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Probabilistic Model Checking on Propositional
Projection Temporal Logic

Xiaoxiao Yang

Abstract—Propositional Projection Temporal Logic (PPTL)
is a useful formalism for reasoning about period of time in
hardware and software systems and can handle both sequential
and parallel compositions. In this paper, based on discrete time
Markov chains, we investigate the probabilistic model checking
approach for PPTL towards verifying arbitrary linear-time
properties. We first define a normal form graph, denoted by
NFG iy, to capture the infinite paths of PPTL formulas. Then
we present an algorithm to generate the NFG . Since discrete-
time Markov chains are the deterministic probabilistic models,
we further give an algorithm to determinize and minimize the
nondeterministic NF G, following the Safra’s construction.

Index Terms—projection temporal logic, probabilistic model
checking, Markov chains, normal form graph

I. INTRODUCTION

Traditional model checking techniques focus on a sys-
tematic check of the validity of a temporal logic formula
on a precise mathematical model. The answer to the model
checking question is either true or false. Although this classic
approach is enough to specify and verify boolean temporal
properties, it does not allow to reason about stochastic nature
of systems. In real-life systems, there are many phenomena
that can only be modeled by considering their stochastic
characteristics. For this purpose, probabilistic model check-
ing is proposed as a formal verification technique for the
analysis of stochastic systems. In order to model random
phenomena, discrete-time Markov chains, continuous-time
Markov chains and Markov decision processes are widely
used in probabilistic model checking. Properties to be anal-
ysed by probabilistic model checking can be formalized
in some temporal logics such as probabilistic computation
tree logic (PCTL) [1] or continuous stochastic logic (CSL)
[2]. In addition, over the last decade, efficient tools for the
probabilistic model checking have also been developed, e.g.,
PRISM [5] and MRMC [7] as well as extensions of existing
tools such as SPIN and SMART.

Linear-time property is a set of infinite paths. We can
use linear-time temporal logic (LTL) to express w-regular
properties. Given a finite Markov chain M and an w-regular
property @, the probabilistic model checking problem for
LTL is to compute the probability of accepting runs in the
product Markov chain M and a deterministic Rabin automata
(DRA) for =@ [6].

Among linear-time temporal logics, there exists a number
of choppy logics that are based on chop (;) operators.
Interval Temporal Logic (ITL) [3], [4] is one kind of choppy
logics, in which temporal operators such as chop, next and
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projection are defined. Within the ITL developments, Duan,
Koutny and Holt, by introducing a new projection construct
(p1,-.-,Pm)prJ ¢, generalize ITL to infinite time intervals.
The new interval-based temporal logic is called Projection
Temporal Logic (PTL) [12]. PTL is a useful formalism for
reasoning about period of time for hardware and software
systems. It can handle both sequential and parallel com-
positions, and offer useful and practical proof techniques
for verifying concurrent systems [14], [12]. Compared with
LTL, PTL can describe more linear-time properties. In this
paper, we investigate the probabilistic model checking on
Propositional PTL (PPTL).

There are a number of reasons for being interested in
projection temporal logic language. One is that projection
temporal logic can express various imperative programming
constructs (e.g. while-loop) and has executable subset [10],
[11]. In addition, the expressiveness of projection temporal
logic is more powerful than the classic point-based temporal
logics such as LTL since the temporal logics with chop
star (x) and projection operators are equivalent to w-regular
languages, but LTL cannot express all w-regular properties
[9]. Furthermore, the key construct used in PTL is the
new projection operator (pi,...,pm) prj ¢ that can be
thought of as a combination of the parallel and the projection
operators in ITL. By means of the projection construct,
one can define fine- and coarse-grained concurrent behaviors
in a flexible and readable way. In particular, the sequence
of processes pi,...,pn and process ¢ may terminate at
different time points.

