efficient interconnection networks discovered to 

date for parallel computation. The hypercube is ideally suited 

to both special-purpose and general-purpose tasks, and can 

efficiently simulate many other same sized networks [18]. We 

usually use Qn to denote an n-dimensional hypercube. Many 

variants of the hypercube have been proposed. The 

augmented cube, recently proposed by Choudum and Sunitha 

[5], is one of such variations. An n-dimensional augmented 

cube AQn can be formed as an extension of Qn by adding some 

links. For any positive integer n, AQn is a vertex transitive, (2n 

 1)-regular, and (2n  1)-connected graph with 2
n
 vertices. 

AQn retains all favorable properties of Qn since Qn  AQn. 

Moreover, AQn possesses some embedding properties that Qn 

does not. Previous works relating to the augmented hypercube 

can be found in [2], [5], [14], [15], [16], [19], [20], [23], [25].  

Linear arrays and rings, two of the most fundamental 

networks for parallel and distributed computation, are 

suitable for developing simple algorithms with low 

communication costs. Many efficient algorithms designed 

based on linear arrays and rings for solving a variety of 

algebraic problems and graph problems can be found in [18]. 

The pancyclicity of a network represents its power of 

embedding rings of all possible lengths. A graph G is called 

m-pancyclic whenever G contains a cycle of each length l for 

m  l  |V(G)|. A 3-pancyclic graph is called pancyclic. The 

arrangement graph [7], the hypercomplete network [6], the 

WK-recursive network [10], the alternating group graph [17], 

and the hyper-de Bruijn networks [11] are all pancyclic. A 

graph G is m-vertex-pancyclic (respectively, 
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m-edge-pancyclic) if every vertex (respectively, edge) lies on 

a cycle of every length from m to |V(G)|. In addition, a 

3-vertex-pancyclic graph (respectively, 3-edge-pancyclic 

graph) is called vertex-pancyclic (edge-pancyclic). It is clear 

that if a graph G is m-edge-pancyclic, then it is 

m-vertex-pancyclic. The crossed cube [8], the twisted cube 

[9], and the möbius cube [24] are 4-edge-pancyclic. The 

recursive circulant graphs with some condition [1], the 

alternating group graph [3], and the augmented cube [20] are 

edge-pancyclic.  

Since faults may occur to networks, the fault tolerance of 

networks is an important issue in designing network topologies. 

Let Fe  E(G) (respectively, Fv  V(G)) denote the faulty 

edges (respectively, the faulty vertices) in a graph G and let F 

= Fe  Fv. Suppose that G  F is P, where P is m-pancyclic, 

pancyclic, vertex-pancyclic, m-vertex-pancyclic, 

edge-pancyclic, or m-edge-pancyclic. Then, we call G |F| 

fault-tolerant P. In addition, G is |F|-edge fault-tolerant P 

(respectively, |F|-vertex fault-tolerant P) if F = Fe 

(respectively, if F = Fv). Note that if G is |F| fault-tolerant P, 

then G is |F|-edge fault-tolerant P and |F|-vertex fault-tolerant 

P. Previously, the pancyclicity on various faulty networks was 

studied in [4], [12], [20], [21], [22], [23]. In [23], AQn has been 

shown to be (2n  3) fault-tolerant pancyclic, where n  4. Up 

to now, there is no research to concern fault-tolerant 

vertex-pancyclicity or fault-tolerant edge-pancyclicity. In this 

paper, we show that AQn  Fe is 4-vertex-pancyclic if |Fe|  2n 

 3, where n  2. That is, we show that AQn is (2n  3)-edge 

fault-tolerant 4-vertex-pancyclic, where n  2. In addition, we 

also show that this result is optimal.  

 

II. PRELIMINARIES 

Let G be a graph and let u, v  V(G). The degree of vertex 

v in G, written as degG(v), is the number of edges incident to v 

in G. In addition, (G) = min{degG(v)| v  V(G)}. A path P[x0, 

xt] = x0, x1, , xt is a sequence of nodes such that two 

consecutive nodes are adjacent. t is the distance between 

nodes x0 and xt if P[x0, xt] is a shortest path in G. We use 

0( , )G td x x  to denote the distance between x0 and xt in G, and 

use (u, v) to denote an edge whose endpoints are u and v. 

