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Abstract—To early detect and defend the threats in the
Internet caused by botnet, darknet monitoring is very important
to understand various botnet activities. However, common
illegal accesses by ordinary malwares makes such detection
difficult. In this paper, in order to remove such accesses by
ordinary malwares from the results of network monitoring, we
propose a data screening method based on finding frequent
sequential patterns which appear in given traffic data. Besides,
we apply our method to traffic data observed in darknet and
report the results.

Index Terms—incident detection, frequent pattern mining,
sequential pattern, data screening, darknet monitoring.

I. I NTRODUCTION

T HE rapid growth of the high-speed Internet access
service and mass storage media brings us not only the

benefits of society but also many harmful effects. A notorious
example of them is the social damages caused by various
computer viruses. The bot worm is a typical example of
criminal computer viruses, which is an Internet software
controlled by a bot herder. Its infection spreads in a computer
network. A bot herder can control the infected computers as
a network, which is called botnet, and cause many incidents
such as DDos attacks, sending a huge spam mails and
so on. To construct efficient countermeasures against these
incidents, many researches are studying effective methods
for early detection of tendencies of such incidents [1], [2],
[3].

Our purpose is knowledge discovery to detect signs of inci-
dents. If we could prevent them, the safety and the confidence
of the Internet would be increased. Many researchers extract
tendencies of particular senders or patterns and analyze them
to detect evidence of new attacks. For example, Kim et al. [6]
proposed a Flow-based method for abnormally detectors and
Fukushima et al. [5] proposed a method which focuses on
the average number of packets sent by a source address and
its frequency of appearances to find the subtle attacks.

On the other hand, when it comes to anomaly detection,
illegal packets caused by the well-known malwares make
it harder. Then, we focus on finding attack patterns of
the well-known malwares. Majority of them could often be
detected easily by ignorant people about network incidents.
Therefore we define them as a class of time-span sequence
patterns which is easily detected by computers. Furthermore
we introduce a method to discover a set of frequent patterns
which appear in the darknet observation data and delete
packets caused by them. Many researchers are interested in
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frequent pattern discovery from data having structures such
as web data [7], chemical compounds [8], and so on.

In this paper, we utilize a data observed in the dark-
net, which is a network that cannot be accessed through
conventional means. Most of all packets which the darknet
receives are illegal, so they could be considered as traces of
malicious attacks. Therefore we might detect attack patterns
by malwares in the darknet access record.

We think of each packet as a three tuple (transmitter’s
address, transmitter’s port, receiver’s port), and call it an
event. Moreover We call an event with its received time an
incident. The observation data, called anincident database, is
a set of incidents. We regard each item of an event as a string
and propose a pattern class of sequences of string patterns
with time delays. The following pattern is an example of
incident patterns, calledevent pattern delay sequences (EPD
sequences)in this paper.

(??.???. ∗ .∗, ∗, 445)
0.50−→ (??. ∗ . ∗ .∗, ?345, ?????)
0.50−→ (??. ∗ . ∗ .∗, ?345, ?????)

In the above example, ’?’ stands for any one constant symbol,
and ’∗’ stands for any string whose length is at least1. Each
of the three items in a round bracket respectively denotes
transmitter’s address, transmitter’s port number and receiver’s
port number. The real number over a right arrow means the
maximum time delay between the first pattern and the second
pattern (or the second pattern and the third pattern)1.

In this paper, firstly we introduce a class of EPD sequences
in order to represent common illegal packets, and formally
discuss a computational problem of finding EPD sequences
in a given incident database. Next we give an effective
heuristic algorithm to discover EPD sequences in an incident
database. Lastly we propose an automatic data screening
method and report experimental results on darknet traffic
data.

II. PRELIMINARIES

Let X be a set of distinctevents. For an evente ∈ X, let
t be a time when the evente occurs. We call a pair(t, e) an
incident, and a set of incidents anincident database.

Definition 1 (ED sequences):Let r be a positive integer
and Tmax a positive real number. Leta1, a2, . . . , ar be r
events (not necessarily distinct). And letτ1, τ2, . . . , τr−1 be
r − 1 positive real numbers which are less than or equal
to Tmax. Then we callπ = (a1, τ1, a2, τ2, . . . , τr−1, ar) an

1This pattern is discovered during a period of receiving first 10,000
packets in the darknet observation data of 23 January, 2009. This pattern’s
cover rate in the same range is about 10.18%.