In the previous work [10], [11], [12], we have presented a
normal form for any PPTL formula. Based on the normal
form, we can construct a semantically equivalent graph,
called normal form graph (NFG). An infinite (finite) interval
that satisfies a PPTL formula will correspond to an infinite
(finite) path in NFG. Different from Buchi automata, NFG is
exactly the model of a PPTL formula. For any unsatisfiable
PPTL formula, NFG will be reduced to a false node at the
end of the construction. NFG consists of both finite and
infinite paths. But for concurrent stochastic systems, here we
only consider infinite cases. Therefore, we define NFG s
to denote an NFG only with infinite paths. To capture the
accurate semantics for PPTL formulas with infinite intervals,
we adopt Rabin acceptance condition as accepting states in
NFG . In addition, since Markov chain M is a determinis-
tic probabilistic model, in order to guarantee that the product
of M@NFG iy is also a Markov chain, we give an algorithm
for deterministic NF'G ¢, in the spirit of Safra’s construction
for deterministic Buchi-automata.

To make this idea clear, we now consider a simple example
shown in Figure 1. The definitions of NFGs and Markov
chains are formalized in the subsequent sections. Let p ; ¢
be a chop formula in PPTL, where p and ¢ are atomic
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(a) NFGmf of p;q.

(b) An Example of Markov chains.

Fig. 1. A Simple Example for Probabilistic Model Checking on PPTL.

propositions. NFG s of p ; ¢ is constructed in Figure 1(a),
where nodes vg, v; and v, are temporal formulas, and edges
are state formulas (without temporal operators). vy is an
initial node. vs is an acceptance node recurring for infinitely
many times, whereas vy appears finitely many times. Figure
1(b) presents a Markov chain with initial state s. Let path
path = (s, s1, s3). We can see that path satisfies p ; ¢ with
probability 0.6. Based on the product of Markov chain and
NFG ¢, we can compute the whole probability that the
Markov chain satisfies p ; q.

Compared with Buchi automata, NFGs have the following
advantages that are more suitable for verification for interval-
based temporal logics.

(i) NFGs are beneficial for unified verification approaches
based on the same formal notation. NFGs can not only be
regarded as models of specification language PTL, but also as
models of Modeling Simulation and Verification Language
(MSVL)[10], [11], which is an executable subset of PTL.
Thus, programs and their properties can be written in the
same language, which avoids the transformation between
different notations.

(i) NFGs can accept both finite words and infinite words.
But Buchi automata can only accept infinite words. Further,
temporal operators chop (p ; q), chop star (p*), and projec-
tion can be readily transformed to NFGs.

(iii) NFGs and PPTL formulas are semantically equivalent.
That is, every path in NFGs corresponds to a model of PPTL
formula. If some formula is false, then its NFG will be
a false node. Thus, satisfiability in PPTL formulas can be
reduced to NFGs construction. But for any LTL formula, the
satisfiability problem needs to check the emptiness problem
of Buchi automata.

The paper is organized as follows. Section 2 introduces
PPTL briefly. Section 3 presents the (discrete time) Markov
chains. In Section 4, the probabilistic model checking ap-
proach for PPTL is investigated. Finally, conclusions are
drawn in Section 5.

II. PROPOSITIONAL PROJECTION TEMPORAL LOGIC

The underlying logic we use is Propositional Projection
Temporal Logic (PPTL). It is a variation of Propositional
Interval Temporal Logic (PITL).

Definition 1: Let AP be a finite set of atomic proposi-
tions. PPTL formulas over AP can be defined as follows:

Q:::W|_‘Q|OQ|Q1/\Q2 ‘ (le»Qm)pT]Q|Q+
where 1 € AP, Q,Q1,...,Q, are PPTL formulas, ()
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(next), prj (projection) and + (plus) are basic temporal
operators.

A formula is called a state formula if it does not contain
any temporal operators, i.e., next (0), projection (prj ) and
chop-plus (7); otherwise it is a temporal formula.

An interval o = (sg, s1,...) is a non-empty sequence of
states, where s; (¢ > 0) is a state mapping from AP to
B = {true, false}. The length, |o|, of ¢ is w if & is infinite,
and the number of states minus 1 if o is finite. To have a
uniform notation for both finite and infinite intervals, we
will use extended integers as indices. That is, for set Ny
of non-negative integer and w, we define N,, = Ny U {w},
and extend the comparison operators: =, <, <, to N, by
considering w = w, and for all ¢« € Ny, < w. Moreover, we
define < as < —{(w,w)}.

