
A Novel Technique for Making QEMU an
Instruction Set Simulator for Co-simulation with

SystemC
Tse-Chen Yeh, Zin-Yuan Lin, and Ming-Chao Chiang

Abstract—This paper presents a novel technique for con-
verting QEMU from a virtual machine into an instruction-
accurate instruction set simulator (IA-ISS) and using it as
the processor model of a QEMU and SystemC-based virtual
platform. The proposed framework can not only simulate
arbitrary hardware modeled in SystemC, but it can also be
used to evaluate the performance of the target system for SoC
development. Our experimental results show that the built-in
vector interrupt controller of QEMU modeled in C can be
easily replaced by one modeled in SystemC for demonstrating
the waveform of AMBA on-chip-bus model connected with the
adapted IA-ISS. Moreover, the instruction-accurate statistics
can be gathered while co-simulating with a full-fledged Linux
kernel. Our experimental results further show that with every
instruction executed and every memory accessed since power
on traced, the hardware/software co-simulation takes no more
than 16 minutes in booting up the Linux kernel, even in the
worst case.

Index Terms—QEMU, SystemC, ISS, platform-based design,
SoC.

I. INTRODUCTION

DUE to the system complexity, the cost consideration,
and the time-to-market pressure, most of the system-

on-chip (SoC) designs tend to adopt the platform-based
methodologies for enabling the system software development
and the system performance evaluation at the early stage of
electronic system level (ESL) design flow [1]. Proposed in
2007, the focus of the QEMU-SystemC framework was on
system software and device driver development [2]. Although
it is suitable for developing hardware accelerators, it is
insufficient for evaluating the system performance because no
information about the processor is provided. Several works
on enhancing the QEMU-SystemC wrapper are proposed,
such as TLM interface appended [3] and the combination
with CoWare’s Platform Architect [4], [5], [6]; however, none
of them are capable of evaluating the performance of a target
system from the system perspective. As a result, system
designers have no idea about the number of instructions
and the number of load/store operations executed when
running an operating system (OS) on the target system that
is currently under development.

Instead of looking for an applicable instruction set simula-
tor (ISS) to build a virtual platform from scratch, we decide
to go the other way around by converting QEMU as a virtual

Manuscript received December 8, 2010; revised January 8, 2011. This
work was supported in part by the National Science Council, Taiwan, ROC,
under Contracts NSC98-2221-E-110-049 and NSC99-2221-E-110-052.

The authors are with the Department of Computer Science and Engi-
neering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC.
(e-mail: sdgp03@ms18.hinet.net, m983040031@student.nsysu.edu.tw, mc-
chiang@cse.nsysu.edu.tw).

machine to an instruction-accurate ISS (IA-ISS) that can be
used as a processor model of existing virtual platforms. The
I/O interface exported by QEMU-SystemC works seamlessly
with the ISS we describe herein. The consequence is that the
virtual platform constructed in this way is more suitable for
performance evaluation and design space exploration than
QEMU-SystemC, especially from the system perspective.

II. RELATED WORK

In this section, we begin with a brief introduction to
SystemC and QEMU. Then, we turn to the QEMU-SystemC
framework and its variants for the SoC development. Finally,
we briefly discuss the pros and cons of the dynamic binary
translation (DBT) technique used by QEMU, which eventu-
ally make the conversion of QEMU from a system emulator
to an ISS much more difficult than anticipated.

A. SystemC

SystemC is an ANSI standard C++ class library developed
by Open SystemC Initiative (OSCI) [7] in 1999 and approved
as IEEE standard in 2005 [8]. Although relatively new,
SystemC has become one of the most popular modeling
languages in the ESL design flow [9]. Because SystemC can
simulate concurrency, events, and signals of a hardware, the
abstraction of the hardware model can be achieved up to the
transaction level without the need of considering the signal
level details, thus making it a perfect foundation for a virtual
platform.

