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Abstract—We consider a specific class of combinatorial
search or optimization problems where the search space gives
rise to a closure operator and essentially the hulls are the only
relevant subsets that must be checked in a brute force approach.
We suggest that such a closure property can help to reduce time
complexities. Moreover we propose two types of (structural)
parameterization of instance classes based on the closure
property and outline how it could be used to achieve FPT
characterizations. In this setting, three example problems are
considered: a covering problem from combinatorial geometry,
a variant of the autarky problem in propositional logic, and a
specific graph problem on finite forests.

Index Terms—closure operator, FPT, combinatorial optimiza-
tion, computational complexity.

I. INTRODUCTION

In this paper we propose a structural perspective on a
specific class of combinatorial problems over set systems.
Namely those for which a closure operator can be associated
to or defined on the search space. Two types of closure
properties are introduced. A first where the objective is a
class invariant regarding the equivalence relation naturally
defined by the closure operator; in this case the search space
is the power set of the preimage of the closure operator. On
basis of this closure property it can be possible to reduce
the computational time complexity of the problem, which
is demonstrated for a rectangular covering problem in the
plane.

Another closure property called of the second kind is
defined s.t. the hulls are the only relevant subsets relevant
for the problem; in this case the closure operator is required
to be present in the search space itself.

The traditional parameterization of combinatorial search
problems usually is defined through the cardinality of the
solution [2]. If a combinatorial search problem admits a
closure property of the second kind, we propose a structural
parameterization approach. the parameter of an instance class
is given as the maximum cardinality of all hulls of the single
element sets of the search space. We also propose another
parameterization based on the cardinality of the hulls itself.
Such structural parameterizations might help to gain fixed-
parameter tractable (FPT) [2] instance classes of such a
problem.

We discuss several examples of problems for which a
closure property can be found. The first is an optimization
problem that takes as input a finite point set in the plane
and aims at finding a minimal rectangular covering subject
to a certain objective function. We state the closure property
and report how it can be used to reduce the time complexity
of a dynamic programming optimization algorithm. Second,
we address the autarky problem in propositional logic. The
input here is a conjunctive normal formula and the question
is, whether there is a subformula which can be satisfied

Department 4, HTW Berlin, D-10313 Berlin, Germany, e-mail:
porschen@htw-berlin.de.

independent of the remaining formula. A closure property
closely related to the autarky problem is detected and a
guide to a FPT characterization is proposed. Finally, we
focus on a certain graph problem originally stemming from
a falsifiability problem in propositional logic [3]. It takes
as input a finite forest of rooted trees [4] and a mapping f
assigning leaves to vertices which are considered as roots of
subtrees. Then one is asked to find one leaf of every tree,
s.t. none of these leaves is containd in the subtree rooted at
the f -image of any other of these leaves. This problem is
NP-complete and belongs to the class FPT w.r.t. the number
of trees in the forest as parameter [3]. Identifying a closure
operator one can define a variant of this graph problem, for
which an additional parameter is introduced defined as the
maximal hull cardinality as above.

II. ON CLOSURES AND EQUIVALENCES

A basic concept in this paper is the well-known closure
operator defined on the power set 2M of a given set M . For
convenience, let us recall the defining properties of a closure
operator:

Definition 1: Given a set M (here always finite), a closure
operator is a map

σ : 2M → 2M

with the following properties:
(1) extensity: ∀S ⊆ M ⇒ S ⊆ σ(S),
(2) monotony: ∀S1, S2 ⊆ M : S1 ⊆ S2 ⇒ σ(S1) ⊆ σ(S2)
(3) idempotence: ∀S ⊆ M ⇒ σ(σ(S)) = σ(S).
Easy examples are the identity map id on 2M given by
id(S) = S, for every S ∈ 2M , or the constant map cM (S) =
M for every S ∈ 2M . A more interesting example is given
by the convex hull operator: Let M ⊆ R2 be a finite set of
points in the euclidean plane. Then σ(S) := conv(S) ∩M ,
for every S ∈ 2M , defines a closure operator, as is easy to
see, where conv(S) denotes the convex hull of all points in
S ⊆ R2.

For convenience, we denote the image of a closure op-
erator, i.e., the set of all hulls by Hσ(M) := σ(2M ). If
|S| = k we call σ(S) =: H(S) a k-hull, for 0 ≤ k ≤ n, and
we denote the collection of all k-hulls by Hk. Any closure
operator on 2M clearly defines an equivalence relation on
2M by S1 ∼ S2 iff σ(S1) = σ(S2). The next result tells us
which conditions must be satisfied by an equivalence relation
so that it gives rise to a closure operator as above.