To define the semantics of the projection construct we need
an auxiliary operator. Let o = (sq, s1, ...) be an interval and
r1,...,7, be integers (h > 1) such that 0 < r; < ... <
rp < |ol.

def
7rh) = <St175t2a"'a3t1>

ol (ry,...

The projection of o onto ry,...,r, is the interval
(called projected interval) where t;,...,¢; are obtained
from rq,...,r, by deleting all duplicates. In other words,
t1,...,t; is the longest strictly increasing subsequence of
r1,...,Tn. For example, (so,s1,82,53) J (0,2,2,2,3) =
(s0, S2,3). As depicted in Figure 2, the projected interval
(s0, 82, 83) can be obtained by using | operator to take the
endpoints of each process ¢,len(2),¢,¢,len(1).

the projected interval

Fig. 2. A projected interval.

An interpretation for a PPTL formula is a tuple Z =
(0,i,k,j), where o is an interval, ¢,k are integers, and j
an integer or w such that ¢ < k =< j. Intuitively, (0,1, k, j)
means that a formula is interpreted over a subinterval o(; . ;)
with the current state being si. The satisfaction relation
(E) between interpretation Z and formula @ is inductively
defined as follows.

1) T | 7 iff si[n] = true

) TE-Qiff TFQ

3) I':Ql/\QQ lffI':Ql andI|:Q2

4) TEOQiffk<jand (0,0, k+1,5) = Q

5 I E (Q1,...,Qm)prj Q iff there are k = ro <
r1 <...<r, = jsuchthat (o,i,79,71) F Q1 and
(o,r1-1,71—-1,7) E @ forall 1 < I < m and
(¢’,0,0,]0"|) E Q for o’ given by :

(@) rmy < jand o' =0 | (ro, ..

(

S Tm) O (rtL,eg)
b) r, = j and o' = o | (rg,...,rp) for some 0 <
h <m.
6) Z = Q7% iff there are finitely many 7o, ...,7, and

E=ro<r <...<rmp1=2rp=7(Mn>1)
such that (o,%,r9,7) = Q and (o,7_1,71-1,71) F
Q forall 1 <l <nor
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j = w and there are infinitely many integers k =
ro < r < rg < ...such that lim r;, = w and

1—00
(U,i,To,Tl) lZ Q and for [ > 1,(0,7‘171,7“1,1,7‘1) ':

Q.

A PPTL formula @) is satisfied by an interval o, denoted
by o E @, if (0,0,0,|0]) E Q. A formula Q is called
satisfiable, if 0 = Q. A formula @ is valid, denoted by
E Q, if o &= Q for all 0. Sometimes, we denote = p < ¢
(resp. = p — q) by p = ¢ (resp.—~ ) and |= O(p « q)
(resp. = O(p — q)) by p = ¢ (resp. p D q), The former
is called weak equivalence (resp. weak implication) and the
latter strong equivalence (resp. strong implication).

Figure 3 below shows us some useful formulas derived
from elementary PTL formulas. € represents the final state
and more specifies that the current state is a non-final state;
OP (namely sometimes P) means that P holds eventually
in the future including the current state; 0P (namely always
P) represents that P holds always in the future from now on;
(© P (weak next) tells us that either the current state is the
final one or P holds at the next state of the present interval;
Prj(Py,...,P,,) represents a sequential computation of
Py, ..., P, since the projected interval is a singleton; and
P ; Q (P chop Q) represents a computation of P followed
by @, and the intervals for P and () share a common state.
That is, P holds from now until some point in future and
from that time point ¢ holds. Note that P ; () is a strong
chop which always requires that P be true on some finite
subinterval. len(n) specifies the distance n from the current
state to the final state of an interval; skip means that the
length of the interval is one unit of time. fin(P) is true as
long as P is true at the final state while keep(P) is true if P
is true at every state but the final one. The formula halt(P)
holds if and only if formula P is true at the final state.