(r, Tmax)-event delay sequence(abbreviated to(r, Tmax)-ED
sequence).

Definition 2 (Matching of ED sequences):Let D be an
incident database andπ = (a1, τ1, a2, τ2, . . . , τr−1, ar) an
(r, Tmax)-ED sequence. For a subsetD′ of D with |D′| = r,
we say thatπ matchesD′ if the following conditions hold:
Let ((t1, e1), (t2, e2), . . . , (tr, er)) be a sorted sequence of
the incidents inD′ with respect toti (1 ≤ i ≤ r), i.e.,
t1 ≤ t2 ≤ · · · ≤ tr. Then,

(a) for all i (1 ≤ i ≤ r), ei = ai, and
(b) for all i (1 ≤ i ≤ r − 1), ti+1 − ti ≤ τi.

Definition 3 (Cover rate of ED sequences):For an inci-
dent databaseD and an(r, Tmax)-ED sequenceπ, we denote
by D(π) the union of all subsets ofD which are matched
by π, i.e.,

D(π) =
∪

D′⊆D s.t.π matchesD′

D′.

The cover rate of π for D is defined ascoverD(π) =
|D(π)|
|D|

. Let P be a set of(r, Tmax)-ED sequence and

D(P ) =
∪

π∈P D(π). The cover rateof P for D is defined

ascoverD(P ) =
|D(P )|
|D|

.

First of all, we consider the following computational
problem, which plays an important role in this paper.

R-EVENT DELAY SEQUENCE COVER ( R-EC)
INSTANCE: An incident databaseD, a cover rateσ (0 ≤
σ ≤ 1), a maximum time delayTmax, and a positive integer
K.
QUESTION: Is there a setP of (R, Tmax)-ED sequences such
that |P | ≤ K and the cover rate ofP for D is at leastσ?

We show the following theorem.

Theorem 1:3-EC is NP-complete.
Proof: It is easy to see that3-EC is in NP. We construct

a reduction from the following well-known NP-complete
problem X3C.

EXACT COVER BY 3-SETS (X3C)
INSTANCE: A set X with |X| = 3q and a collectionC of
3-element subsets ofX.
QUESTION: DoesC contain an exact cover forX, i.e., a
subcollectionC ′ ⊆ C such that every element ofX occurs
in exactly one member ofC ′?

Let X = {e1, e2, . . . , en} where n = 3q and C =

{c1, c2, . . . , cm} whereci = {a(1)i , a
(2)
i , a

(3)
i } (1 ≤ i ≤ m).

We construct an incident databaseD as follows. LetD′ =
{((i− 1)(n+ 2) + j, a

(j)
i ) | 1 ≤ i ≤ m and j = 1, 2, 3} and

D′′ = {(m(n+2)+k, ek) | 1 ≤ k ≤ n}. Let D = D′∪D′′,
σ = (3q + n)/(3m+ n), Tmax = n− 1, andK = q.

First, we suppose that X3C returnstrue. Then we have
an exact coverC ′ = {ci1 , ci2 . . . , ciq} (1 ≤ i1 < i2 <

· · · < iq ≤ m). Let P = {(a(1)iℓ
, Tmax, a

(2)
iℓ

, Tmax, a
(3)
iℓ

) |
1 ≤ ℓ ≤ q}. It is easy to see that|

∪
π∈P D′(π)| = 3q and

|
∪

π∈P D′′(π)| = n. Then the cover rate ofP is equal to
σ = (3q + n)/(3m+ n). Therefore3-EC returnstrue.

Conversely, we suppose that3-EC returns true. Then
there is a setP of (3, Tmax)-ED sequences such that

|P | ≤ q. Let P = {(α(1)
ℓ , τℓ, α

(2)
ℓ , τ ′ℓ, α

(3)
ℓ ) | 1 ≤ ℓ ≤

q} where α
(1)
ℓ , α

(2)
ℓ , α

(3)
ℓ ∈ {e1, e2, . . . , en} and τℓ, τ

′
ℓ ≤

Tmax. Since |
∪

π∈P D(π)| ≥ 3q + n and |D′′| = n,
|
∪

π∈P D′(π)| ≥ 3q. Therefore, for each(3, Tmax)-ED

sequence(α(1)
ℓ , τℓ, α

(2)
ℓ , τ ′ℓ, α

(3)
ℓ ), there is an indexf(ℓ)

(1 ≤ f(ℓ) ≤ m) such that3 continuous time events{((f(ℓ)−
1)(n+2)+1, a

(1)
f(ℓ)), ((f(ℓ)− 1)(n+2)+2, a

(2)
f(ℓ)), ((f(ℓ)−

1)(n+2)+3, a
(3)
f(ℓ))} are matched by(α(1)

i , τi, α
(2)
i , τ ′i , α

(3)
i ).