Theorem 1: Let M be finite set, and let ∼⊆ 2M × 2M be
an equivalence relation on 2M . For each class [S], S ⊆ M ,
set W[S] :=

⋃
[S]. Then it holds that ∼ satisfies:

(i)∀S ∈ 2M : W[S] ∈ [S], and
(ii)∀S1, S2 ∈ 2M : S1 ⊆ S2 ⇒ W[S1] ⊆ W[S2],
if and only if

σ : 2M 3 S 7→ σ(S) := W[S] ∈ 2M



is a closure operator satisfying (∗) : σ(S1) = σ(S2) ⇒ S1 ∼
S2, for all S1, S2 ∈ 2M .
PROOF. First, let σ as defined above be a closure oper-
ator with property (∗). Then it is easy to see that even
σ(S1) = σ(S2)⇔S1 ∼ S2 holds for all S1, S2 ∈ 2M . Since,
by definition we have σ(S) = W[S] we get by monotony
σ(S) = σ(W[S]) implying W[S] ∈ [S] which is (i). (ii) is a
direct implication of the monotony of σ.

Conversely, let ∼ be an equivalence relation satisfying
both (i) and (ii). From (ii) it directly follows that σ as stated
above is a monotone set mapping. For arbitrary S ∈ 2M ,
we further have S ⊆ W[S] = σ(S) implying extensity of σ.
Property (i) means S ∼ W[S]. Therefore we have S1 ∼ S2

⇔ W[S1] ∈ [S2] and W[S2] ∈ [S1] iif W[S1] = W[S2] ⇔
σ(S1) = σ(S2), for arbitrary S1, S2 ∈ 2M which specifically
implies (∗). Finally, we have idempotence of σ, because
(i) leads to [W[S]] = [S]. Thus σ(σ(S)) = σ(W[S]) =⋃

[W[S]] =
⋃

[S] = σ(S), for every S ∈ 2M . 2

In the next section we propose a class of search or
optimization problems exhibiting a closure operator.

III. THE CLOSURE PROPERTY AND STRUCTURAL
PARAMETERS

Consider a combinatorial search problem Π such that each
of its input instances I is associated to a base set M(I). Let
F (I) := 2M(I) denote the power set of the base set M(I).
Sometimes, but not in every case, F (I) can be identified
with the search space of the problem at hand. Examples for
base sets are:

• discrete point set in the plane in the instance of a
discrete geometry problem,

• vertex set, or edge set in the instance of a graph
problem,

• set of variables or expressions in the instance of a logic
problem.

Definition 2: Let Π be a combinatorial problem such that
each instance I ∈ Π admits a closure operator σI on F (I).
(1) We say that a problem Π has a closure property of the
first kind, if the search space is 2F (I) and the objective is a
class invariant w.r.t. the equivalence relation defined by σI .
(2) We say that Π has a closure property of the second kind
if F (I) is the search space and for deciding whether I ∈ Π,
resp. for solving the search variant, it suffices to test all hulls
given by σI .
Clearly, if a problem has a closure porperty of any kind,
specifically we have an equivalence relation ∼I on F (I)
defined by σ(I). From Thm. 1 we know that the union of
all elements in each equivalence class belongs to the class
itself which thus is the supremum of all sets in the class w.r.t.
the lattice defined by σI . Therefore these suprema (maximal
hulls) give rise to a distinct family of class representatives.

The “traditional” parameterization of a problem Π, usually
is defined via the cardinality of the solution [2]. As example
take the vertex cover problem on a simple graph, for which
a well-known FPT characterization exists in the following
parameterized version:
Input: Graph G = (V,E), k ∈ N.
Problem: Find a vertex cover of cardinality at most k in G
or report that none exists.

In the following we shall define a structural parameteriza-
tion by the cardinality of the image of a closure operator. A
useful observation is:

Lemma 1: If a closure operator σ on 2M admits at most
k 1-hulls meaning |Hσ(1)| = |{H(x) := σ({x}) : x ∈
M}| ≤ k ≤ n, where n is the number of elements in M ,
then |Hσ(M)| ≤ 2k.
PROOF. It suffices to show that for arbitrary ∅ 6= S ∈ 2M

it holds that σ(S) = σ(
⋃

x∈S H(x)). From this the Lemma
follows because

⋃
x∈S H(x) can be composed of at most k

1-hulls. Hence σ(S) corresponds to a subset of {1, 2, . . . , k}
implying the Lemma.
To prove the preceding assertion, let ∅ 6= S ∈ 2M be
arbitrary. Then there is 1 ≤ p ≤ n s.t. |S| = p; let S =
{xi1 , . . . , xip