€ e QO true

len(n) def { ° ?f n=0
Olen(n—1) ifn>1

op L —o-p

skip def len(1)

Pri(Py,...,Pn) ¥ (P,...,Pyn)prjc

fin(P) ' ne - p)

P;Q = Pryj(P.Q)

keep(P) def O(-e — P)

more E

halt(P) g Pp)

OP def Prj(true, P)

OP ECHNPNV orP

Fig. 3. Derived PPTL formulas.

An Application of Projection Construct:

Example 1: We present a simple application of projection
construct about a pulse generator for variable  which can
assume two values: 0 (low) and 1 (high).

We first define two types of processes: The first one is
hold(7) which is executed over an interval of length i and
ensures that the value of x remains constant in all but the
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final state,
hold(7) et frame (i) A len(i)

The other is switch(j) which is ensures that the value of
x is first set to 0 and then changed at every subsequent state,

switch(j) o =on len(§) AO(more = Qz =1—1x)
Having defined hold(i) and switch(j), we can define the
pulse generators with varying numbers and length of low and
high intervals for z,

pulse(iy, ..., i) ef (hold(i1), ..., hold(ix)) prj switch(k)

Let @ be a PPTL formula and ), € AP be a set of atomic
propositions in ). Normal form of PPTL formulas can be
defined as follows.

Definition 2: A PPTL formula @ is in normal form if

no n
Q = (\/ er /\5) \ (\/ Qci /\Oin)
j=0 i=0
mo m
Where er = /\ QJanCZ = /\ Qih’ |Qp| = l9 1 S mO S l,
k=1 =1
1 <m <1 gk, qin € Qp, for any r € @, ¥ means r or —r;
Q¢; is a general PPTL formula. For convenience, we often
n
v Q; NOQ) instead

1=

ng
write Q. A€ instead of \/ Q.; Ac and
§=0

of \V Q¢; ANOQy,. Thus,
i=0

Q=(Qcre)Vv(\QinOQ)
i=0

where (). and (); are state formulas.
Theorem 1: For any PPTL formula (), there is a normal
form Q' such that Q = Q’. [12]

ITI. PROBABILISTIC SYSTEM

We model probabilistic system by (discrete-time) Markov
chains (DTMC). Without loss of generality, we assume that
a DTMC has a unique initial state.

Definition 3: A Markov chain is a tuple M =
(S, Prob, tinit, AP, L), where S is a countable, nonempty set
of states; Prob : S x S — [0,1] is the transition probability
function such that > Prob(s,s’) = 1; tinie : S — [0,1] is

s'esS
the initial distribution such that > ¢;n;:(s) =1, and AP is
seS
a set of atomic propositions and L : S — 247 a labeling

function.

As in the standard theory of Markov processes [8], we
need to formalize a probability space of M that can be
defined as ¢y, = (9, Cyl, Pr), where Q denotes the set
of all infinite sequences of states (sg,s1,...) such that
Prob(s;,si+1) > 0 for all i < 0, Cyl is a o-algebra
generated by the basic cylindric sets:

Cyl(so, - .., sn) = {path € Q | path = s, 81, -, Sn,.-.}
and Pr is a probability distribution defined by
PrM(Cyl(so,...,sn)) = Prob(so,...,sn)
= H Prob(s;, si+1)
0<i<n
IMECS 2011



If p is a path in DTMC M and @ a PPTL formula, we
often write p = @ to mean that a path in DTMC satisfies
the given formula Q. Let path(s) be a set of paths in DTMC
starting with state s. The probability for @) to hold in state
s is denoted by PrM(s = Q), where Pr¥(s = Q) =
Prit{p € path(s) | p E Q}.

IV. PROBABILISTIC MODEL CHECKING FOR PPTL

In [12], it is shown that any PPTL formulas can be rewrit-
ten into normal form, where a graphic description for normal
form called Normal Form Graph (NFG) is presented. NFG is
an important basis of decision procedure for satisfiability and
model checking for PPTL. In this paper, the work reported
depends on the NFG to investigate the probabilistic model
checking for PPTL.