Moreover, a path x0, x1, , xt may contain other subpaths, 

denoted as x0, x1, , xi, P[xi, xj], xj, , xt, where P[xi, xj] = xi, 

xi+1, ,xj–1, xj. A cycle is a path with x0 = xt and t  3. A cycle 

(respectively, path) in G is called a Hamiltonian cycle 

(respectively, Hamiltonian path) if it contains every vertex of 

G exactly once.  
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Figure 1.  The structures of (a) AQ1, ( b) AQ2, and (c) AQ3 

 

An n-dimensional hypercube (n-cube for short) Qn is an 

undirected graph with 2
n
 nodes each labeled with a distinct 

binary string b1b2…bn. Nodes b = b1…bi…bn and b
i
 = 

b1… ib …bn are joined by an edge along dimension i, where 1 

 i  n and 
ib  represents the one complement of bi.  

An n-dimensional augmented hypercube AQn is Qn 

augmented by adding more links among its nodes (thus, 

V(AQn) = V(Qn)). For a node b = b1b2…bn, it has n  1 more 

links to connect to nodes i

ab  = 
1 2 1 1... ...i i i nb b b b b b 

 in addition 

to its original n links, for all i  {1, 2, …, n  1}. AQn has 2
n1

 

(n  1) more links than Qn. Note that AQ1 is isomorphic to Q1. 

Let 0

1nAQ 
 (respectively, 1

1nAQ 
) be the subgraph of AQn 

induced by {0b2b3…bn| bi = 0 or 1 for 2  i  n} (respectively, 

{1b2b3…bn | bi = 0 or 1 for 2  i  n}). It is easy to see that 
0

1nAQ 
 (respectively, 1

1nAQ 
) is isomorphic to AQn1. In 

addition, AQn can be recursively constructed by adding 2
n
 

edges between 0

1nAQ 
 and 1

1nAQ 
. A vertex b = 0b2b3…bn  

V( 0

1nAQ 
) is jointed to two vertices in 1

1nAQ 
, which are b

h
 = b

1
 

= 1b2b3…bn and b
a
 = 1

ab  = 
2 31 ... nb b b . It is easy to see that an 

edge joins nodes b
h
 and b

a
. The structures of AQ1, AQ2, and 

AQ3 are shown in Figure 1. It is known that AQn is a 

vertex-transitive and (2n  1)-regular graph [1].  

 

III. SOME IMPORTANT PROPERTIES 

In this section, we introduce some important properties of 

the augmented cube, which are needed to derive our main 

result.  

Lemma 1. [20] Let u, v  V(AQn), where n  2. There exists a 

path P[u, v] of length l in AQn, where ( , )
nAQd u v   l  2

n
  1.  

 

Lemma 2. [20] Let u, v  V(AQn), where n  2. There exists a 

Hamiltonian path P[u, v] in AQn  F, where F  E(AQn), if |F| 

 2n  4. Moreover, there exists a cycle of length l in AQn  F 

if |F|  2n  3, where 3  l  2
n
.  

 

Lemma 3. Let (x, y)  E( 0

1nAQ 
). Then (x

h
, y

h
) and (x

a
, y

a
) are 

also edges in 1

1nAQ 
. 

Proof. It is trivial if y = x
i
, where i  {2, 3, …, n}. Now, 

consider that y = 
i

ax  for some i  {2, 3, …, n  1}. Suppose 

that x = 0x2x3…xn. Then, y = 
2 3 10 ... ...i i nx x x x x

, x
h
 = 1x2x3…xn, 

y
h
 = 

2 3 11 ... ...i i nx x x x x
, x

a
 = 

2 31 ... nx x x , y
a
 = 

2 3 11 ... ...i i nx x x x x
. 

Thus, y
h
 = ( )h i

ax  and y
a
 = ( )a i

ax . The result follows. 

 

Lemma 4. [20] Let u, v , x, y be any four distinct vertices in 

AQn where n  2. There exist a path P[u, v] and a path P[x, y] 

such that V(P[u, v])  V(P[x, y]) =  and V(P[u, v])  V(P[x, 

y]) = V(AQn).  

 

Lemma 5. [15] Let F  AQn and u, v  V(AQn  F) where n  

2. Then there exists a Hamiltonian path P[u, v] in AQn  F if 

|F|  2n  4 when n  3 and |F| = 1 when n = 3.  

 

Lemma 6. [15] Let F  AQn where n  2. Then AQn  F is 

Hamiltonian if |F|  2n  3 when n  3 and |F| = 2 when n = 3. 