B. QEMU

QEMU is an open source system emulator [10] capable of
emulating several target CPUs on several hosts. Moreover,
quite a few OSs have been ported to the virtual platforms
supported by QEMU. The functional diagram of the virtual
platforms supported by QEMU is as shown in Fig. 1. Basi-
cally, all the virtual platforms are composed of the processor
model, software MMU, internal memory model, memory-
mapped I/O models, and interrupt cascading. The software
MMU is used to translate the virtual address of the target
processor into individual memory-mapped address of internal
memory and I/O models. The interrupt cascading is used to
chain the interrupt lines from the downstream components
to the upstream components.

C. QEMU-SystemC

QEMU-SystemC [2] is an open source software/hardware
emulation framework for the SoC development. It allows

memory

memory-mapped
I/O #1

memory-mapped
I/O #K

interrupt
cascading

model
processor

...

software
MMU

QEMU virtual machine

Fig. 1. Functional diagram of the virtual platforms supported by QEMU
[10].

hardware models to be inserted into specific memory-mapped
addresses of QEMU and communicates by means of the
“memory-mapped external I/O interface” as shown in Fig. 2.
Although the QEMU-SystemC framework can be used to
trace the access of attached hardware models, no information
about the processor is available for the virtual platform. For
instance, the instructions executed, the memory accessed, and
so on, which can be valuable to the system designers, are
unfortunately not provided.

D. QEMU-SystemC with CoWare

Another framework [4], [5], [6] combines the enhanced
QEMU-SystemC wrapper with CoWare’s Platform Architect
[11]. The QEMU-SystemC wrapper communicates with the
CoWare-SystemC wrapper by using the inter-process com-
munication (IPC) socket interface. This framework utilizes
the bus models provided by off-the-shelf Model Library [12],
which supports lots of capabilities for profiling and analysis.
However, no details whatsoever about the CoWare-SystemC
wrapper they proposed, including the capability to estimate
the performance of the processor model, are provided.

E. Dynamic Binary Translation Used by QEMU

As shown in Fig. 3, the DBT used by QEMU for trans-
lating the target code to the host code is basically composed
of two steps [10]. The details are as given below.

1) The first step, which is composed of three sub-steps,
is to generate the dynamic code generator (DCG) off-
line, as follows:

a) The first sub-step is to split each of the target
instructions into a sequence of micro-operations.
Each micro-operation is then hand-coded as a
tiny function (TF) in C.

b) The second sub-step is to have the set of TFs
compiled by gcc [13] into the host code in an
object file in the host object file format such as
ELF on Linux.

c) The third sub-step is to launch tiny code gener-
ator (TCG)—which takes as input the object file
containing all the micro-operations—to generate
the dynamic code generator (DCG).

memory

memory-mapped
I/O #1

memory-mapped
external I/O

memory-mapped
I/O #K

interrupt
cascading

interrupt
propagation

physical
address

bus functional
model (BFM)

model
processor

...

...

QEMU virtual machine
in SystemC

software
MMU

Memory-mapped I/O interface

port
data bus

mechanism
interrupt

model
hardware

Fig. 2. Functional diagram of QEMU-SystemC [2]. The memory-mapped
external I/O interface corresponds to the AMBA interface in the original
paper from the implementation perspective.

2) The second step, which consists of two sub-steps, is to
translate the target code to the host code at run-time,
as follows:

a) The first sub-step is to translate each of the target
instructions into a sequence of indices each of
which uniquely identifies a TF.

b) The second sub-step is for the DCG to copy the
host code corresponding to each TF the index of
which is given in the first sub-step to translation
block (TB), in the order as given in the first sub-
step and with constant parameters patched.

In short, the DBT used by QEMU can be divided into two
steps the first of which is the preparation step while the
second of which is the translation step. The first step is
responsible for generating the DCG off-line. The second
step is responsible for actually translating each of the target
instructions into the host code—by first translating the target
instructions into a sequence of indices to TFs and then from
the sequence of indices into the host code. Then, the host
code in the translation block cache (TBC) can be executed
directly.

III. THE PROPOSED METHOD

In this section, we will first present the technique for
converting QEMU from a virtual machine into an IA-ISS,
followed by the technique to make such an IA-ISS a proces-
sor model of a virtual platform. Then, we will discuss how
QEMU and SystemC are integrated.