It is easy to see thatC ′ = {{α(1)
f(ℓ), α

(2)
f(ℓ), α

(3)
f(ℓ)} | 1 ≤ ℓ ≤ q}

is an exact cover forX.
In the next section, we give an effective heuristic algorithm

to compute one of the more generalized problems within the
framework of3-EC.

III. E VENT PATTERN DELAY SEQUENCECOVER

Let N and k1, k2, . . . , kN be positive integers. Let ’?’
and ’∗’ be two special symbols. LetΣ be a finite alphabet
which include neither ’?’ nor ’∗’ (i.e., Σ ∩ {’?’ , ’∗’} = ∅).
Below, an event is an object which consists ofN strings
w1, w2, . . . , wN in Σ∗, each of whose length is at most
ki (1 ≤ i ≤ N). Then we denote an event bye =
(w1, w2, . . . , wN ) ∈ Σk1 × Σk2 × · · · × ΣkN .

An atom patternis a string inω ∈ (Σ∪{’?’})+∪{’∗’}. For
any atom patternω, we denote by|ω| the length ofω. For an
atom patternω, if ω = ’∗’, we can replace ’∗’ with an atom
patternω′ ∈ (Σ∪ {’?’})+. If ω includes ’?’, we can replace
it with a symbol inΣ. We call a set of such replacements
a substitution. Let θ be a substitution. We denote byωθ
the atom pattern which is obtained fromω by applying all
replacements inθ to ω.

We denote byP the set of atom patterns. For an integer
k, we denote byP [k] the set of atom patterns inP of length
at mostk. For two atom patternsω, ω′, we writeω′ ⪯ ω if
there is a substitutionθ such thatω′ = ωθ.

Definition 4 (Event patterns):We call a sequence of atom
patternsp = (ω1, ω2, . . . , ωN ) ∈ P [k1] ×P [k2] × · · · ×P [kN ]

an event pattern. For an evente = (w1, w2, . . . , wN ) and an
event patternp = (ω1, ω2, . . . , ωN ), we write e ⪯ p if for
all i (1 ≤ i ≤ N), wi ⪯ ωi.

In a similar way to Def. 1, we define anevent pattern
delay sequence.

Definition 5 (EPD sequences):Let r be a positive integer
and Tmax a positive real number. Letp1, p2, . . . , pr be r
event patterns. And letτ1, τ2, . . . , τr−1 ber−1 positive real
numbers which are less than or equal toTmax. Then we call
π = (p1, τ1, p2, τ2, . . . , τr−1, pr) an (r, Tmax)-event pattern
delay sequence(abbreviated to(r, Tmax)-EPD sequence).

Definition 6 (Matching of EPD sequences):Let D be an
incident database andπ = (p1, τ1, p2, τ2, . . . , τr−1, pr)
an (r, Tmax)-EPD sequence. For a subsetD′ of D with
|D′| = r, In similar way to Def. 2, we say that
π matches D′ if the following conditions hold: Let
((t1, e1), (t2, e2), . . . , (tr, er)) be a sorted sequence of the
incidents in D′ with respect toti (1 ≤ i ≤ r), i.e.,
t1 ≤ t2 ≤ · · · ≤ tr. Then,

(a) for all i (1 ≤ i ≤ r), ei ⪯ pi, and
(b) for all i (1 ≤ i ≤ r − 1), ti+1 − ti ≤ τi.



Let D be an incident database. In a similar way to Def. 3,
we define the cover rate of an EPD sequenceπ for D and
the cover rate of a setP of EPD sequences forD.

In order to consider a similar computational problem
to 3-EC, we have to define an ordering on EPD se-
quences. The most generalized EPD sequence isπ0 =
(p0, Tmax, p0, . . . , Tmax, p0), wherep0 = (∗, ∗, . . . , ∗︸ ︷︷ ︸

N

). All

incidents in any incident database can be covered byπ0 but
it is meaningless.