Howeyver, there are some differences on NFG between our
work and the previous work in [10], [11], [12]. First, NFG
consists of finite paths and infinite paths. For concurrent
stochastic systems, we only consider to verify w-regular
properties. Thus, we are supposed to concern with all the
infinite paths of NFG. These infinite paths are denoted by
NF'G i,y Further, to define the nodes which recur for finitely
many times, [12] uses Labeled NFG (LNFG) to tag all the
nodes in finite cycles with F'. But it can not identify all the
possible acceptance cases. As the standard acceptance con-
ditions in w-automata, we adopt Rabin acceptance condition
to precisely define the infinite paths in NFG,r. In addition,
since Markov chain M is a deterministic probabilistic model,
in order to guarantee that the product of M ® NFG s is also
a Markov chain, the NF'G ;,,y needs to be deterministic. Thus,
following the Safra’s construction for deterministic automata,
we design an algorithm to obtain a deterministic NFG jf.

A. Normal Form Graph

In the following, we first give a general definition of NFG
for PPTL formulas.

Definition 4 (Normal Form Graph [10], [12]): For a
PPTL formula P, the set V(P) of nodes and the set of
E(P) of edges connecting nodes in V(P) are inductively
defined as follows.

1) PeV(P),

2) For all Q € V(P)/{e, false}, if Q = (Qc Ne) V

(V Q: AOQ)), then € € V(P), (Q,Q.,e) € E(P);

Q€ V(P), (Q,Q4,Q!) € E(P) forall i, 1 <i < n.
The NFG of PPTL formula P is the directed graph G =
(V(P), E(P)).

A finite path for formula ) in NFG is a sequence of nodes
and edges from the root to node €. while an infinite path is
an infinite sequence of nodes and edges originating from the
root.

Theorem 2 (Finiteness of NFG): For any PPTL formula
P, |V(P)] is finite [12].

Theorem 2 assures that the number of nodes in NFG is
finite. Thus, each satisfiable formula of PPTL is satisfiable
by a finite transition system (i.e., finite NFG). Further, by the
finite model property, the satisfiability of PPTL is decidable.
In [12], Duan etal have given a decision procedure for PPTL
formulas based on NFG.
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To verify w-regular properties, we need to consider the
infinite paths in NFG. By ignoring all the finite paths, we can
obtain a subgraph only with infinite paths, denoted NFG .

Definition 5: For a PPTL formula P, the set V;,,;(P) of
nodes and the set of E;,,;(P) of edges connecting nodes in
Ving (P) are inductively defined as follows.

1) P e Vi (P);
2) Forall Q € Ving(P),if Q = (Qene)V(V QinOQS),

then Q' € Vint (P), (Q,Qi, Q") € Einy(P) for all 4,
1 <1< n.

Thus, NFG,y; is a directed graph G’ =
(Ving (P), Eing(P)). Precisely, G’ is a subgraph of G
by deleting all the finite path from node P to node €.

In fact, a finite path in the NFG of a formula () cor-
responds to a model (i.e., interval) of (). However, the
result does not hold for the infinite case since not all of
the infinite paths in NFG can be the models of (). Note
that, in an infinite path, there must exist some nodes which
appear infinitely many times, but there may have other nodes
that can just recur for finitely many times. To capture the
precise semantics model of formula (), we make use of Rabin
acceptance condition as the constraints for nodes that must
recur finitely.

Definition 6: For a PPTL formula P, NFG, with
Rabin acceptance condition is defined as Ggrepin =
(Ving (P), Eing (P), vo, ), where V(P) is the set of nodes
and E(P) is the set of directed edges between V' (P), vy €
V(P) is the initial node, and Q = {(E1, F1),...,(Ex, Fx)}
with E;, F; € V(P) is Rabin acceptance condition. We say
that: an infinite path is a model of the formula P if there
exists an infinite run p on the path such that

AE,F)eQ(pnE=0)A(pNF #0)

Example 2: Let (Q be PPTL formulas. The normal form
of ©Q are as follows.

