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Abstract—To early detect and defend the threats in the frequent pattern discovery from data having structures such
Internet caused by botnet, darknet monitoring is very important  as web data [7], chemical compounds [8], and so on.
!‘.O understand various .botnet activities. However, commo.n In this paper, we utilize a data observed in the dark-
illegal accesses by ordinary malwares makes such detection hich i K th b d th h
difficult. In this paper, in order to remove such accesses by net, w !C IS a network that cannot be aC_Cesse throug
ordinary malwares from the results of network monitoring, we  conventional means. Most of all packets which the darknet
propose a data screening method based on finding frequent receives are illegal, so they could be considered as traces of
sequential patterns which appear in given traffic data. Besides, malicious attacks. Therefore we might detect attack patterns
we apply our method to traffic data observed in darknet and by malwares in the darknet access record.
report the results. . Y
o _ o We think of each packet as a three tuple (transmitter's
Index Terms—incident detection, frequent pattern mining, address, transmitter's port, receiver's port), and call it an
sequential pattern, data screening, darknet monitoring. event Moreover We call an event with its received time an
incident The observation data, called extident databases
|. INTRODUCTION a set of incidents. We regard each item of an event as a string
HE rapid growth of the high-speed Internet acces nd propose a pattern class'of sequences of string patterns
. T %nth time delays. The following pattern is an example of
service and mass storage media brings us not only the.

: . . Incident patterns, calledvent pattern delay sequences (EPD
benefits of society but also many harmful effects. A notorlousse uencesh this paper
example of them is the social damages caused by various! Paper.
computer viruses. The bot worm is a typical example of (72.277. % %, %, 445)
criminal computer viruses, which is an Internet software
controlled by a bot herder. Its infection spreads in a computer
network. A bot herder can control the infected computers as
a network, which is called botnet, and cause many incidents -
such as DDos attacks, sending a huge spam mails a{ﬂdhfa,above example, ?.stands for any one constant symbol,
so on. To construct efficient countermeasures against th&§¢€l *’ stands for any string whose length is at leasEach
incidents, many researches are studying effective methdisthe _thre,e items in a round b,racket respectively der?ote,s
for early detection of tendencies of such incidents [1], [2}[ansm|tters address, transmitter’s port r_1umberand receiver’s
3]. port number. The real number over a right arrow means the

Our purpose is knowledge discovery to detect signs of indpaximum time delay between the first patt.ern and the second
dents. If we could prevent them, the safety and the confiderR@tern (or the second pattern and the third pattern)
of the Internet would be increased. Many researchers extractn this paper, firstly we introduce a class of EPD sequences
tendencies of particular senders or patterns and analyze tHBrerder to represent common illegal packets, and formally
to detect evidence of new attacks. For example, Kim et al. [8}Scuss a computational problem of finding EPD sequences
proposed a Flow-based method for abnormally detectors dAd@ given incident database. Next we give an effective
Fukushima et al. [5] proposed a method which focuses gguristic algorithm to discover EPD sequences in an |nC|de_nt
the average number of packets sent by a source address @@jgbase. Lastly we propose an automatic data screening
its frequency of appearances to find the subtle attacks. method and report experimental results on darknet traffic
On the other hand, when it comes to anomaly detectioﬁ’ﬁ‘ta-
illegal packets caused by the well-known malwares make
it harder. Then, we focus on finding attack patterns of Il. PRELIMINARIES
the well-known malwares. Majority of them could often be Let X be a set of distincevents For an event € X, let

detected easily by ignorant people about network inciden She a time when the eveatoccurs. We call a paift, ¢) an

Therefore we define them as a class of time-span sequence o .
S . incident and a set of incidents ancident database
patterns which is easily detected by computers. Furthermore

we introduce a method to discover a set of frequent patternDefinition 1 (ED sequences)et » be a positive integer
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which appear in the darknet observation data and deleied 7,,.. a positive real number. Lei;,as,...,a, ber
packets caused by them. Many researchers are interestegvignts (not necessarily distinct). And gt 7, ..., 7.1 be
r — 1 positive real numbers which are less than or equal
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(r, Tmax )-€vent delay sequencabbreviated tdr, Ty,ax)-ED
sequencg