 

Lemma 7. Let F  E(AQn) and (u, v)  E(AQn), where n  2 

and |F| = 1. Then there exists a path P[u, v] of length 2 in AQn 

 F.  

Proof. We proceed by induction on n. It is very easy to see 

that the lemma holds for AQ2. As per our induction hypothesis, 

assume that the lemma holds for AQn1 for some n  3. If (u, v) 

 0

1nAQ 
 or (u, v)  1

1nAQ 
, then the lemma holds by the 

induction hypothesis. Assume that u  V( 0

1nAQ 
) and v 

V( 1

1nAQ 
). First, consider that v = u

h
. One of the paths u, u

a
, 

u
h
 (= v) and u (=v

h
), v

a
, v will be in AQn  F since these two 

paths are edge-disjoint. Then, consider that v = u
a
. One of the 

paths u, u
h
, u

a
 (= v) and u (=v

a
), v

h
, v will be in AQn  F 

since these two paths are edge-disjoint. 

 

Lemma 8. AQn  F is Hamiltonian if F  E(AQn) with |F|  2n 

 2 and (AQn  F)  2, where n  2.  

Proof. The proof is omitted due to the page limitation. 

 

IV. EDGE-FAULT-TOLERANT 4-VERTEX-PANCYCLICITY 

In this section, by the aid of the lemmas in Section 3, we 

will show that AQn is (2n  3)-edge fault-tolerant 

4-vertex-pancyclic. We format the theorem as follows.  

 

Theorem 1. Let F  E(AQn) denote the faulty edge set of AQn, 

where n  2. AQn  F is 4-vertex-pancyclic if |F|  2n  3.  

Proof. We proceed by induction on n. It is very easy to see 

that the theorem holds for AQ2. As per our induction 

hypothesis, assume that the result holds for AQn1 for some n 

 3. Consider that AQn and F  E(AQn), where n  3 and |F|  

2n  3. For simplicity, we may assume |F| = 2n  3. Since AQn 

is vertex-symmetric, we only need to show that z = 0
n
 (n 

consecutive 0’s) lies on a cycle of length l in AQn  F, where 4 

 l  2
n
. In addition, by Lemma 2, there exist a Hamiltonian 

cycle C in AQn  F and clearly z  V(C) and |V(C)| = 2
n
. As a 

result, we only need to show that 4  l  2
n
  1. Let F0 = F  

E( 0

1nAQ 
), F1 = F  E( 1

1nAQ 
), Fc = F  ({(b, b

h
)| b  



 

V( 0

1nAQ 
)}  {(b, b

a
)| b  V( 0

1nAQ 
)}). Four cases are 

considered:  

Case 1: |F0| = 0. Three cases are further considered:  

Case 1.1: 4  l  2
n1

. Since |F0| = 0, by the induction 

hypothesis, there exists a cycle C of the length l  {4, …, 2
n1

} 

in 0

1nAQ 
  F0 such that z  V(C). Clearly, C is the desired 

cycle.  

Case 1.2: 2
n1

 + 1  l  2
n1

 + 2. We have two scenarios as 

follows:  
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Figure 2.  Construction of a cycle of length l  {4, 5, … , 2n  1} in AQn  F 

with F  E(AQn) and |F| = 2n  3 

 

Case 1.2.1: n = 3. We have l = 5 or 6. First, consider that l 

= 5. Since |Fc|  |F| = 3 and |V(
1

2AQ )| = 4, we can find a vertex 

x  1

2AQ  such that (x, x
a
), (x, x

h
)  Fc. In addition, by 

Lemma 5, there is a Hamiltonian path P[x
h
, x

a
] (with length 3) 

in 0

2AQ  (thus, z  V(P[x
h
, x

a
])). The desired cycle of length l 

= 5 can be constructed by x, x
h
, P[x

h
, x

a
], x

a
, x. 