OQ = true; Q

(e v Otrue) ; Q

(€3 Q) V (Otrue ; Q)

Q VvV O(true;Q)

(QAe)V(QAOtrue) v O0Q

= (QAe)V(QAO(eV Otrue)) v OOQ

The NFG and NF'G;,; with Rabin acceptance condition
of ©Q are depicted in Figure 4. By the semantics of formula
<&@ (see Figure 3), that is, formula @ holds eventually in the
future including the current state, we can know that node <@
must cycle for finitely many times and node T' (i.e., true)
for infinitely many times.

B. The Algorithms

To investigate the probabilistic model checking problem
for interval-based temporal logics, we use Markov chain M
as stochastic models and PPTL as a specification language. In
the following, we present algorithms for the construction and
determinization of NF'G,s with Rabin acceptance condition
respectively.
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?é) where Q = {(¢Q.,T)}.
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(ili) NFGjns with Rabin acceptance condition of $@Q.

TABLE I
ALGORITHM FOR CONSTRUCTING NFG j;,y WITH RABIN CONDITION FOR A PPTL FORMULA.

Function NFG ;5 (Q)

/*precondition: Q is a PPTL formula, NF(Q) is the normal form for Q) */
*postcondition: NFG j,r(Q) outputs NFG s with Rabin condition of Q,
G Rabin = (‘/747Lf (Q)7 Eznf (Q)7 V0, Q) */

begin function

do P = NF(R);
switch(P)

visit(R) = 1;

h
case P = \/ P.j Ae: break;
j=1

k
case P=\/ P,AQP/or P=

i=1

then visit(P/) = 0;

break;
end while
return G rapin;
end function

Vinf (Q) = {Q}; Eing (Q) = 05 visit(Q) = 0;v0 = Q; E = F = (; /*initialization*/
while there exists R € Vjy,¢ (Q) and visit(R) == 0

h k
(V Pejne)Vv(V PiAOP)):
Jj=1 i=1
foreach i (1 <i < k) do

if —(P! = false) and P! & Vs (Q)

/*P; is not decomposed to normal form*/
k
Ving (Q) = Ving (Q) U _Ul{P{};
i=

k
Eznf(Q) = Einf (Q) U gl{(R’ Pi: PZI)}’
if ~(P/ = false) and P! € Vins (Q)

k
then E;,;(Q) = Eiy(Q)U U {(R, P;, P))};
i=1
when P/ = R do /*self-loop*/
if Ris Q1 ; Q2 then E = EU{R} else FF = F U{R}
for some node R” € Vs (Q);

k
let NF(R')=\ R; A\QR or
j=1

h k
NFER'")=(V Rej Ne)V(V Ri AOR);
j=1 i=1
/*nodes R and R’ form a loop*/
when P/ = R” (R” # R) do
if R,R" ¢ E then F = FU {{R, R"}}
else E=EU{{R,R"}};

Construction of NFG s : In Table I, we present algo-
rithm NFG ;s (Q) for constructing the NFG,,s with Ra-
bin acceptance condition for any PPTL formula. Algorithm
NF(Q) can be found in [12], which is used for the purpose
of transforming formula @) into its normal form. For any
formula R € Vi (Q) and visit(R) = 0, we assume that
P = NF(R) is in normal form, where visit(R) = 0 means
that formula R has not been decomposed into its normal
form. When P = \/'_; P, vV OF or P = (\/'_ Pej A
g)V (\/f:1 P, AQPF)), if P/ is a new formula (node), that

is, P! ¢ Viyy, then by Definition 5, we add the new node
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P! to Vi, and edge (R, P;, P]) to E;s respectively. On
the other hand, if P/ € Vs, then it will be a loop. In
particular, we need to consider the case of R = Q1 ; Q-.
Because Q1 ; Q2 (Q1 chop @2, defined in Fig.3) represents
a computation of ); followed by )2, and the intervals for
Q1 and ) share a common state. That is, (J; holds from
now until some point in future and from that time point Qo
holds. Note that )1 ; Q)2 used here is a strong chop which
always requires that (); be true on some finite subinterval.
Therefore, infinite models of ()1 can cause R to be false. To
solve the problem, we employ Rabin acceptance condition to
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constraint that chop formula will not be repeated infinitely
many times.