A. From Virtual Machine to IA-ISS

To convert QEMU from a virtual machine to an IA-ISS, we
have to make use of the so-called helper functions provided
by TCG instead of the hand-coded tiny functions mentioned
in Section II-E. The purpose of the helper functions of TCG
is to wrap up whatever functions to be called such as the
library functions provided by QEMU to ensure that they
comply with the coding rules imposed by the TCG of QEMU
version 0.10.x or later.

Instead of giving the low-level details, we will focus on
the high-level view of what has to be done. To simplify our

Object file
in

host object file
format

Dynamic
Code

Generator
(DCG)

Target Host

gcc TCG

ICG DCGA sequence of

(1) (2) (3)

(4) (5)

Run-time

Compile-time

code code

Target
ISA

manually
Micro-operations

hand-coded as
Tiny Functions

(TFs) in C

indices

Fig. 3. Steps taken by QEMU to dynamically translate the target code to the host code. The first three steps are done at compile-time while the last two
steps are invoked at run-time.

discussion that follows, let us assume that f is the name of
the helper function to be defined, tr the type of the return
value, and ti the type of parameter i.

1) For each helper function f to be defined, the first thing
to do is to use the macro
DEF_HELPER_n(f, tr, t1, . . . , tn)1

to generate three pieces of code: (1) the prototype of
the helper function helper_f , (2) the ‘op’ helper func-
tion gen_helper_f to be called by DBT to generate
the host code to call the helper function, and (3) the
code to register the helper function at run-time for the
purpose of debugging. For instance, the macro
1 DEF_HELPER_2(fetch_insn, void, i32, i32)

will generate the following code.
1 void helper_fetch_insn(uint32_t, uint32_t);
2
3 static inline void
4 gen_helper_fetch_insn(TCGv_i32 arg1, TCGv_i32 arg2)
5 {
6 TCGArg args[2];
7 int sizemask;
8 sizemask = 0;
9 args[1 - 1] = GET_TCGV_I32(arg1);

10 sizemask |= 0 << 1;
11 args[2 - 1] = GET_TCGV_I32(arg2);
12 sizemask |= 0 << 2;
13 tcg_gen_helperN(helper_fetch_insn, 0, sizemask,

TCG_CALL_DUMMY_ARG, 2, args);
14 }
15
16 tcg_register_helper(helper_fetch_insn, "fetch_insn");

The prototype of the helper function is given in line 1.
The ‘op’ helper function is defined in lines 3–14. The
code to register the helper function for the purpose of
debugging is invoked in line 16.

2) The second thing is to define the helper function
helper_f declared above—by wrapping up whatever
to be executed inside the helper function. The helper
function will get called by the host code generated by
the ‘op’ helper function defined above and executed
together with the host code of each target instruction,
as shown in Fig. 6.

3) The third thing is to use the tcg_const_i32 function
or its variants to save values that vary from instruction
to instruction at the time of DBT away so that they
can be restored later on at run-time. Good examples
are instructions executed and their operands.

1where n >= 0 is the number of input parameters, with n = 0 indicating
that there is no input parameter.

Once we have all the helper functions and the ‘op’ helper
functions for extracting the information SystemC needs de-
fined, all we have to do is to find the right place to insert
each ‘op’ helper function so that it will get called at the
time of DBT to generate the host code to call the helper
function associated with it. As such, the helper functions
will be executed along with the target instructions. Since the
key information an IA-ISS needs to provide consists of the
address and data of target instructions fetched and memory
accessed, we will discuss in detail how they are extracted
below.

1) Target instruction fetch stage: All we have to do here
is to insert an ‘op’ helper function—the parameters of
which are the address of the target instruction and the
target instruction itself—right after the place where the
target instruction is being fetched for DBT. The ‘op’
helper function so inserted will get called at the time
of DBT to generate the host code—and place it right
before each target instruction—to call the associated
helper function and pass it the parameters above so
that the helper function can send the address of the
target instruction and the target instruction itself to
SystemC, as shown in Fig. 6 (cf. Fig. 5). Note that
the notations used in Figs. 5 and 6 are summarized in
Table I. This stage can be imagined as an “Instruction
Fetch eXtractoR” (IFXR) that can assist in extracting
the information hidden in the processor model shown
in Fig. 4.