Now consider that l = 6. Let (x, y)  E( 1

2AQ   F) such that 

|{(x, x
a
), (x, x

h
)}  Fc|  1, |{(y, y

a
), (y, y

h
)}  Fc|  1, x

a
  y

h, 
 

and x
h
  y

a 1
. Let (x, x'), (y, y')  E(AQ3)  Fc, where x'  

{x
a
, x

h
} and y'  {y

a
, y

h
}. Clearly, x'  y'. By   

 

 
1 Note that if (x, y)  S ={(100, 111), (101, 110)}, then xa  yh and xh  ya. 

The existence of such an edge can be reasoned as follows. If we have |{(v, va), 

(v, vh)}  Fc|  1 for all v  V( 1

2AQ ), then |E( 1

2AQ   F  S)|  1 and the result 

follows. If there is a vertex t with |{(t, ta), (t, th)}  Fc| = 2, then we have |{(v, 

va), (v, vh)}  Fc|  1 for all v  V( 1

2AQ   {t}) and |F1|  |F|  |Fc| = 1. Since 

|E( 1

2AQ   {t})  S| = 2, we have |E( 1

2AQ   {t})  S  F1|  1 and the result 

follows. 

Lemma 5, there is a Hamiltonian path P[y', x'] (with length 

3) in 0

2AQ . The desired cycle of length l = 6 can be 

constructed by x, y, y', P[y', x'], x', x. 

Case 1.2.2: n  4. By the induction hypothesis, there exists a 

cycle C0 in 
0

1nAQ    F0 such that z  V(C0), where 2
n1

  1  

|V(C0)|  2
n1

. Moreover, let (x, y)  E(C0) such that (x, x
h
), (y, 

y
h
), (x

h
, y

h
)  F or (x, x

a
), (y, y

a
), (x

a
, y

a
)  F

2
 (note that by 

Lemma 3, (x
h
, y

h
) and (x

a
, y

a
) are also edges in 1

1nAQ 
). 

Additionally, let P[x, y] = C0  {(x, y)} and l0 =|E(P[x, y])|. 

(Thus, we have 2
n1

  2  l0  2
n1

  1.) Let (x', y')  {(x
h
, y

h
), 

(x
a
, y

a
))} such that (x, x'), (y, y'), (x', y')  E(AQn)  F. The 

desired cycle of length l = l0 + 3  {2
n1

 + 1, 2
n1

 + 2} can be 

constructed by x, P[x, y], y, y', x', x (see Figure 2(a)).  

Case 1.3: 2
n1

 + 3  l  2
n
  1. We have three scenarios as 

follows:  

Case 1.3.1: |F1|  2n  5. By Lemma 2, there exists a 

Hamiltonian cycle C1 in 
1

1nAQ    F1. Let P[x, y] be the 

subpath of C1 with length l1 such that (x, x
h
), (y, y

h
)  Fc or (x, 

x
a
), (y, y

a
)  Fc, where 2  l1  2

n1
  2

 3
. Let x' {x

h
, x

a
}, y' 

{y
h
, y

a
}, and (x, x'), (y, y')  Fc. Since |F0| = 0, by Lemma 2, 

there exists a Hamiltonian path P[y', x'] in 0

1nAQ 
  F0 

(certainly, z  V(P[y', x'])). The desired cycle of length l = 

2
n1

  1 + 2 + l1  {2
n1

+ 3, 2
n1

+ 4, …, 2
n
  1} can be 

constructed by x, P[x, y], y, y', P[y', x'], x', x (see Figure 

2(b)).  

Case 1.3.2: |F1| = 2n  4 (thus, |Fc| = 1). Let ( x , y )  F1. 

Then |F1  {( x , y )}| = 2n  5. By Lemma 2, there exists a 

cycle C1 in 1

1nAQ 
  (F1  {( x , y )}), where 3  |V(C1)|  

2
n1

  1. If ( x , y )  E(C1), then let x = x  and y = y . If ( x , 

y )  E(C1), then randomly choose an edge (x, y)  E(C1). 

Since |Fc| = 1, we have (x, x
h
), (y, y

h
)  Fc or (x, x

a
), (y, y

a
)  Fc. 

Let P[x, y] = C  {(x, y)} and let l1 be the length of P[x, y]. 

(Thus, we have 2  l1  2
n1

  2.) Let (x', y')  {(x
h
, y

h
), (x

a
, 

y
a
))} such that (x, x'), (y, y')  E(AQn)  Fc. Since |F0| = 0, by 

Lemma 2, there exists a Hamiltonian path P[y', x'] in 0

1nAQ 
  

F0 (certainly, z  V(P[y', x'])). The desired cycle of length l = 

(2
n1

  1) + 2 + l1  {2
n1

+ 3, 2
n1

+ 4, …, 2
n
  1} can be 

constructed by x, P[x, y], y, y', P[y', x'], x', x (see Figure 

2(c)).  