By Theorem 2, we know that nodes V(Q) is finite in
NFG. Since Vi 7 (Q) C V(Q), so Vins(Q) is finite as well.
This is essential since it can guarantee that the algorithm
NFG s (Q) will terminate.

Theorem 3: Algorithm NFG;(Q) always terminates.

Proof: Let Vi, (Q) = {v1,...,v,}. When all nodes in Vs
are transformed into normal form, we have visit(v;) ==
1 (1 <i < n). Hence, the while loop always terminates.

We denote the set of infinite paths in an NFG;,y G by
path(G) = {p1,...,pm}, where p; (1 < i < m) is an
infinite path from the initial node to some acceptable node
in F'. The following theorem holds.

Theorem 4: G Rrapin and G, are equivalent if and only
if path(G Rrabin) = path(Gﬁ%abm).

Let @@ be a satisfiable PPTL formula. By unfolding
the normal form of (), there is a sequence of formulas
(Q,Q1,Q1,Q2,Q5, . ..). Further, by algorithm NFG s, we
can obtain an equivalent NFG ;s to the normal form. In fact,
an infinite path in NFG s of @ corresponds to a model of
(. We conclude this fact in Theorem 5.

Theorem 5: A formula () can be satisfied by infinite
models if and only if there exists infinite paths in NF'G ¢
of ) with Rabin acceptance condition.

Determinization of NFG ;n¢: Buchi automata and NFG ;¢
both accept w-words. The former is a basis for the automata-
theoretic approach for model checking with liner-time tem-
poral logic, whereas the latter is the basis for the satisfia-
bility and model checking of PPTL formulas. Following the
thought of the Safra’s construction for deterministic Buchi
automata [15], we can obtain a deterministic NF'G ¢ with
Rabin acceptance condition from the non-deterministic ones.
However, different from the states in Buchi automata, each
node in NFGy; is specified by a formula in PPTL. Thus,
by eliminating the nodes that contain equivalent formulas,
we can decrease the number of states in the resulting
deterministic NFG s to some degree.

The construction for deterministic NFG s is shown in
Table II. For any R € V/ ((Q), R is a Safra tree consisting
of a set of nodes, and each node v is a set of formulas.
By Safra’s algorithm [15], we can compute all reachable
Safra tree R’ that can be reached from R on input P;. To
obtain a deterministic NFG s, we take all pairs (E,, F},) as
acceptance component, where F, consists of all Safra trees
without a node v, and F), all Safra trees with node v marked
’I” that denotes v will recur infinitely often. Furthermore, we
can minimize the number of states in the resulting NFG ;s
by finding equivalent nodes. Let R = {vg,...,v,} and
R’ = {vj,...,v,} be two Safra’s trees, where R, R’ € V.,
nodes v; = {Q1,Q2,...} and v, = {Q},Q%,...} be a set
of formulas. For any nodes v; and vg, if we have v; = UZ’.,
then the two Safra’s trees are the same. Moreover, we have

v; = v; if and only if \V/_, Q; = \V/_, Q.

C. Product Markov Chains

Definition 7: Let M = (S, Prob, tinit, AP,L) be a
Markov chain M, and for PPTL formula @, Ggrapin =
(Ving (Q), Eing (Q), vo, ) be a deterministic NFG ;,,¢, where
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TABLE II
ALGORITHM FOR DETERMINISTIC NFG j,f .