Definition 7 (Size of delay sequences):For an event pat-
ternp ∈ P [k1]×P [k2]×· · ·×P [kN ], we denote bynΣ(p) the
number of symbols inΣ which appear inp, and byn’?’ (p)
the number of ’?’ which appear inp. We define the size of
an event patternp as

size(p) = nΣ(p)× (Q+ 1) + n’?’ (p),

whereQ =

N∑
i=1

ki.

Let π = (p1, τ1, p2, τ2, . . . , τr−1, pr) be an(r, Tmax)-EPD
sequence. We define the size ofπ as follows:

size(π) =

r∑
i=1

size(pi) +

r−1∑
i=1

(Tmax − τi).

For any (r, Tmax)-EPD sequenceπ, size(π) ≥ 0. And
size(π0) = 0 for π0 = (p0, Tmax, p0, . . . , Tmax, p0), where
p0 = (∗, ∗, . . . , ∗).

In a similar way to the definition ofR-EC, we defineR-
EVENT PATTERN DELAY SEQUENCE COVER (R-EPC)
as follows:

R-EVENT PATTERN DELAY SEQUENCE COVER ( R-
EPC)
INSTANCE: An incident databaseD and the following four
parameters:

(a) K: a maximum number of EPD sequences,
(b) σ: a minimum cover rate(0 ≤ σ ≤ 1),
(c) S: a minimum size of event patterns,
(d) Tmax: a maximum time delay.

QUESTION: Is there a setP of (R, Tmax)-EPD se-
quences that satisfy the following conditions: for allπ =
(p1, τ1, . . . , τR−1, pR) ∈ P ,

(a) |P | ≤ K,
(b) coverD(P ) ≥ σ,
(c) size(pi) ≥ S (1 ≤ i ≤ R), and
(d) τi ≤ Tmax (1 ≤ i ≤ R− 1).

We can easily see the following theorem from Theorem 1.

Theorem 2:3-EPC is NP-complete.

IV. H EURISTIC ALGORITHMS FORR-EPC

A. An Apriori-like method

In this section, we give a heuristic algorithm for computing
R-EPC by using an Apriori-like method twice.

Let D be an incident database. We denote byDi the set of
all the i-th stringswi of the incidents(t, (w1, w2, . . . , wN ))
in D. For anyi (1 ≤ i ≤ N) and atom patternω ∈ P [ki], let

freqDi(ω) =
|{wi ∈ Di | wi ⪯ ω}|

|Di|
. For any event pattern

p ∈ P [k1] × P [k2] × · · · × P [kN ], let

freqD(p) =
|{e | ∃ t s.t. (t, e) ∈ D ande ⪯ p}|

|D|
.

Algorithm FIND EPD SEQUENCES(FES);
Input : D = {(t, e) | t > 0 ande ∈ Σk1 × Σk2 × · · · ×
ΣkN .}: an incident database,σ: a minimum cover rate,S: a
minimum size of(R, Tmax)-EPD sequences;

Let δ be a positive real number smaller thanσ. This
parameterδ plays an important role in this algorithm to
produce a good set of(R, Tmax)-EPD sequences.

1) LetDa
i := {wi | (t, (w1, . . . , wi, . . . , wN )) ∈ D} (1 ≤

i ≤ N); For all i (1 ≤ i ≤ N), we compute the sets
Ai:

Ai := {ω ∈ P [ki] | freqDa
i
(ω) ≥ δ};

2) We compute the set of event patternsF (Procedure
FREQ EVENT PATTERNS (Fig. 1)):

F = {p ∈ P [k1]×P [k2]×· · ·×P [kN ] | freqD(p) ≥ δ};

3) We compute the set of(R, Tmax)-EPD sequencesP
(Procedure FREQ PATTERN SEQUENCES(Fig. 2)):

P = {π = (p1, Tmax, . . . , Tmax, pR) | freqD(π) ≥ δ};

4) For each (R, Tmax)-EPD sequence π =
(p1, τ1, . . . , τR−1, pR) in P , we try to decrease
each time delayτℓ (1 ≤ ℓ ≤ R − 1) as much
as possible (Procedure UPDATE TIME DELAYS

(Fig. 3)).
5) OutputP .

B. A machine learning method

Here we define a partial order on EPD sequences and
a concept of maximal EPD sequences on a given incident
database. And then we give an idea of an algorithm for
solving our problem.