Case 1.3.3: |F1| = 2n  3 (thus, |Fc| = 0). First, consider that 

( 1

1nAQ 
  F1) = 0. Clearly, exactly one vertex s in 1

1nAQ 
  

F1 has degree 0, F1 = {(s, t)| t  V( 1

1nAQ 
)}, and F  ( 1

1nAQ 
 

 {s}) = . By Lemma 6, there exists a Hamiltonian cycle C1 

in 1

1nAQ 
  {s} (thus, |V(C1)| = 2

n1
  1). Let P[x, y] be the 

subpath of C1 with length l1, where 2  l1  2
n1

  2. The 

construction is similar to that of Case 1.3.1.  

Now, consider that ( 1

1nAQ 
  F1)  1. Let x, y, u, v be 

distinct and (x, y), (u, v)  F1. Then, |F1  {(x, y), (u, v)}| = 2n 

 5. By Lemma 2, there exists a cycle C1 in 1

1nAQ 
  (F1  {(x, 

 
2 Since |E(C0)|  2n1  1, we have at least 2n1  1 choices. If such an edge 

does not exist, then |F|  2n1  1> 2n  3 when n  4, which is a 

contradiction. 
3 Since |E(C1)| = 2n1, we have at least 2n1 choices. If such a path does not 

exist, then |F|  2n1 > 2n  3 when n  3, which is a contradiction. 



 

y), (u, v)}), where 3  V(C1)  2
n1

  1. If {(x, y), (u, v)}  

E(C1), then the construction is similar to that of Case 1.3.2. 

(Note that if |V(C1)| = 3, then definitely {(x, y), (u, v)}  

E(C1).) Otherwise, (i.e. (x, y), (u, v)  E(C1) and |V(C1)|  4); 

let P[x, u] and P[v, y] be two subpaths of C1 (the discussion of 

the case that P[x, v] and P[u, y] are two subpaths of C1 is 

similar). By Lemma 4, there exist a path P[u
h
, v

h
] and a path 

P[y
h
, x

h
] such that V(P[u

h
, v

h
])  V(P[y

h
, x

h
]) =  and V(P[u

h
, 

v
h
])  V(P[y

h
, x

h
]) = V( 1

1nAQ 
). Let the total length of P[x, u] 

and P[v, y] be l1. (Thus, we have 2  l1  2
n1

  3.) In addition, 

the total length of P[u
h
, v

h
], and P[y

h
, x

h
] is 2

n1
  2. The 

desired cycle of length l  = (2
n1

  2) + 4 + l1  {2
n1

+ 4, 2
n1

+ 

5, …, 2
n
  1} can be constructed by x, P[x, u], u, u

h
, P[u

h
, v

h
], 

v
h
, v, P[v, y], y, y

h
, P[y

h
, x

h
], x

h
, x (see Figure 2(d)). Note that 

the desired cycle of length 2
n1

+ 3 can be constructed by using 

a method similar to that in Case 1.3.2. (Let |V(C1)| = 3 and we 

have {(x, y), (u, v)}  E(C1).)  

Case 2: 1  |F0|  2n  5. Thus, |F1| + |Fc|  2n  4. Three 

cases are further considered:  

Case 2.1: 4  l  2
n1

. Since |F0|  2n  5, by the induction 

hypothesis, there exists a cycle C of the required length l  

{4, …, 2
n1

} in 
0

1nAQ    F0 such that z  V(C). Clearly, C is 

the desired cycle.  

Case 2.2: 2
n1

 + 1  l  2
n1

 + 2. By the induction 

hypothesis, there exists a cycle C0 in 
0

1nAQ    F0 such that z 

 V(C0), where 2
n1

  1  |E(C0)|  2
n1

. Moreover, let (x, y)  

E(C0) such that (x, x
h
), (y, y

h
), (x

h
, y

h
)  F or (x, x

a
), (y, y

a
), (x

a
, 

y
a
)  F 

4
. The construction is similar to that of Case 1.2.2.  

Case 2.3: 2
n1

+ 3  l  2
n
  1. If |F1|  2n  5, then the 

construction is similar to that of Case 1.3.1. If |F1| = 2n  4 

(thus, |Fc| = 0), then the construction is similar to that of Case 

1.3.2.  

