

Abstract— In this paper we propose a new solution for PDF

(Portable Document File) text extraction. Firstly, we made a
comparison of some PDF text extractor tools. We started with a
brief presentation of some available tools that have been used in
some research works. Secondly, we analyzed the performance
of ICEpdf and PDFBox (Java Open Source tools). Our
experimental results showed that none of the tools strictly
subsumes another. Both of them have a clear font and
overlapping problem. Thus, to overcome these issues we
proposed a new text extractor engine project based on Java
PDF-Renderer, whish shows a good rendering compared to the
previous ones. Our result can be helpful for researchers who
need such a tool, to understand the characteristics of each one,
and to choose a suitable tool for their works.

Keywords— PDF; Portable Document File; Text extractor tool;
PDF-Renderer.

I. INTRODUCTION

PDF is one of the most important file types. It has a
special ability to embed many types of data (images, forms,
texts, fonts etc) independently, and the fact that PDF files
are not directly editable make them more secure to save the
original content and format against intentional or
unintentional modification. Therefore, it becomes the
favorite file type for exchanging official documents and
research papers. Consequently, the tools that process PDF
files, such as text extractor tools, have become vital.

Text Extraction is the first step for people who want to
analyze, classify and process PDF files. They may try to
write their own text extractor code. However, implementing
a truly comprehensive PDF-reader capability is not
something an individual programmer can expect to
accomplish unaided [1]. Hence, it is more convenient to use
an existing tool, and more importantly, is to choose the
appropriate one.

There are many PDF text extractor tools that have been
used in research work such as:

 PDFtotext: Used by J. Jagadeesh , P. Pingali and
V. Varma for their document Summarization project [2].
PDFtotext is a command line converter, based on the
open source viewer XPDF. It converts PDF to plain text
without saving the format. Sometimes it failed to
organize lines, which makes the text semantically
wrong.

Manuscript received January 27, 2011; revised January 27, 2011.
Moulay Abderrahim AJEDIG is with the school of Software

Engineering of Chongqing University, Chongqing, China, e-mail:
aj.abderahim@gmail.com.

Fu Li is with the school of Software Engineering of Chongqing
University, Chongqing, China, e-mail: fuli@cqu.edu.cn.

Aqeel ur Rehman is with the school Computer Science & IT of
Chongqing University, Chongqing, China, e-mail: rehmancqu@gmail.com

.

 PDFtohtml : Used by W. Yip Lu and, F C.M. Lau in
Decision Engine System[3] and I.H. Witten, D.
Bainbridge, G.W. Paynter, and S.J. Boddie used it to
create a plug-in for the digital library Greenstone[4].
PDFtohtml is a command line converter tool to Html,
based on the open source viewer XPDF too.
 Solid converter: used by Jia-Lang Seng and J.T. Lai
to extract business financial data [5]. Solid converter is
commercial and multi-function GUI software. It has the
ability to converts PDF to plain text, Doc and Html, by
saving the original text format (font and size).
 PDFBox: Used by E, Tonkin and Henk L.
Muller for extracting keywords and metadata [6], while
R. Mishra et al used it in order to develop ETD
Repository [7]. Besides, it is used to extract the text
from PDF files for Gate (the Natural Language
Processing tool). PDFBox is a Java open source library.
It can be used to create a new PDF document or to
manipulate and extract the content from an existing
document [8].
 ICEpdf(By IceSoft) is an open source Java
PDF engine that can render, convert, or extract PDF
content within any Java application or on a Web server.
It has a nice graphical interface that includes many
options like switching between pages, zooming,
selecting and copying text, etc. It is a real mimic of
Adobe Reader. Also, IceSoft provided a commercial
version of ICEpdf, called ICEpdf Pro [9].

In the next chapters we explained how PDF store the text
and what are the steps needed to extract text from it. After
that, we made a comparison between the tools already
mentioned. Then we analyzed the performance of the two
java tools. Finally, we presented PDF-Renderer and
explained why and how it can be a good base for a new
alternative text extractor tool, to overcome the issue that the
other java tools face.

II. EXTRACTION STEPS

In PDF file, the text is stored as a set of string objects;
each object gathers a set of one or more characters,
coordinates, fonts and other information needed to build the
Glyphs (the visual representation of characters).

The structure and the order of string objects in PDF file
differ from one file to another, depending on the content and
the tool used to create the file. It can be stored as separate
characters, part of a line or a complete line, sorted
horizontally, vertically or by block.

To extract text from PDF file, we need to follow some steps,
such as:

1. String and Boundary Processing: String objects are
usually not stored in order, and therefore, after being

A PDF Text Extractor Based on PDF-Renderer

Moulay Abderrahim AJEDIG, Fu Li, Aqeel ur Rehman



extracted, we need to calculate the boundary of each string
depending on its font and size. The string boundary will be
used to perform sorting and also to help in achieving next
steps.