2) Memory access stage: All we have to do here is to
define two helper functions: one to extract the address
and one to extract the data. For memory load, the ‘op’
helper functions for extracting the address and data
will be inserted, respectively, right before and right
after the memory load function. For memory store, the
‘op’ helper functions for extracting the address and
data will be inserted right before the memory store
function. After that, the ‘op’ helper functions will be
called by the DBT to generate the host code to call the
corresponding helper functions, and the results are as
shown in Fig. 6(b) and (c). This stage can be viewed
as a “Memory Access eXtractoR” (MAXR) that can
assist in extracting the access transactions between
the software MMU and the internal memory-mapped
models shown in Fig. 4.

Since the sole purpose of the helper functions is to extract
the address and data of the target instructions executed by

instruction
bus port

virtual
address

software
MMU

memory access
extractor

memory

memory-mapped
I/O #1

memory-mapped
external I/O

memory-mapped
I/O #K

interrupt
cascading

interrupt
propagation

physical
address

model
processor instruction

fetch extractor

...

...

ISS wrapper

QEMU virtual machine ISS wrapper & infrastructure
in SystemC

mechanism
interrupt

model
hardware

bus functional
model (BFM)port

data bus

Fig. 4. Functional diagram of an IA-ISS based on QEMU.

TABLE I
NOTATIONS USED IN FIGS. 5 AND 6

TB Translation block.
TI Target instruction.
TF Tiny function.
IXC Information extraction code.
TB′ TB with IXC.
IXCml

a Memory load address IXC.
IXCml

d Memory load data IXC.
TFml TF for memory load, i.e., with IXCml

a and IXCml
d .

IXCms Memory store IXC.
TFms TF for memory store, i.e., with IXCms.
TBC TB cache, which is composed of one or more TBs, chained

together.

QEMU instead of modifying their values, the behavior of
executing the target instructions is guaranteed to be the same
as if the helper functions were not there, except that it takes
longer to execute now because it consists of not only the
“original” host code but also the host code for extracting
the information SystemC needs. Moreover, the transactions
extracted by IFXR can be imagined as the transactions on
the instruction bus while the transactions extracted by MAXR
can be viewed as the transactions on the data bus.

B. Infrastructures for Virtual Platform Construction

To fulfill the requirements of being a system emulator,
QEMU provides an I/O interface for porting the target
processor into different virtual platforms. Although undoc-
umented, most of the existing virtual platforms have been
modeled and constructed based on this I/O interface, which
can be divided into two categories: PCI and memory-mapped
I/O. They are suitable for different target processors. For
QEMU-SystemC [2] and the framework we presented herein,
the I/O communications between hardware models of QEMU
and hardware models in SystemC are implemented based on
this I/O interface.

The built-in interrupt mechanism of QEMU requires
that each interrupt handler be registered by calling the
qemu_allocate_irqs() function, the return value of which
is a pointer used by the downstream peripherals to find
their upstream components when they need to announce an
interrupt. The registered interrupt handler is usually used

TBTBTB · · ·

TITITI · · ·

TFTFTF · · ·

Fig. 5. TBC before insertion of IXC (cf. Fig. 6). Note that the lower
layer is an enlargement of its immediate upper layer. In other words, the
upper layer is composed of an unknown number of the lower layer chained
together. In short, TBC is composed of an unknown number of TFs.