Let π = (p1, τ1, p2, τ2, . . . , τr−1, pr) be an (r, Tmax)-
EPD sequence andπ′ = (p′1, τ

′
1, p

′
2, τ

′
2, . . . , τ

′
r′−1, p

′
r′) an

(r′, Tmax)-EPD sequence. We writeπ′ ⪯ π if r′ ≥ r and
there arer integersj1, j2, . . . , jr with 1 ≤ j1 < j2 < · · · <
jr ≤ r′ such that for alli (1 ≤ i ≤ r),

p′ji ⪯ pi and
ji+1−1∑
ℓ=ji

t′ℓ ≤ ti.

Definition 8 (Maximal EPD sequences):Let D be an in-
cident database andσ a minimum cover rate(0 ≤ σ ≤ 1).
We say thatπ is a maximal (r, Tmax)-EPD sequencewith
respect toD andσ if there is no(r, Tmax)-EPD sequenceπ′

(π′ ̸= π) such thatπ′ ⪯ π andcoverD(π′) ≥ σ.
Let P be a set of(r, Tmax)-EPD sequence. we say thatP

is amaximalK-set of(r, Tmax)-EPD sequences with respect
to D and σ if the following four conditions hold:

1) |P | ≤ K,
2) coverD(P ) ≥ σ,
3) for any pairπ, π′ ∈ P (π ̸= π′), neitherπ ⪯ π′ nor

π′ ⪯ π hold, and



Procedure FREQ EVENT PATTERNS(D, δ,N, {Ai});
Input : D: an incident database,δ: a real number,N : an integer,{Ai}: a collection of sets of atom patterns;
begin

F1 :=
∪

1≤i≤N

∪
ω∈Ai

{p = (ω1, . . . , ωℓ, . . . , ωN ) | if ℓ = i thenωℓ = ω elseωℓ = ’∗’};
for k := 2 to N do begin
Fk := ∅;
foreach p, p′ ∈ Fk−1 do begin

Let p = (ω1, ω2, . . . , ωN ) andp′ = (ω′
1, ω

′
2, . . . , ω

′
N );

if there are two indicesi and j (i < j) which satisfy the following conditions:
1. ωℓ = ω′

ℓ (1 ≤ ℓ ≤ N, ℓ ̸= i, andℓ ̸= j),
2. ωi ̸= ’∗’ and ωℓ = ’∗’ (i+ 1 ≤ ℓ ≤ N), and
3. ω′

j ̸= ’∗’ and ω′
ℓ = ’∗’ (i ≤ ℓ ≤ j − 1, j + 1 ≤ ℓ ≤ N)

then begin
Let p′′ = (ω′′

1 , . . . , ω
′′
ℓ , . . . , ω

′′
N ) be the event pattern s.t. ifℓ = j thenω′′

ℓ = ω′
ℓ elseω′′

ℓ = ωℓ;
if freqD(p′′) ≥ δ then Fk := Fk ∪ {p′′}

end
end

end;
return F :=

∪
1≤k≤N Fk

end;

Fig. 1. Procedure FREQ EVENT PATTERNS which is used at Step 2 in Algorithm FES.

Procedure FREQ PATTERN SEQUENCES(F,D, δ,R);
Input ; F : a set of event patterns,D: an incident database,δ: a real number,R: an integer;
begin

P1 := F ;
for r := 2 to R do begin
Pr := ∅;
foreach π, π′ ∈ Pr−1 do begin

Let π = (p1, Tmax, . . . , Tmax, pr−1) andπ′ = (p′1, Tmax, . . . , Tmax, p
′
r−1);

if π andπ′ satisfy the following conditions: for alli (1 ≤ i ≤ r − 2), pi = p′i, andpr−1 ̸= p′r−1

then begin
Let π′′ := (p1, Tmax, . . . , Tmax, pr−1, Tmax, p

′
r−1);

if coverD(π′′) ≥ δ then Pr := Pr ∪ {π′′}
end

end
end;
return PR

end;

Fig. 2. Procedure FREQ PATTERN SEQUENCESwhich is used at Step 3 in Algorithm FES.

4) for any π ∈ P , there is no(r, Tmax)-EPD sequence
π′ ̸∈ P such thatπ′ ⪯ π and coverD(P − {π} ∪
{π′}) ≥ σ.

