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Abstract—Systems as diverse as genetic networks or the 

World Wide Web are best described as networks with complex 
topology. A common property of many large networks is that 
the vertex connectivities follow a scale-free power-law  
distribution. This feature was found to be a consequence of 
three generic mechanisms: (i) networks expand continuously by 
attaching  addition of new vertices, (ii) new vertex with different   
number edges of weighted selected  connectioned to  different 
vertices in the system, and (iii) new vertices attach  
preferentially to sites that are already well connected. A model 
based on these three ingredients reproduces the observed 
stationary scale-free distributions, which indicate that the 
development of large networks is governed by robust 
self-organizing phenomena that go beyond the particulars of the 
individual systems. 
 

Index Terms—-scale-free model, vertex, weighted random 
networks, degree distribution 

I. INTRODUCTION  
HE inability of contemporary science to describe 

systems composed of nonidentical elements that have  
diverse and nonlocal interactions currently limits 

advances in many disciplines, ranging from molecular 
biology to computer science [1]. The difficulty of describing 
these systems lies partly in their topology. Many of them 
form rather complex networks whose vertices are the 
elements of the system and whose edges represent the 
interactions between them. For example, living systems form 
a huge genetic network whose vertices are proteins and genes, 
the chemical interactions between them representing edges 
[2]. At different organizational levels, a large network is 
formed by the nervous system, whose vertices are the nerve 
cells, connected by axons [3]. But equally, complex networks 
also occur in social science, where vertices are individuals or 
organizations and the edges are the social interactions 
between them [4], or in the World Wide Web(WWW), 
whose vertices are HTML documents connected by links 
pointing from one page to anther [5,6]. Because of their large 
size and the complexity of their interactions, the topology of 
these networks is largely unknown. 
In[7], Barabási and Albert (BA) showed that it is possible to 
grow a network with a power law degree distribution by 
using a preferential growth mechanism: starting with a small 
number(m0) of vertices, at every time step the system grows 
by attaching a new vertex with m (≤m0) edges links to m 
different “old” vertices that are already presented in the 
system; the attachment is preferential because the probability 
that a new vertex will connect to vertex i, with degree ki, is 
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i)=ki/∑jkj. After t time steps, the model leads to a random 
network with t+m0 vertices and mt edges. This network 
evolves into a scale-invariant state with the probability that a 
vertex has k edges, following a power law with an exponent 
γ=2.9±0.1. Because the power law observed for real 
networks describes systems of rather different sizes at 
different stages of their development, it is expected that a 
correct model should provide a distribution whose main 
features are independent of time. Indeed, P(k) is independent 
of time (and subsequently independent of the system size 
m0+t), indicating that despite its continuous growth, the 
system organizes itself into a scale-free stationary state. 

The BA model generates networks with the power law 
exponent γ= 2.9±0.1. The model has been used to model the 
Internet. But real network is not included in the model. Firstly, 
there are not vertices with degree one (when m≠1) in the 
model, and in the degree distribution of the real network is 
not a strict power law as it has more vertices with degree two 
than vertices with degree one [8] (P(2)= 38%> P(1) = 26%, 
see Table I). Secondly grows of real network is not that new 

vertex with same number of edges link to different “old” 
vertices already preferential in the system.

II. MAIN RESULTS 
In this paper, we have showed a model based on these 

three ingredients which naturally lead to observed 
scale-invariant distribution. To incorporate the growing 
character of the network, starting from a small number  
(m0≥3) of vertices, at every time step we added a new vertex  
with n(n is the positive integer in max{0.26-P(n=1), 
0.38-P(n=2), 0.14-P(n=3),0.22-P(n>3)}, where P(k) is 
degree distribution of the present system, and when n>3, n 
is a random number selected from 4 to m(m0)) edges that 
links   the new vertex to n different vertices which already 
presented in the system. To incorporate preferential 
attachment, we assumed that the probability Π that a new 
vertex will be connected to vertex i depends on the 
connectivity ki of that vertex, so that Π(ki)=ki/∑jkj. After t 
time steps, the model leaded to a random network with t+m0   
vertices and these edges are between t and mt. Thus, by [7], 
this network is evolving into a scale-invariant state with the 
probability that a vertex has k edges, following a power law 
with an exponent γmodel=3(Fig. 1). Because the power law 
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TABLE I 

NETWORK PARAMETERS 

Number 
of 

vertices 

Average 
degree Degree distribution 

Exponent 
of 

power-law

N <k> P(k=1) P(k=2) P(k=3) γ 

11122 5.4 26% 38% 14% 2.22 
 



 

observed for real networks describes systems of rather 
different sizes at different stages of their developments, it 
is expected that a correct model should provide a 
distribution whose main features are independent of time. 
Indeed, as Fig. 1 demonstrates, P(k) is independent of 
time (and subsequently independent of the system size 

m0+t), indicating that despite of its continuous growth, the 
system organizes itself into a scale-free stationary state.  