2. Lines Building: Strings that belong to the same line are
combined by using boundaries coordinates. There are two
main sub-steps for building lines:

1. Sorting strings objects horizontally then
vertically.

2. Grouping strings that belong to the same line.
Remarque: two strings that have the same vertical
coordinate may not belong to the same line (i.e.
table and column text). To manage this issue, a
tolerant space between strings must be fixed.

3. Blocks and Columns Building:

1. Combine lines that belong to the same block or
column.

2. Sort blocks and columns depending on the
document language. Normally, the order for
English documents is from left to right and from
top to bottom.

4. Text Building:

1. Calculate spaces between string objects and add
a space character if necessary (sometimes space
characters are not included in the PDF file).

2. Extract strings and join them together.

III. COMPARISON

The following table summarizes features of the above-
mentioned tools:

TABLE I. PDF TEXT EXTRACTOR TOOLS CHARACTERISTICS

Tools Type
License
Type

Platform Language

PDFtotext
Command
line open source Linux/Win32 C++

PDFtohtml Command
line open source Linux/Win33 C++

Solid
converter

GUI
Software Commercial Win32 -

IcePDF Development
library open source Multi-

platform Java

ICEpdf Pro Development
library Commercial Multi-

platform Java

PDFBox Development
library open source Multi-

platform Java

Every tool has some advantages and disadvantages. The
choice depends on the user’s requirements. Solid Converter
is a good choice for organizations or an individual who has
no financial problem and wants to have a guaranteed result
with manual extraction for small amount of documents. For
those who need some extractors that can be integrated into
another system, or to make an automated extractor system
for dealing with big number of documents, the ICEpdf Pro
is what they are looking for. The free tools are for those
people that are unable to purchase a commercial solution. It
may not provide the same performance; however, they are
sufficient enough to satisfy one part of the user’s needs.

The Java open source tools are the most interesting
ones. They can be used like modules for another system;
web base or stand-alone application, with any platform;
Windows, Linux, Solaris or Mac. The user can change the

code, improve or add new features without restriction.
Although, we found that, ICEpdf and PDFBox often give
incorrect results when they extract text from PDF files.

We start investigating on the source of incorrect results;
we found that they do not perform the third step. Hence, we
attempted to upgrade them by adding the ability to process
blocks and columns building. Our algorithm was logically
correct so far, although it failed many times to get good
results. Thus, we start looking for the source of this new
problem which will be discussed in the next chapter.

TABLE II. PDF TEXT EXTRACTOR TOOLS STEPS

Steps

Tools

Strings &
Boundary
processing

Lines
Building

blocks &
columns
Building

Text
Building

PDFtotext √ √ √ √

PDFtohtml √ √ √

Solid
converter √ √ √ √

IcePDF √ √ √

ICEpdf Pro √ √ √

PDFBox √ √ √

IV. PERFORMANCE OF JAVA TOOLS

We found that the efficiency of the above-mentioned steps
are related to the rendering efficiency, that is to say, if
rendering is incorrect so is the text extraction, and if
rendering is correct that gives more chance to get a correct
text depending on the extraction algorithm. We testified the
rendering of each tool with a set of 300 PDF documents,
which 90% of them are research papers, and compared them
with Adobe Reader rendering.

File problem: 2% of the PDF files contained characters
which are represented as pictures. Here, it becomes
impossible to extract a full correct text.

Open source ICEpdf: About 8% of cases, ICEpdf was
not able to render files, and about 7% it renders with
incorrect fonts which causes an overlap between characters
as highlighted in boxes inFig.1.

Figure 1. ICEpdf rendering with incorrect font



ICEpdf Pro has an excellent rendering capability, only
1% of rendered documents have few differences in the font
compared to Adobe Reader, which did not affect the general
appearance of the document.

Figure 2. ICEpdf Pro rendering

PDFBox was not able to render 10% of files, while 1%
was rendered albeit some special characters were missing.
11% of files were rendered with miss-positions and full of
overlaps, as shown in Fig 3.

.

Figure 3. PDFBox rendering with overlapping

ICEpdf sometimes tries to use an alternative font when it
does not find the required one, which causes a characters
overlapping. ICEpdf Pro successively overcomes this
problem by using a special font engine. On the other hand,
PDFBox exhibits a total overlapping problem that is
different from font problem as the case of ICEpdf. The
reason behind this, is when the font is missing, PDFBox
sends an error message telling that the tool cannot render the
file, which is not the case of the ICEpdf overlapping
problem.

The absence of rendering, characters overlapping, and
rendering with an incorrect font caused us some problems

that led to incorrect text results when we endeavored to
analyze the space between strings in the third and fourth
steps. This is why we failed when we was attempting to
upgrade these tools as mentioned in the previous chapter.