}. Then clearly H(xiq
) ⊆ S, 1 ≤ q ≤ p, and

therefore
⋃p

j=1 H(xij ) ⊆ σ(S) implying σ(
⋃p

q=1 H(xiq )) ⊆
σ(S) because σ is monotone and idempotent. On the other
hand, we clearly have xiq

∈ H(xiq
), 1 ≤ q ≤ p, thus

S ⊆
⋃p

q=1 H(xiq ) and by monotony we obtain σ(S) ⊆
σ(

⋃p
q=1 H(xiq )) yielding the assertion and the Lemma. 2

Let Π be a problem with closure property, and k ∈ N.
Then the instance subclass parameterized by k is given as

Πk := {I ∈ Π : ∃j ≤ |M(I)| :
j∑

i=1

|HI(j)| ≤ O(f(k))}

where f : N → N is an arbitrary function and HI(j) =
{σI(S) : S ⊆ M(I), |S| = j}. We call this the parameteri-
zation by the number of hulls.

Observe that, according to La. 1, we specifically have that
I ∈ Πk if σI yields at most k 1-hulls.

Theorem 2: Let Πk, k ∈ N, have a closure property of the
second kind, and assume that for each I ∈ Π we can check
the membership in Πk in polynomial time. Moreover assume
that the subproblem corresponding to each hull is computable
in polynomial time (or at least in FPT time w.r.t. k). Then
Πk is in FPT w.r.t. k.
PROOF. The closure property of Π of the second kind implies
that we only have to check all hulls instead of whole F (I).
Therefore if the subproblem corresponding to each hull can
be tested in polynomial time or in FPT-time w.r.t. k we are
done according to Lemma 1. 2

Besides the parameterization by the number of hulls,
another one may be useful, namely that by the maximal size
of all hulls: Let Π be a problem s.t. every instance admits
a closure operator. Note that we do not necessarily require
a closure property as defined above. For k ∈ N fixed, we
define the instance class Π′

k by

Π′
k := {I ∈ Π : max

S∈2M(I)
|σI(S)| ≤ k}

i.e., the collection of all Π-instances I such that the cardi-
nality of every hull is bounded by parameter k.

IV. SOME EXAMPLE PROBLEMS

This section is devoted to illustrate that problems with
closure properties can occur in several areas. We start with
a rectangular covering optimization problem which is iden-
tified to have a closure property of the first kind. Another
problem lies in the area of propositonal logic, and turns out to
have a closure property in the second kind. Finally a a graph
problem is discussed for which the maximal hull parameter



is, so that a kernelization and a bound of kernel form [2] can
be achieved [9].

A. Rectangular Coverings of Point Sets

We consider the following optimization problem.
Given: Finite set M of points arbitrarily distributed in
the euclidean plane. Objective function w on rectangular
patches.
Problem: Find a covering R of M by rectangles such that
w(R) :=

∑
r∈R w(r) is minimized.

Observe that a covering R is a selection of subsets S ⊆ M
each of which is covered optimally. So the search space,
actually, is 22M

which by the closure property is reduced to
2R(M).

The corresponding closure property of this problem relies
on the concept of base points b(S) = {zd(S), zu(S)} of
every S ∈ 2M which are defined through:
xd(S) := minz∈S x(z), yd(S) := minz∈S y(z) and
xu(S) := maxz∈S x(z), yu(S) := maxz∈S y(z). The base
points immediately yield the upper right and lower left
diagonal points of the smallest rectangle r(S) enclosing S.

There is an equivalence relation on 2M defined by S1 ∼ S2

iff b(S1) = b(S2), for S1, S2 ∈ 2M with classes [S].
Defining

σ : 2M 3 S 7→ σ(S) := r(S) ∩M ∈ 2M

and R(M) := {S ⊆ M : σ(S) = S}, we have:
Theorem 3 ([10]): σ : 2M → 2M is a closure operator;

and there is a bijection between R(M) and 2M/ ∼ defined
by S 7→ [S], S ∈ R(M). Moreover R(M) is of polynomial
size in the variable |M | and can be also be computed in
polynomial time.
Obviously the objective wI is a class invariant because
wI(r(T )) has the same value on every S ∈ [S]. Hence
we face a problem with closure property of the first kind.
Using this closure property the time complexity of a dynamic
programming approach for solving the covering problem can
be decreased. Concretely, one can show the following results
[10]: There exists a dynamic programming algorithm solving
this problem of time complexity O(n23n), where n is the size
of M . On behalf of the closure property in F (I) = 2M(I) this
time complexity can be reduced to O(n62n). Due to a more
subtle closure property investigated in [7] one can establish
in certain situations the slightly better bound of O(n42n).