Fig. 1.  The power-low connectivity distribution at t=10000, in the case of m0=5, 
m=5. 

  

The development of the power-law scaling in the model 
indicates that growth and preferential attachment of 
randomly selected edges have played an important role in  
network development. Because of the preferential attachment, 
a vertex that acquires more connections than another one will 
increase its connectivity at a higher rate; thus, an initial 
difference in the connectivity between two vertices will 
increase further as the network grows. The rate at which a 
vertex acquires edges is ∂ki/∂t= ki/2t, where ki(t) is between 
(t/ti)0.5 and 3(t/ti)0.5, ti is time at which vertex i  is added to the 
system. Then, a scaling property that could be directly tested 
ones time-resolved data on network connectivity becomes 
available. Thus older (with smaller ti) vertices increase their 
connectivity at the expense of the younger (with larger ti) 
ones, leading over time to some vertices that are highly 
connected. A “rich-get-richer” phenomenon can be easily 
detected in real networks. Furthermore, this property can be 
used to calculate γ analytically. The probability that a vertex i 
has a connectivity smaller than k, P[ki(t)<k], can be presented 
as P(ti>m2t/k2) ,  for fixed m edges that link the new vertex to 
m different vertices in the system. Assuming that we add the 
vertices to the system at equal time intervals, we obtain P(ti > 
m2t/k2)=1– P(ti≤ m2t/k2)=1–m2t/k2(t+m0). The probability 
density P(k) can be obtained from P(k)=∂P[ki(t)<k]/∂k, which 
over long time periods leads to the stationary solution 
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giving γ=3, independent of 3. Thus degree distribution P(k) 
of the model between 2/k  and 2m /k (Fig.2 and Fig. 3). 3 2 3

Fig. 2.  The exponential connectivity distribution for model at t=10000. 

From numerical simulations, we found that the interactive 
growth also satisfied the following two characteristics 
observed in the Internet measurements. (1) Majority of new 

vertices are added to the system by attaching them to one or 
two old vertices (m ≤ 2). (2) Degree distribution of the 
autonomous systems graph is not a strict power-law as it has 
more vertices with degree two than vertices with degree one 
( P(2) = 32.18%>P(1) = 20.18%, in the case m=5, see Table 
II, and P(2) = 31.55%>P(1) = 19.56%, in the case m=6, see 
Table III).(3) In fact, P(k) of the model is between 2/k  and  
8/k (see Table II and Table III). Therefore, the model is 
closer to the actual Internet network.
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 In many cases, the 
results are difficult to prove, and need techniques which can 
not use in the theory of classical random graphs. We have 
learned through empirical studies, models, and analytic 
approaches that real networks are far from being random, but 
display generic organizing principles shared by rather 
different systems. Therefore, we expected that extending BA 
model, whenever appropriate, would lead to a much more 
realistic description of several real systems. Consequently, 
this paper would be a deduction of BA model.     

TABLE II 
MODEL PARAMETERS 

Number 
of 

vertices 

Average 
degree Degree distribution 

Exponent 
of 

power-law

N <k> P(k=1) P(k=2) P(k=3) γ 

10000 2 20.18% 32.18% 18.99% 3 
 

The scale-invariant state observed in all systems where 
detail data has been available to us is a generic property of 
many complex networks, with applicability reaching far 
beyond the quoted examples. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

These mechanisms also could explain the origin of the 
social and economic disparities governing competitive 
systems, considering that the scale-free in homogeneities are   
the inevitable consequence of self-organization, just like the 
local decisions made by the individual vertices. 

Fig. 3.  The exponential connectivity distribution for model at t=10000.

However, the validation of the model was not conducted 
with measurement data based on the BGP-tables, but the 
traceroute-derived AS graph, which is regarded as a more 
realistic and reliable measurement of the Internet[9]. 
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