We define R-MAXIMAL EVENT PATTERN DELAY
SEQUENCE COVER (R-MEPC) as follows:

R-MAXIMAL EVENT PATTERN DELAY SEQUENCE
COVER (R-MEPC)
INSTANCE: An incident databaseD and the following four
parameters:
K: a maximum number of EPD sequences,σ: a minimum
cover rate(0 ≤ σ ≤ 1), Tmax: a maximum time delay.
QUESTION: Is there a maximalK-set P of (R, Tmax)-
EPD sequences that satisfy the following conditions: (i)
coverD(P ) ≥ σ and (ii) for allπ = (p1, τ1, . . . , τR−1, pR) ∈
P , τi ≤ Tmax.

Proposition 1: Let π and π′ be (r, Tmax)-EPD sequence
and (r′, Tmax)-EPD sequence, respectively. Then, ifπ′ ⪯ π
thensize(π′) ≥ size(π).

Proof: First, we show thatp′ ⪯ p ⇒ size(p′) ≥
size(p). By the definition of the size of an event pattern,
we have

size(p′)− size(p)

= (Q+ 1)(nΣ(p
′)− nΣ(p)) + (n’?’ (p

′)− n’?’ (p)).

From the definition of ’⪯’, symbols inΣ which appears in
p must appear inp′. Therefore we havenΣ(p) ≤ nΣ(p

′)
anytime. Since the absolute value of the first term is larger
than or equal to that of the second term,size(p′)−size(p) ≥
0 is satisfied even if the absolute value of the second term is
negative. Therefore, we havep′ ⪯ p ⇒ size(p′) ≥ size(p).

Let π = (p1, τ1, p2, τ2, . . . , τr−1, pr) and π′ =
(p′1, τ

′
1, p

′
2, τ

′
2, . . . , τ

′
r′−1, p

′
r′). From π′ ≺ π, the following



Procedure UPDATE TIME DELAYS(P,D, σ, S);
Input : P : a set of EPD sequences,D: an incident database,σ: a real number,S: an integer;
begin

foreach π = (p1, Tmax, . . . , Tmax, pR) ∈ P do begin
π′ := π; P := P − {π};
T (π) := {(t1, t2, . . . , tR) | there is a subsetD′ = {(t1, e1), (t2, e2), . . . , (tR, eR)} ⊆ D s.t.

π matchesD′ wheret1 ≤ t2 ≤ · · · ≤ tR};
for ℓ := 1 to R− 1 do begin

Let Tℓ(π) = {tℓ+1 − tℓ | (t1, . . . , tℓ, tℓ+1, . . . , tR) ∈ T (π)};

Let T ord
ℓ (π) be the decreasing ordered sequence ofTℓ(π), i.e., T ord

ℓ (π) = (τ
(1)
ℓ , . . . , τ

(|Tℓ(π)|)
ℓ ),

whereTℓ(π) = {τ (1)ℓ , . . . , τ
(|Tℓ(π)|)
ℓ } andτ (1)ℓ > · · · > τ

(|Tℓ(π)|)
ℓ ;

for i := 1 to |Tℓ(π)| do begin
Let π′′ be the EPD sequence obtained fromπ′ by replacing thei-th time delay withτ (i)ℓ ;
if coverD(P ∪ {π′′}) ≥ σ and size(π′′) ≥ S then π′ := π′′;

end
end;
P := P ∪ {π′}

end;
return P

end;

Fig. 3. Procedure UPDATE TIME DELAYS which is used at Step 4 in Algorithm FES.

equations hold:

r′ ≥ r and
r′−1∑
i=1

τ ′i ≤
r−1∑
i=1

τi.

Then,
r′−1∑
i=1

(Tmax − τ ′i) ≥
r−1∑
i=1

(Tmax − τi).

Moreover we have

r′∑
i=1

size(p′i) ≥
r∑

i=1

size(pi).

From the definition of the size of an EPD sequence, we have
π′ ⪯ π ⇒ size(π′) ≥ size(π).

We can solveR-MEPC by specializing EPD-sequences
step by step with a machine learning method proposed by
Arimura et al. [4]. We omit the detail of the strategy. From
Prop. 1, a maximalK-set of (R, Tmax)-EPD sequences has
a local optimal solution with respect to its size. In the next
section, we use Algorithm FES rather than a strategy based
on maximalities, in order to obtain a set of EPD sequences
which has a sufficient large size.

V. A PPLICATION TO A SCREENINGMETHOD FOR

INTERNET ACCESSLOGS

A. A screening method

In this section, we propose a screening method for remov-
ing irregular packets which are supposed to be occurred by
well-known malwares.

We assume that any evente is an element ofΣk1 ×Σk2 ×
· · · × ΣkN .