Case 3: |F0| = 2n  4. Thus, |F1| + |Fc| = 1. Three cases are 

further considered:  

Case 3.1: l = 4. Since 0

1nAQ 
 is (2n  3)-regular, there 

exists an edge (z, v)  E( 0

1nAQ 
)  F0. Let cycle C1 = z, v, v

h
, 

z
h
, z, cycle C2 = z, v, v

a
, z

a
, z, and cycle C3 = z, z

h
, u, z

a
, z, 

where u = 1
2
0

n2
. Since E( 0

1nAQ 
)  (E(C1)  E(C2)  E(C3)) 

= {(z, v)} and (z, v)  F0, we have |F  (E(C1)  E(C2)  

E(C3))| = | (F1  Fc)  (E(C1)  E(C2)  E(C3))|  |F1| + |Fc| = 

1. Moreover, we have E(C1)  E(C2)  E(C3) = 
5
. As a 

result, we have E(C1)  F = , E(C2)  F = , or E(C3)  F 

= . Let j  {1, 2, 3} and E(Cj)  F = . Clearly, Cj is the 

desired cycle of length 4 in AQn  F.  

Case 3.2: l = 5. Since 
0

1nAQ 
 is (2n  3)-regular, there 

exists an edge (z, v)  E( 0

1nAQ 
  F0). First, consider that v = 

i

az  = 0
i1

1
ni+1

 for some i  {2, …, n  1}. Let cycle C1 = 0
n
, 

0
i1

1
ni+1

, 10
i2

1
ni+1

, 10
i1

1
ni

, 10
n1

, 0
n
 and cycle C2 = 0

n
, 

0
i1

1
ni+1

, 1
i1

0
ni+1

, 1
i
0

ni
, 1

n
, 0

n
 . Note that E(C1)  E(C2) = 

{(z, v)}, E(C1)  F0 = , and E(C2)  F0 = 
6
. Moreover, 

 
4 Since |E(C0)|  2n1  1, we have at least 2n1  1 choices. If such an edge 

does not exist, then |F1| + |Fc|  2n1  1 > 2n  4, which is a contradiction. 
5 Note that if v = 01n1, then za = vh = 1n and zh = va = 10n-1. As a result, 

E(C1)  E(C2) = {(z, v), (za, zh)}. 
6 When i 2, it is easy to see that V(C1)  V(C2) = {z, v} and the result 

follows. When i = 2, C1 = 0n, 01n1, 1n, 101n2, 10n1, 0n  and cycle C2 = 0n, 

01n1, 10n1, 120n2, 1n, 0n , which also can verify that the result is true. 

since |F1| + |Fc| = 1, we have E(C1)  F =  or E(C2)  F = . 

Let j  {1, 2} and E(Cj)  F = . Clearly, Cj is the desired 

cycle of length 5 in AQn  F.  

Now consider that v = z
i
 = 0

i1
10

ni
 for some i  {2, 3, …, 

n}. If n  4, let cycle C1 = 0
n
, 0

i1
10

ni
, 10

i2
10

ni
, 10

n1
, 1

n
, 

0
n
, cycle C2 = 0

n
, 0

i1
10

ni
, 1

i1
01

ni
, 1

n
, 10

n1
, 0

n
 , and cycle 

C3 = 0
n
, 10

n1
, 1

2
0

n2
, 1

3
0

n3
, 1

n
, 0

n
. Since E(

0

1nAQ  )  

(E(C1)  E(C2)  E(C3)) = {(z, v)} and (z, v)  F0, we have |F 

 (E(C1)  E(C2)  E(C3))| = | (F1  Fc)  (E(C1)  E(C2)  

E(C3))|  |F1| + |Fc| = 1. Moreover, E(C1)  E(C2)  E(C3) = 

. As a result, we have E(C1)  F = , E(C2)  F = , or 

E(C3)  F = . Let j  {1, 2, 3} and E(Cj)  F = . Clearly, 

Cj is the desired cycle of length 5 in AQn  F. If n = 3, then v = 

001 or 010. When v is 001, the desired cycles of length 5 are 

as listed below (the construction of the case that v = 010 is 

similar):  

 

The edge in F  F0 Cycle of length 5 

(000, 100), (001, 101), (010, 101), (010, 110), 

(011, 100), (011, 111), (100, 101), (100, 

110), (100, 111), or (110, 111). 