Consequently, we started looking for an alternative
solution, and we have found that PDF-Renderer can be a
good one.

V. PDF-RENDERER

In 2003, Sun Labs developed the all-Java PDF-Renderer
project because of their need of PDF viewer for content
created by OpenOffice. After a while, Sun Labs offered
PDF-Renderer to SwingLabs set out to get the project open
sourced. Tom Oke signed on to head up future work on the
project, and Josh announced the release of the open source
PDF-Renderer project in December 2007. Since 2008 the
project has not shown any activity. PDF-Renderer has
multiple features regarding PDF files.

PDF-Renderer features:

 PDF Files Viewer;
 Print-Previewer (before exporting PDF files);
 PDFs to PNGs Render in a server-side web

application;
 3D scene PDFs Viewer;
 Draw on top of PDFs and annotate them in a

networked viewer.[10]

VI. PDF-RENDERER PERFORMANCE

We applied the same experiments as before to PDF-
Renderer. We only got 5% of rendering and font problem.
1% of the problem was the missing of some special
characters, which did not affect the final appearance.
Fig 4 shows how PDF-Renderer rendered the file that the
ICEpdf and PDFBox were not able to render it correctly.

Figure 4. PDF-Renderer rendering

The error rate of PDF-Renderer is much less than 15% in
ICEpdf and 22% in PDFBox. This means that PDF-
Renderer has a better interpreter and font engine.
In the next chapter, we tried to find out if it is possible to

upgrade PDF-Renderer, and use it as a base to make a
new text extractor engine.



VII. UPGRADE STUDY

By default, PDF-Renderer does not have text
extraction capability, but it shows a good rendering, that is, a
good interpretation of PDF files. For this reason, we have
done a short study in order to know whether or not it is
possible to exploit PDF-Renderer to create a new text
extractor tool. The first task, we tackled, was to find out in
which piece of code the PDF-Renderer interprets the PDF
file content. We found that PDFParser is the class in charge
of parsing (interpret) the PDF file content to a set of objects
(e.g. text, image, font etc). The PDFParser.Iterate()
method encapsulates every string with its font, size and
coordinates into PDFTextFormat object. After that, it calls
the PDFTextFormat.doText() method to build another set
of Glyphs objects used for the final visualization. After
understanding the parsing mechanism of PDF-Renderer, we
undertook the second task in which we succeed to extract the
set of strings with their parameters and to calculate their
boundaries by adding some lines of code to
PDFTextFormat.doText() method. As a result, we
conclude that it is possible to add text extraction feature and
to upgrade PDF-Renderer.

VIII. CONCLUSION

Our experimental results showed that none of the tools
strictly subsumes another. ICEpdf and PDFBox have a clear
font problem while the commercial version of ICEpdf
solved it by using a special font engine, but still it is not
performing the third step for getting correct semantic text.
To overcome these problems with an open source
alternative, we analyzed the rendering and the source code
of PDF-Renderer. As a result, we found that PDF-
Renderer has a good ability to offer an excellent text
extractor engine.

In our future works, we will try to accomplish the
remaining steps on order to provide a complete open source
PDF text extractor based on PDF-Renderer.

REFERENCES

[1] Kas. Thomas, “PDF Intro ,” www.mactech.com, Vol.15, 15.09
[2] J. Jagadeesh , P. Pingali, V. Varma ”Sentence Extraction Based

Single Document Summarization,” Workshop on Document
Summarization, 19th and 20th March, 2005, IIIT Allahabad

[3] W. Yip Lum, F C.M. Lau “A Context-Aware Decision Engine for
Content Adaptation” 1536-1268/02/ 2002 IEEE

[4] I.H. Witten, D. Bainbridge, G.W. Paynter, and S.J. Boddie, "The
Greenstone plugin architecture", in Proc. JCDL, 2002, pp.285-286.

[5] Jia-Lang Seng J.T. Lai “An Intelligent information segmentation
approach to extract financial data for business valuation” Expert
Systems with Applications, Vol. 37, Nr. 9 (2010), p. 6515 - 6530.

[6] E, Tonkin , Henk L. Muller. ”Keyword and metadata extraction from
pre-prints,” ELPUB. editor(s) Leslie Chan and Susanna
Mornatti. 30-44, Year 2008.

[7] R. Mishra et al, "Development of ETD Repository at IITK Library
using DSpace," in International Conference on Semantic Web and
Digital Libraries (ICSD-2007), ed. A. R. D. Prasad and Devika P.
Madalli (2007), 249-259.

[8] PDFBox home web site: http://PDFBox .apache.org/
[9] ICEpdf home web site: http://www.icepdf.org/
[10] PDF-Renderer home web site: https://PDF-renderer.dev.java.net/