By the result above we can compute R(M) in polynomial
time O(p(|M |)) where M is the set of input points, and
p is a polynomial. Unfortunately, it is an open problem,
of how to check the subproblems corresponding to each
hull in polynomial time, or even in FPT-time. Therefore the
question whether one can achieve a FPT-characterization of
this problem w.r.t. the parameterization by image cardinality
is left for future work.

B. Autarkies in CNF formulas

In this section we consider the propositional satisfiability
problem (SAT) on conjunctive normal form (CNF) formulas
[1]. It is convenient to regard a CNF formula C as a set of its
clauses C = {c1, . . . , cm}. By V (C) we denote the set of all
propositional variables occuring in C. The concept of autarky

in the context of CNF-SAT was introduced in [6]. Roughly
speaking, an autark set of variables can be removed from a
CNF formula without affecting its satisfiability status. More
precisely, given CNF formula C, we call a subset U ⊆ V (C)
an autark set (of variables), iff there exists a (partial) truth
assignment α : U → {0, 1} satisfying the subformula C(U)
defined by C(U) := {c ∈ C : V (c) ∩ U 6= ∅}. Removing
C(U) from C therefore preserves the satisfiability status of
the resulting formula.

Consider the decision problem AUT:
Input: C ∈CNF
Question: ∃ an autark set U ⊆ V (C)?

It is not hard to see that AUT is NP-complete. However,
a basic open question is whether AUT is fixed-parameter
tractable regarding the traditional parameterization, namely
w.r.t. the parameter k defining the maximum cardinality of an
autark set in the input formula. In the following we propose
an alternative approach based on a parameterization defined
by a closure property: Given C ∈ CNF, then for every U ⊆
V (C) we define the set σC(U) ⊆ V (C) as

σC(U) := V (C)− V (C − C(U))

We call σC(U) the autarky closure or autarky hull of U
(introduced as variable hull in [8]).

Lemma 2: Given C ∈ CNF, then σC : 2V (C) → 2V (C)

as defined above is a (finite) closure operator.
PROOF. Extensity obviously holds true for σC . Let U1, U2 ⊆
V (C) with U1 ⊆ U2, then C(U1) ⊆ C(U2), hence V (C −
C(U2)) ⊆ V (C−C(U1)). Now suppose there is x ∈ σC(U1)
and x 6∈ σC(U2), then by definition x ∈ V (C −C(U2)) and
therefore x ∈ V (C − C(U1)) contradicting the assumption,
thus (ii) holds. Finally, let W := σC(U), for U ∈ 2V (C). We
have C(W ) = C(U) since no variable of W occurs outside
C(U), yielding σC(W ) = W which is idempotence. 2

Next, we have:
Lemma 3: Given C ∈ CNF.

1.) For U1, U2 ⊂ V (C), U1 ∼ U2 : ⇔C(U1) = C(U2)
defines an equivalence relation on 2V (C) with classes [U ].
2.) The quotient space 2V (C)/ ∼ is in 1:1-correspondence to
{σC(U) : U ∈ 2V (C)}.
PROOF. The first part is obvious. For proving the second part
we claim that for each U1, U2 ∈ 2V (C) holds

σC(U1) = σC(U2) ⇔ U1 ∼ U2

from which 2.) obviously follows. Now U1 ∼ U2 means
C(U1) = C(U2) implying σC(U1) = σC(U2). For the
reverse direction we observe that C(σC(U)) = C(U), for
each U ⊆ V (C). Therefore, σC(U1) = σC(U2) implies
C(U1) = C(σC(U1)) = C(σC(U2)) = C(U2) thus U1 ∼
U2. 2

The next result justifies the notion autarky closure:
Lemma 4: For C ∈ CNF and U ⊆ V (C), we have that

σC(U) is autark if U is autark.
PROOF. Suppose U is autark, but σC(U) is not autark.
Because U ∼ σC(U), we have C(U) = C(σC(U)), hence
any truth assignment α : U → {0, 1} satisfying C(U) also
satisfies C(σC(U)), thus σC(U) is an autark set. 2

Observe that the last result tells us that instead of checking
all subsets of V (C) for autarky, it suffices to check the hulls
only. Indeed, there can be left no autark set, because, if U is
autark also σC(U) is. And supposing no autarky hull W is



autark, then there is no autark set at all, because otherwise its
hull must have been checked positive for autarky. Therefore,
we have a problem with a closure property of the second
kind.