Algorithm SCREENING (SCR);
Input : D = {(t, e) | t > 0 ande ∈ Σk1 × Σk2 × · · · ×
ΣkN .}: an incident database,σ: a minimum cover rate,S: a

minimum size of(R, Tmax)-EPD sequences;
Output : D′: screened incident database;

1) Let P be an output of Algorithm FES for inputsD,
σ, andS;

2) OutputD −D(P );

Algorithm SCR takes exponentially large time depending
on the size of a given incident database|D|. To overcome
this difficulty, we divide a given database into some smaller
databases whose sizes are specified previously.

Algorithm LARGE SCREENING (LSC);
Input : D = {(t, e) | t > 0 ande ∈ Σk1 × Σk2 × · · · ×
ΣkN .}: an incident database,σ: a minimum cover rateσ, S:
a minimum size of(R, Tmax)-EPD sequences,s: a size of
small databases;
Output :D′: screened incident database.

1) Let ((t1, e1), (t2, e2) . . . , (t|D|, e|D|)) be the time-
sorted sequence ofD, i.e., t1 ≤ t2 ≤ · · · ≤ t|D|;
Let κ := ⌊|D|/s⌋;

2) For all i (1 ≤ i ≤ κ), let Di :=
{(ts·(i−1)+1, es·(i−1)+1), . . . , (ts·i, es·i)}; If κ·s < |D|,
let Dκ+1 := {(ts·κ+1, es·κ+1), . . . , (t|D|, e|D|)};

3) For eachDi (1 ≤ i ≤ κ + 1), let D′
i be an output of

Algorithm SCR for inputsDi, σ, andS;
4) OutputD′ :=

∪
1≤i≤κ+1 D

′
i;

B. Experiments on Internet access logs

A typical Internet access log (darknet observation data)
includes the time, transmitter’s IP address, transmitter’s port
number, and receiver’s port number. The data has no re-
ceiver’s IP address. This is owing to the concealment of the
darknet. LetΣ = {0, 1, 2, . . . , 9}. We divide the transmitter’s
address into four parts according to the form of IP address,
and those parts are calledaddress-1, address-2, address-3,
and address-4 from the head, respectively. In addition to
those addresses, we have two port numbers, which are called
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25th May, 2009
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Fig. 4. The solid line (resp. dotted line) means the number of packets before (resp. after) screening every ten minutes. The numbers of packets after
screening are 4,258,470 (24th May, 2009, remaining rate 66.98%) and 3,039,185 (25th May, 2009, remaining rate 75.55%), respectively.

port-1 and port-2. Then, we have a set of atom dataDa
i

(1 ≤ i ≤ 6) (defined in Algorithm FES) which includes all
atom data aboutaddress-i (1 ≤ i ≤ 4) andport-i (i = 1, 2).
Each address-i is a string in{0, 1, . . . , 255}, and port-i is
a string in {0, 1, . . . , 65535}. Then an event consists of6
strings whose lengths are at most3, 3, 3, 3, 5, 5, respectively.
In the following experiment, we consider only(3, Tmax)-
EPD sequences. The second parameterTmax is specified
later.

In the screening algorithm LSC, if an input incident
database is larger thans which is the maximum quantities
of packets in each data, we divide it to some data whose
quantities of packets ares. We call the time span between
the first received packet and the last received packet in each
data theattack periodof the data. When the attack period is
short, many packets are received in a short period of time.

• Experimental Data.
The observation data and the quantity of packets, which

we used in each experiments, are shown in Table I.

TABLE I
DARKNET OBSERVATION DATE AND QUANTITIES OF RECEIVED PACKETS

Observation day Total packets received
8th Nov, 2006 4,039,197
10th Sep, 2008 2,864,698
23rd Jan, 2009 2,884,381
2nd Apr, 2009 10,261,071
24th May, 2009 6,358,187
25th May, 2009 4,022,849
21th Jun, 2009 2,275,630
12th Jul, 2009 6,691,671

• Parameters for screening.

– Cover rate:σ = 0.1.
– Maximum time delay:Tmax = 0.5 (second).
– Minimum size of event patterns:S = 69. If an

event pattern has at least3 symbols inΣ, the size
of the event pattern is more than or equal to69.
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Fig. 5. In the upper graph, the solid line, broken line, and dotted line show the numbers of peaks against their cover rates of the(1.2, 1.6)-peak set,
(1.6, 2.0)-peak set, and2.0-peak set, respectively. Similarly, the lower graph describes the line for the non-peak set (i.e.,(0, 1.2)-peak set). The average
cover rates are 38.44%, 47.73%, 70.72%, and 29.90% for the(1.2, 1.6)-peak set,(1.6, 2.0)-peak set,2.0-peak set, and non-peak set, respectively.