· · · TIIXCTIIXCTIIXC

IXC TFTFTF · · ·

TB′TB′TB′ · · ·

(a)

· · · TIIXCTIIXCTIIXC

TB′TB′TB′ · · ·

TF IXCml
d

IXC TF TFml· · · TF· · ·

IXCml
a

(b)

· · · TIIXCTIIXCTIIXC

TB′TB′TB′ · · ·

TF

IXC TF TFms· · · TF· · ·

IXCms

(c)
Fig. 6. TBC after insertion of IXC (cf. Fig. 5). Note that the lower
layer is an enlargement of its immediate upper layer. (a) Non-load and
non-store instructions, (b) Memory load instructions, and (c) Memory store
instructions.

to receive the interrupt from the downstream components.
After the input interrupt signals are processed, the results
can be sent to the upstream components by using the
function qemu_set_irq(). All the virtual hardware devices
in QEMU use this mechanism to cascade all the interrupt
controllers together to form an interrupt hierarchy. In order
to maintain the built-in interrupt hierarchy after models of
QEMU are replaced by models written in SystemC, all we
need to modify is the virtual hardware initialization and the
interrupt handler provided for the downstream peripherals.
The overall functional block of the virtual platform with
the adapted IA-ISS is as shown in Fig. 4. The interrupt
propagation is a little different from the one QEMU-SystemC
provides because the hardware model used in our experi-
ments requires both the sending and receiving directions to
be supported.

C. Integration of QEMU and SystemC

We implement QEMU and SystemC as two threads since
context switches between threads are generally much faster
than between processes. Moreover, the shared memory mech-
anism is adopted and used as a FIFO between QEMU and
SystemC as shown in Fig. 7. In other words, by design, the

QEMU SystemC

Thread Thread

· · ·

Process

Shared memory

Fig. 7. Inter-process communication (IPC) mechanism used by the
framework we presented in the paper.

communication between QEMU and SystemC is unidirec-
tional so that the relative order of the instructions executed,
the memory accessed, and the I/O write operations performed
is retained. Besides, the synchronization of the I/O read
operations can be achieved by having QEMU call the I/O
read function and then block until SystemC returns.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the virtual platform with
the proposed IA-ISS as the processor model in terms of three
different measures: (1) co-simulation time it takes to boot
up a Linux kernel, (2) statistics that can be collected while
the system is up and running, and (3) waveform that can
help system designers debug activities between the processor
and all the hardware models. For all the experimental results
given in this section, a 2.00 GHz Intel Core 2 Duo T7200
processor machine with 1.5GB of memory is used as the host,
and the target OS is built using the BuildRoot package [14].
The Linux distribution is Fedora 11, and the kernel is Linux
version 2.6.29.4-167. QEMU version 0.10.5 and SystemC
version 2.2.0 are all compiled by gcc version 4.4.0.

A. Virtual Platform for Co-Simulation

In order to verify the system functionality, the proposed
virtual platform is demonstrated by replacing the PrimeCell
PL190 vector interrupt controller (VIC) [15] of the virtual
platform provided by QEMU with a PL190 VIC written in
SystemC, as shown in Fig. 8. The interrupt hierarchy of the
Versatile/PB926EJ-S development board [16] is composed of
the PL190 VIC, the secondary interrupt controller (SIC), the
PrimeCell PL011 UART controller, and the PL050 keyboard
mouse interface (KMI) controller. Since PL190 VIC is the
one directly interacted with ARM926EJ-S, the correctness of
its implementation in SystemC can be easily verified. In other
words, any bugs found in PL190 VIC written in SystemC will
eventually crash the OS in question sooner or later. Thereby,
a few runs of ARM Linux on the virtual Versatile/PB926EJ-
S platform of QEMU will essentially give us a hint regarding
the correctness of the PL190 VIC in SystemC.

B. Co-Simulation Time and Statistics

In order to gather the statistics, the initial shell script was
modified to reboot the kernel automatically as soon as the
booting sequence is completed. The pre-defined no-reboot
option of QEMU will catch the reboot signal once the OS
executes the reboot command and then shuts the QEMU
down. Thus, the test bench can easily estimate the co-
simulation time of QEMU and SystemC at the OS level.

The co-simulation times shown in the column labeled “Co-
simulation time” of Table II are collected using the Linux’s

SIC

PL011
(UART)

PL050
(KMI0,
KMI1)

...

...

ARM926
IRQ
FIQ

...