An autarky hull is called free (cf. [8]) if it does not contain
any subhull.

Lemma 5 ([8]): All free hulls of C are 1-hulls. There
exists at most |V (C)| free hulls of C.
Free hulls have the computational property:

Lemma 6 ([8]): A free hull U ⊂ V (C) can be checked
for autarky in linear time.
Let k ∈ N be fixed, and suppose we were able to identify
the instance class C(1, k) ⊆ CNF defined through the
requirement that every C ∈ C(1, k) exhibits at most k 1-
hulls. Then by Thm. 2 we would be able to achieve an FPT
characterization for autarky testing in this class if one could
check each 1-hull for autarky in FPT-time (not just the free
1-hulls). It is a future work task to investigate this question.

C. A variant of the shadow problem

Next we consider a specific problem from algorithmic
graph theory, for basic notions on that topic cf. e.g. [4].
The problem is called the shadow (independent set) problem
(SIS), and represents a falsifiability problem from proposi-
tional logic in terms of graph theory. SIS is given as follows:
Input: Finite forest F and a function, f : L(F ) → V (F )
from the set of all leaves into the set of all vertices of F ,
called the shadow map
Question: Does exist a set of |F | many leaves, exactly one
from each tree (called transversal) that are mutually shadow
independent?
In this context, let the shadow of a leaf ` be the set of
all leaves in the subtree rooted at the vertex f(`). Then
two leaves `1, `2 are called shadow-independent iff `1 is no
element of the shadow of `2 and vice versa; this notions
transfers directly to every set of leaves. SIS stems from
the falsifiability problem of pure implicational formulas in
propositional logic and is NP-complete.

A parameterized version of SIS was defined in [3] where
the parameter is the number of trees in the forest F : For fixed
k ∈ N let SISk := {(F, f) ∈ SIS: |F | ≤ k}. Also a first FPT
characterization of the time complexity of SISk was achieved
in [3]. A certain improvement of this complexity bound was
achieved in [5]. However, for SISk so far no kernelization
has been constructed explicitly.

Now, in [9] a problem variant is proposed for which
an FPT-bound with kernelization was provided. In fact this
bound is based on the maximum closure parameter for a
specific closure property which can be identified as follows:
Consider the set L̂ of all leaves in the forest which occur
in at least one shadow. Then a closure operator σ on 2L̂ is
defined as follows: For S ⊆ L̂ s.t. all leaves of S lie in the
same tree, let σ(S) be the set of leaves in the largest shadow
containing the whole set S; in [9] this largest tree is called
envelope. If S is distributed over more than one tree. Then
σ(S) is defined as the union over all these trees of the leaves
in every envelope containing the corresponding fragment of
S in the tree.

On basis of this closure property one can define a param-

eter resting on the maximum hull cardinality bound:

sf := max
S∈2L̂

|σ(S)|

In fact this parameter corresponds to the largest shadow in
F generated by f . The corresponding vector-parameter κ :=
(k, s) ∈ N2 is a pair, and one arrives at:

Definition 3:

SISκ := {(F, f, κ) : (F, f) ∈ SIS, |F | ≤ k, sσ ≤ s}

As in SISk the parameter component k controls the forest
F , whereas the second parameter component s controls the
shadow map f

The next result from [9] states that the problem variant
SISκ is in the class FPT w.r.t. κ and moreover has a bound
of the kernel form:

Theorem 4 ([9]): Whether (F, σ, κ = (k, s)) ∈ SISκ can
be decided in time O(n2+[sρ(k, s)]33k), where n = |V (F )|
and ρ(k, s) = k2(s + 1).
Therefore the maximal hull parameterization indeed enables
one to construct a kernelization.

V. CONCLUDING REMARKS AND OPEN PROBLEMS

We introduced the class of combinatorial problems having
a closure property defined by the existence of a closure
operator on the corresponding search space. We proposed
two types of structural parameterization which possibly
could help to gain an FPT complexity characterization for
such problems which are NP-hard. A guideline of how this
could be achieved was outlined. Moreover we discussed three
example problems and examined their closure property as
well as it could be used to decrease time bounds or to obtain
FPT improvements, respectively.

There are left several open questions for future work:
Does there exist a connection between the “traditional”
parameterization of problems with closure porperty and the
structural one? And/or, does it make sense to consider vec-
tor parameterizations: traditional and structural parameters
simultaneously? Can one find other relevant examples for
problems with closure properties.

Finally, for the two example problems discussed first in
this paper, the question of FPT-characterization based on
the image cardinality of the corresponding closure operator
remained open and should be addressed by future work.
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