– Upper bound of packets in each divided data:s =
10, 000. For example, the observation databases of
24th May, 2009 and 25th May, 2009 are divided
into 637 and 403 files (incident databases), respec-
tively.

We show the relationship between the quantities of
screened database and the unit time in Fig.4, where the
upper graph is for 24th May, 2009 and the lower graph for
25th May, 2009. Those two graphs shows the transition of
quantities of packets which is received per 10 minutes in the
time sequence each day and the quantities of packets which
is left by screening the packets. The horizontal and vertical
axes mean time sequence and the quantities of packets,
respectively. The solid and dotted lines mean the quantities
of packets before and after screening, respectively. A peak of
the solid lines shows a mass of packets are received during
a short period. In the graph for 24th May, 2009, there is
no peak of the dotted line. And so, we can say attacks
indicated by peaks of the solid line are caused by well-known
malwares, and our screening method could detective them.
Therefore, we achieved our purpose, removing of packets
caused by well-known malwares. Furthermore, in the graph
for 25th May, 2009, most of the peaks of the solid line are
removed by the screening. But, around 16:30, a peak of the

solid line still remains after screening. There are also many
packets caused by complex attack patterns which cannot be
detected by our method.

In Table II, we show the quantities of remained packets
obtained from databases in Table I with their cover rates.
The average cover rate of all databases is 36.39%.

TABLE II
QUANTITIES OF REMAINED PACKETS AFTER SCREENING AND THEIR

COVER RATES

Observation day Total remained packets Cover rate (%)
8th Nov, 2006 2,006,190 50.33
10th Sep, 2008 1,736,558 39.38
23rd Jan, 2009 1,775,265 38.45
2nd Apr, 2009 7,336,516 28.50
24th May, 2009 4,258,470 33.02
25th May, 2009 3,039,185 24.45
21th Jun, 2009 1,797,655 21.00
12th Jul, 2009 3,109,089 53.54

Next we show the relationship between the increasing rates
of peaks and their corresponding cover rates. We call a 10
min interval anm-peakif the quantity of the packets received
for the interval is more thenm times the average of two 10
min intervals before and after it. Moreover, form < n, we
call a 10 min interval an(m,n)-peakif the interval is anm-



peakbut not ann-peak. Let I be a 10 min interval. Lett(I)
and r(I) be a start time ofI and the cover rate ofI after
screening. We call the set of all pairs(t(I), r(I)) of m-peaks
I anm-peak set. We define an(m,n)-peak setsimilarly.

We obtained the(1.2, 1.6)-peak set,(1.6, 2.0)-peak set and
2.0-peak set from screened results of all data in Table I. We
show the distribution of the number of peaks against their
cover rates in Fig. 5, where the upper graph describes the
(1.2, 1.6)-peak set,(1.6, 2.0)-peak set and2.0-peak set, and
the lower graph describes the non-peak set (i.e.,(0, 1.2)-peak
set). The horizontal and vertical axes mean the cover rates
and the number of peaks, respectively. In the upper graph,
the solid, broken, and dotted lines mean(1.2, 1.6)-peak,
(1.6, 2.0)-peak, and2.0-peak, respectively. For example, for
the(1.2, 1.6)-peak set, the number of peaks whose cover rate
is more than or equal to 15% and less than 20% is8. We can
say the higher the peak is, the larger the cover rate. In other
words, our method succeeds to detect attacks by malwares
that has simple attack patterns even if the quantities of them
are large.

VI. CONCLUSIONS

In this paper, we proposed a screening method taking
advantage of time-span sequential patterns. Moreover we
applied our proposed method to darknet observation data and
showed its effectiveness for identification of packets caused
by well-known malwares. In many cases the reduction rate
before and after screening is proportional to the frequency of
receiving packets. But experiments showed there are some
cases the reduction rate is low despite the concentrated
attacks.

As future works, we should inspect to declare the relation
between the reduction rate and the frequency of receiving
packets on tuning appropriate establishments. Furthermore,
to attain the online screening, we are considering efficient
algorithms to find a set of time-span sequential patterns.
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