PL190
(VIC)

in
SystemC

Virtual Versatile/PB926EJ-S Platform
on QEMU

Hardware models
in SystemC

Fig. 8. Block diagram of virtual Versatile/PB926EJ-S platform on QEMU
with the PL190 VIC model (in C) replaced by a hardware model written in
SystemC.

time command. From the perspective of the hardware de-
signer, it is probably much faster than just acceptable to co-
simulate a full-fledged operating system in less than 15 min-
utes on average and less than 16 minutes in the worst case,
especially in the early stage of SoC development. Moreover,
the notations used in Table II are listed in Table III.

As shown in Table II, the column labeled “NTI” shows
the number of target instructions actually executed by the
virtual ARM processor. The columns labeled “NLD” and
“NST” present, respectively, the number of load and store
operations of the virtual processor including the memory-
mapped I/O.

The column labeled “NTI+LD+ST” gives the total number
of target instructions executed and load and store operations
performed because the number of the read/write operations
of the VIC (PL190 in this case) have been counted as the
load and store operations of the virtual processor. That is,
NTI+LD+ST = NTI +NLD +NST. The columns labeled “NRD”
and “NWT” give an idea about the number of read/write
transactions between the virtual processor and the VIC. They
are given to show that the proposed virtual platform can
provide information as detail as the number of the read/write
operations of the VIC. Note that all the numbers given are, as
the names of the rows suggest, the min, max, and average of
booting up the ARM Linux and shutting it down immediately
on the proposed framework for 30 times.

The percentages given in parentheses are computed as

Nα
NTI+LD+ST

× 100%

where the subscript α is either TI, LD, ST, TI + LD + ST,
RD, or WT. The others are computed similarly. They are
shown to give an idea about how many percent of all the
target instructions executed and all the load/store operations
performed are target instructions, how many of them are load
and store operations, and so on.

C. Waveform of AMBA On-Chip Bus

The primary differences between QEMU-SystemC and
the framework we described herein are as shown by the
waveforms of the address and data signals by using exactly

TABLE II
EXPERIMENTAL RESULTS OF BOOTING UP THE LINUX KERNEL ON THE PROPOSED VIRTUAL PLATFORM FOR 30 TIMES.

Statistics Co-simulation time NTI NLD NST NTI+LD+ST NRD NWT

min 14m01.994s 658,473,617.00 231,778,725.00 78,616,811.00 968,869,153.00 132,556.00 198,556.00
(67.96%) (23.92%) (8.11%) (100.00%) (0.01%) (0.02%)

max 15m37.327s 701,925,646.00 244,722,965.00 86,537,514.00 1,033,186,125.00 150,312.00 225,370.00
(67.94%) (23.69%) (8.38%) (100.00%) (0.01%) (0.02%)

µ 14m49.317s 672,447,292.77 236,356,464.13 81,375,519.70 990,179,276.60 141,016.27 211,326.10
(67.91%) (23.87%) (8.22%) (100.00%) (0.01%) (0.02%)

σ 00m22.461s 13,997,515.54 3,911,802.32 2,405,392.30 20,314,710.16 4,264.56 6,421.29

TABLE III
NOTATIONS USED IN TABLE II

min The best-case co-simulation time of 30 runs.
max The worst-case co-simulation time of 30 runs.
µ The mean of co-simulation time of 30 runs.
σ The standard deviation of co-simulation time of 30 runs.
NTI The number of target instructions simulated.
NLD The number of load operations of the virtual processor.
NST The number of store operations of the virtual processor.
NRD The number of times the virtual processor reads data from the VIC

(PL190).
NWT The number of times the virtual processor writes data to the VIC

(PL190).

(a)

(b)
Fig. 9. Snapshot of the waveform of AMBA on-chip bus. (a) Snapshot of
QEMU-SystemC. (b) Snapshot of the proposed framework.

the same AMBA bus protocol. QEMU-SystemC can only
provide the signal transitions of I/O in Fig. 9(a) whereas the
framework we described herein can simulate not only the
signal transitions of I/O but also all the instructions executed
and all the memory accessed since power on as shown in
Fig. 9(b). Moreover, the HADDR, HRDATA, and HWDATA
reveal that the operations alternate between the interconnect,
processor, and virtual hardware modeled in SystemC. The
addresses in the range of 0x1014 0000 to 0x1014 0400 are
accessed to the memory-mapped I/O of PL190 VIC modeled
in SystemC. Note that the waveforms given in Fig. 9 is shown
by another open source tool called GTKWave [17], which
reads standard Verilog VCD/EVCD files and allows their
contents to be viewed.