Function DNFG(Q)
[*precondition: GRabin = (Vinf (Q)v Einf (Q)v V0, Q) is an NFGmf
for PPTL formula Q. */
/*postcondition: DNFG(Q) outputs a deterministic NF'G ;,; and
GlRabin = (Vilnf (@), Egnf (@), v(l)y Q/) */
begin function
[*initialization*/
V,L-/,,Lf(Q) = {Q},E:”f(Q) = QQU(/) =wvo; By = Fy = ®§

while R € Vl’nf(Q) and there exists an input P; do
foreach node v € R such that RN F #
dov' =vNF; R =RU{v};
foreach node v in R’
do v = {P{ € Vznf(Q) | El(PvPiaPil) € Einf(Q)7P € ’l)};
/*update R'*/
foreach v € R’ do if P; € v such that P; € left sibling of v
then remove P; in v;
foreach v € R’ do if v = () then remove v;
foreach v € R’ do if uq,...,u, are all sons of v
such that v = U;{u;} then remove u;; mark v with !;
Ving (@) ={R'}U V] (Q); B ;(Q) = (R, Pi, ") U E; (Q);
end while

/*Rabin acceptance components*/
Ey, ={R € V,,,(Q) | R is Safra tree without node v};
Fy ={R €V, ,(Q) | R is Safra tree with v marked !};
return G;%a,bi,n;

end function

Q= {(El, Fl), ceey (Ek,Fk)}. The pI'OdllCt M ® G Rapin 1S
the Markov chain, which is defined as follows.

M @ GRrapin = (S X Ving (Q), Prob’, tint, {acc}, L)

where
{acc}  if for some F}, Q" € F;,
' ny and Q' ¢ E; for all Ej,
0 otherwise

Lingt

Gats. @) ={
and transition probabilities are given by

PT’Ob/(<S/, Q/>7 <S”, Q//>)
Prob(s',s") if (Q',L(s"),Q") € Eins
0 otherwise

if (Qa L(S)7 QI) € Einf
otherwise

A bottom strongly connected components (BSCCs) in M ®
G Rapin 18 accepting if it fulfills the acceptance condition (2
in GRabin-

For some state s € M, we need to compute the probability
for the set of paths starting from s in M for which @ holds,
that is, the value of PrM (s |= Q). From Definition 7, it can
be reduced to computing the probability of accepting runs in
the product Markov chain M ® G grapin.-

Theorem 6: Let M be a finite Markov chain, s a state in
M, GRapin a deterministic NFG ;s for formula @, and let
U denote all the accepting BSCCs in M ® G gapin- Then, we
have

PTM(S = GRrabin) = PTM®GRabm(<S,Q/> = oU)
where (Q’ L(S)7 Q/> S Eznf

IMECS 2011



Corollary 7: All the w-regular properties specified by
PPTL are measurable.

Example 3: We now consider the example in Figure 1.
Let M denote Markov chain in Figure 1(b). The probability
that sequential property p ; q holds in Markov chain M can
be computed as follows.

First, by the two algorithms above, deterministic NFG s
with Rabin condition for p ; ¢ is constructed as in Figure
1(a), where the Rabin acceptance condition is Q = (vy,v).
Further, the product of the Markov chain and NFG, for
formula p ; ¢ is given in Figure 5.

(s3,v1)

(s3,v2)

Fig. 5.

The Product of Markov chain and NFG,; in Figure 1.

From Figure 5, we can see that state (s3, v2) is the unique
accepting BSCC. Therefore, we have

PrM(S ': GRabin)
_ Prkl@Gmbm((&Ul) E O(s3,v2))
= 1

That is, sequential property p ; ¢ is satisfied almost surely
by the Markov chain M in Figure 1(b).

V. CONCLUSIONS

This paper presents an approach for probabilistic model
checking based on PPTL. Both propositional LTL and PPTL
can specify linear-time properties. However, unlike proba-
bilistic model checking on propositional LTL, our approach
uses NFGs, not Buchi automata, to characterize models of
logic formulas. NFGs possess some merits that are more
suitable to be employed in model checking for interval-based
temporal logics.

Recently, some promising formal verification techniques
based on NFGs have been developed, such as [13], [14]. In
the near future, we will extend the existing model checker
for PPTL with probability, and according to the algorithms
proposed in this paper, to verify the regular safety properties
in probabilistic systems.
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