000, 001, 110, 101, 111, 000 

(000, 111), (001, 110), or (101, 110) 000, 001, 101, 111, 100, 000 

(101, 111)  000, 100, 101, 110, 111, 000 
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Figure 3.  Construction of a cycle of length l  {4, 5, … , 2n  1} in AQn  F 

with F  E(AQn) and |F| = 2n  3 

 

Case 3.3: 6  l  2
n
  1. Since |F0| = 2n  4  2 and |Fc|+|F1| 

= 1, we can find an edge (x, y)  F0 such that (x, x
h
), (y, y

h
), (x

h
, 

y
h
)  F or (x, x

a
), (y, y

a
), (x

a
, y

a
)  F. Let (x', y')  {(x

h
, y

h
), (x

a
, 

y
a
))} such that (x, x'), (y, y'), (x', y')  E(AQn)  F. Since |F0  

(x, y)| = 2n  5, by the induction hypothesis, there exists a 

cycle C0 in 0

1nAQ 
  (F0  (x, y)) such that z  V(C0), where 4 

 |E(C0) |  2
n1

. If (x, y)  E(C0) then let u = x, v = y, u' = x', 



 

and v' = y'. Otherwise, let (u, v)  E(C0) such that (u, u
h
), (v, 

v
h
), (u

h
, v

h
)  F, and let u' = u

h
 and v' = v

h
. Let P[u, v] = C0  

{(u, v)} and l0 =|E(P[u, v])|. (Thus, we have 3  l0  2
n1

  1.) 

The desired cycle of length l = l0 + 3  {6, 7, …, 2
n1

 + 2} can 

be constructed by u, P[u, v], v, v', u', u (see Figure 3(a)).  

Since |F1|  1, by Lemma 7, there exists a path P[v', u'] of 

length 2 in 
1

1nAQ    F. Let l0 = 2
n1

  1; the desired cycle of 

length l = l0 + 4 = 2
n1

 + 3 can be constructed by u, P[u, v], v, 

v', P[v', u'], u', u (see Figure 3(b)).  

Also, since |F1|  1, by Lemma 2, there exists a Hamiltonian 

path P[v', u'] in 1

1nAQ 
  F. The desired cycle of length l = l0 + 

2 + 2
n1

  1  {2
n1

 + 4, 2
n1

 + 5, …, 2
n
  1} can be 

constructed by u, P[u, v], v, v', P[v', u'], u', u (see Figure 

3(c)). 

 

Case 4: |F0| = 2n  3. Thus, |F1| = |Fc| = 0. Two cases are 

further considered:  

Case 4.1: 4  l  2
n1

 + 1. Remember that z
h
 is a neighbor of 

z
a
; that is, 

1
1

( , )
n

h a

AQ
d z z



 = 1. By Lemma 1, there exists a path 

P[z
h
, z

a
] of length l1 in 1

1nAQ 
, where 1  l1  2

n1
  1. 

Therefore, the desired cycle of length l = l1 + 2  {3, 4, … , 

2
n1

 + 1} can be constructed by z, z
h
, P[z

h
, z

a
], z

a
, z (see 

Figure 4(a)).  

Case 4.2: 2
n1

 + 2  l  2
n
  1. We have the following 

scenario:  

Case 4.2.1: ( 0

1nAQ 
  F0) = 0. Clearly, exactly one vertex 

v in 
0

1nAQ    F0 has degree 0, for otherwise, |F0|  2(2n  3) 

 1 = 4n  7 > 2n  3. Moreover, F0 = {(v, u)| u  V( 0

1nAQ 
)} 

and F  E( 0

1nAQ 
  {v}) = . By Lemma 6, there exists a 

Hamiltonian cycle C in 0

1nAQ 
  {v}. Thus, we have |E(C)| = 

2
n1

  1. Let (x, y)  E(C), and P[x, y] = C  {(x, y)}. Then, the 

length of P[x, y] is 2
n1

  2. By Lemma 1, there exists a path 

P[y
h
, x

h
] of length l1 in 

1

1nAQ  , where 2  l1  2
n1

  1. The 

desired cycle of length l = l1 + 2
n1

  2 +2  {2
n1

 + 2, 2
n1

 + 

3, …, 2
n
  1} can be constructed by x, P[x, y], y, y

h
, P[y

h
, x

h
], 

x
h
, x (see Figure 4(b))  

Case 4.2.2: ( 0

1nAQ 
  F0) = 1. First, consider that n = 3. 