V. CONCLUSION

This paper presents a novel technique for converting
QEMU from a virtual machine into an IA-ISS for a QEMU
and SystemC-based virtual platform that overcomes the

limitations of QEMU-SystemC. Not only can the proposed
virtual platform be used to evaluate the performance of a
target system, but it can also be used for design space
exploration at the instruction level. The waveform output
reveals the potential for modeling the bus functional model
on the proposed virtual platform. Moreover, our experimental
results show that even in the worst case, the proposed virtual
platform takes no more than 16 minutes to boot up a full-
fledged Linux kernel, indicating that the proposed virtual
platform provides a fast solution for the hardware designer,
especially in the early stage of the SoC development.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions on the paper.

REFERENCES

[1] B. Bailey, G. Martin, and A. Piziali, ESL Design and Verification.
Morgan Kaufmann Publishers, 2007.

[2] M. Montón, A. Portero, M. Moreno, B. Martı́nez, and J. Carrabina,
“Mixed SW/SystemC SoC emulation framework,” in Proceedings of
IEEE International Symposium on Industrial Electronics, Jun. 2007,
pp. 2338–2341.

[3] M. Montón, J. Carrabina, and M. Burton, “Mixed simulation kernels
for high performance virtual platforms,” in Proceedings of Forum on
Specification and Design Languages, Sep. 2009, pp. 1–6.

[4] C.-C. Wang, R.-P. Wong, J.-W. Lin, and C.-H. Chen, “System-level
development and verification framework for high-performance system
accelerator,” in Proceedings of International Symposium on VLSI
Design, Automation and Test, Apr. 2009, pp. 359–362.

[5] J.-W. Lin, C.-C. Wang, C.-Y. Chang, C.-H. Chen, K.-J. Lee, Y.-H. Chu,
J.-C. Yeh, and Y.-C. Hsiao, “Full system simulation and verification
framework,” in Proceedings of Fifth International Conference on
Information Assurance and Security, Aug. 2009, pp. 165–168.

[6] S.-T. Shen, S.-Y. Lee, and C.-H. Chen, “Full system simulation with
qemu: An approach to multi-view 3d gpu design,” in Proceedings of
2010 IEEE International Symposium on Circuits and Systems, May
2010, pp. 3877–3880.

[7] OSCI. Open SystemC Initiative. http://www.systemc.org/.
[8] IEEE Computer Society. (2005) IEEE standard SystemC language

reference manual. Design Automation Standards Committee. http:
//standards.ieee.org/getieee/1666/download/1666-2005.pdf.

[9] M. Creamer. Nine reasons to adopt SystemC ESL design. http://www.
eetimes.com/showArticle.jhtml?articleID=47212187.

[10] F. Bellard, “QEMU, a fast and portable dynamic translator,” in
Proceedings of USENIX Annual Technical Conference, Jun. 2005, pp.
41–46.

[11] Synopsys Inc. Platform architect. http://www.synopsys.com/Tools/
SLD/VirtualPrototyping/Pages/PlatformArch%itect.aspx.

[12] ——. Platform architect models. http://www.synopsys.com/Tools/
SLD/VirtualPrototyping/SLLibraries/Pages/%PlatformArchitect.aspx.

[13] R. M. Stallman. The GNU Compiler Collection. http://gcc.gnu.org/.
[14] P. Korsgaard. BuildRoot. http://buildroot.uclibc.org/.
[15] ARM Ltd. (2000) ARM PrimeCell Vectored Interrupt Controller

(PL190) Technical Reference Manual. http://infocenter.arm.com/help/
index.jsp.

[16] DesignA Electronics. RealView Versatile/PB926EJ-S. http://www.
bluewatersys.com/development/doc/realview/versatile/pb.php.

[17] T. Bybell. GTKWave. http://gtkwave.sourceforge.net/.