It is easy to construct a path P[x, y] of length 2 in 0

2AQ   F0 

by hand such that z  V(P[x, y]) for some vertices x, y in 
0

1nAQ 
. By  

Lemma 1, there exists a path P[y
h
, x

h
] of length l1 in 1

2AQ , 

where 1  l1  3. The desired cycle of length l = l1 + 2 +2  {5, 

6, 7} can be constructed by x, P[x, y], y, y
h
, P[y

h
, x

h
], x

h
, x. 

Now consider that n  4. There is at most one vertex x with 

degree 1 in 0

1nAQ 
  F0, for otherwise, |F0|  2(2n  4)  1 = 4n 

 9 > 2n  3, which is a contradiction. Let (x, y)  F0. Then, 

we have ( 0

1nAQ 
  (F0  {(x, y)})) = 2 and |F0  {(x, y)}| = 2n 

 4. By Lemma 8, there exists a Hamiltonian cycle C in 
0

1nAQ 
  (F0  {(x, y)}). Obviously, (x, y)  E(C). Let P[x, y] 

= C  {(x, y)}. Then, the length of P[x, y] is 2
n1

  1. By 

Lemma 1, there exists a path P[y
h
, x

h
] of length l1 in 

1

1nAQ  , 

where 1  l1  2
n1

  2. The desired cycle of length l = l1 + 2
n1

 

 1 +2  {2
n1

 + 2, 2
n1

 + 3, …, 2
n
  1} can be constructed by 

x, P[x, y], y, y
h
, P[y

h
, x

h
], x

h
, x (see Figure 4(c)).  

Case 4.2.3: ( 0

1nAQ 
  F0)  2. We have n  4. Let (u, v)  

F0. Clearly, ( 0

1nAQ 
  (F0  {(u, v)}))  2 and |F0  {(u, v)}| 

= 2n  4. By Lemma 8, there exists a Hamiltonian cycle C in 
0

1nAQ    (F0  {(u, v)}). If (u, v)  E(C), then let x = u and y 

= v. If (u, v)  E(C), then randomly choose an edge (x, y)  

E(C). The rest of the construction is the same as that of Case 

4.2.2.   
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Figure 4.   Construction of a cycle of length l  {4, 5, … , 2n  1} in AQn  

F with F  E(AQn) and |F| = 2n  3 

 

Note that there are distributions of 2n  2 edge faults over a 

AQn such that no fault-free Hamiltonian cycle can be found in 

the faulty AQn, since AQn is (2n  1)-regular. Moreover, there 

are distributions of n edge faults over an AQn such that no 

fault-free cycle of length three can be found. Consider that a 

vertex u = 0
n
 (n consecutive 0’s). Suppose that F = {(u, 

i

au )| i 

 {1, 2, …, n  1}}  {(u, u
n
)}. Thus, (u, u

i
)  F, for all i  

{1, 2, …, n  1}. Since u
i
 is not a neighbor of u

j
, for all i, j  

{1, 2, …, n  1} and i  j, u cannot lie on a cycle of length 3. 

Therefore, our result is optimal.  

 

V. DISCUSSION AND CONCLUSION 

Linear arrays and rings, two of the most fundamental 

networks for parallel and distributed computation, are 



 

suitable for developing simple algorithms with low 

communication costs. The pancyclicity of a network 

represents its power of embedding rings of all possible 

lengths. In this paper, using inductive proofs, we showed that 

AQn is (2n  3)-edge fault-tolerant 4-vertex-pancyclic. In 

other words, every vertex of an AQn with at most 2n  3 faulty 

edges lies on a fault-free cycle of every length from 4 to 2
n
. In 

addition, we also showed that our result is optimal.  

AQn is (2n  3) fault-tolerant pancyclic (thus, (2n  3)-edge 

fault-tolerant pancyclic), where n  4 [23]. We have shown 

that AQn is (2n  3)-edge fault-tolerant 4-vertex-pancyclic, 

but not n-edge fault-tolerant vertex-pancyclic. Therefore, AQn 

is not n fault-tolerant vertex-pancyclic and not n-edge 

fault-tolerant edge-pancyclic. A topic for further research is to 

explore the vertex-pancyclicity and/or edge-pancyclicity of 

augmented cubes in the presence of hybrid faults.  
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