Definition 2 (Matching of ED sequenced)et D be an
incident database andl = (a1, 71,a2,72,...,7r—1,a;) @n
(r, Tmax)-ED sequence. For a subget of D with |D’| = r,
we say thatr matchesD’ if the following conditions hold:

|P| < q. Let P = {(agl),Tg,agz),Té,agg)) |1 <<
q} whereagl),af),af’) € {er,e2,...,e,} and 7y, 7y <
Tax- Since |U,cp D(7)| > 3¢ + n and [D"| = n,

W)

|Urep D'(m)| > 3q. Therefore, for each(3, Thax)-E
sequence(al’, m, al?, 7/,0{?), there is an indexf(¢

(1 < f(£) < m) such thaB continuous time events (f(¢)—
1)

~—

Let ((t1,e1), (t2,€2),...,(t, e,)) be a sorted sequence oﬂ)(n+2)+1,af(é)),((f(é)—1)(n+2)+2,a;2()€>),((f(€)—

the incidents inD’ with respect tot; (1 < i < r), i.e,
t1 <ty <--- < . Then,

(@ foralli(1<i<r), e =a; and

(b) for all ¢ (]. <i<r-— 1), tiy1 —ti < 7.

Definition 3 (Cover rate of ED sequencesjor an inci-
dent databas® and an(r, T1,.x)-ED sequence, we denote
by D(x) the union of all subsets oD which are matched

by =, i.e.,
U

D’CD s.t. 7 matchesD’

D(r) D'

The cover rate of =« for D is defined ascoverp(n)
| D(m)|

|D
D(P) = ,cp D(n). Thecover rateof P for D is defined
_ [D(p)|
ascoverp(P) = D]

. Let P be a set of(r,T.x)-ED sequence and

@) 1 @),

BRI Rt

1)(n+2)+3, o )} are matched b(/ozl(»l),n,a

7o)
i _ L @ (3)
Itis easy to see that’ = {{af(l),af(e),af(z)} [1<¢<q}

is an exact cover foi. ]

In the next section, we give an effective heuristic algorithm
to compute one of the more generalized problems within the
framework of3-EC.

Let N and kq, ko,...,ky be positive integers. Let '?’
and '’ be two special symbols. Let be a finite alphabet
which include neither '?’ nor# (i.e., SN {"?",’«'} = 0).
Below, aneventis an object which consists aWV strings
wi,ws,...,wy N X*, each of whose length is at most
k; (1 < i < N). Then we denote an event by =
(wi,wa, ..., wy) € Lk x Bk2 x ... x Bkw,

An atom patterris a string inw € (SU{"?"'})TU{ ' }. For

EVENT PATTERN DELAY SEQUENCECOVER

First of all, we consider the following computationalgny atom pattern, we denote byw| the length otv. For an

problem, which plays an important role in this paper.

R-EVENT DELAY SEQUENCE COVER ( R-EC)
INSTANCE: An incident databasé, a cover rates (0 <

atom patterno, if w =’"*’, we can replace#’ with an atom
patternw’ € (X U{"?'})*. If w includes '?’, we can replace
it with a symbol inX. We call a set of such replacements
a substitution Let 8 be a substitution. We denote hyf

o < 1), a maximum time dela¥},., and a positive integer the atom pattern which is obtained framby applying all

K

QUESTION: Is there a seP of (R, T,,.x)-ED sequences such

that |P| < K and the cover rate oP for D is at leasto?

We show the following theorem.
Theorem 1:3-EC is NP-complete.

Proof: It is easy to see tha&-EC is in NP. We construct patternsp = (
a reduction from the following well-known NP-complete;, event pattern. For an event= (

problem X3C.

EXACT COVER BY 3-SETS (X3C)
INSTANCE: A set X with |X| = 3¢ and a collectionC' of
3-element subsets of .
QUESTION: Does C contain an exact cover fok, i.e., a
subcollectionC’ C C such that every element of occurs
in exactly one member of’?

.,en} Wheren = 3¢ and C =

Let X = {61,62,..
{c1,¢2,...,cm} Wherec; = {agl),a§2),a§3)} (1<i<m).

We construct an incident databaseas follows. LetD’ =
{((i=1)(n+2)+74,a%)|1<i<mandj=1,23} and
D" ={(m(n+2)+k,ex) |1 <k<n}. LetD=DUD",
c=3Bqg+n)/Bm+n), Thax =n—1,and K = q.

First, we suppose that X3C returtisie. Then we have
an exact coverlC’ = {c;,,ci,...,ci,} (1 < iy < ig <

< ig < m). Let P = {(a!”, Tnax a1, T af) |
1 < ¢ < g} Itis easy to see that ), ., D'(7)| = 3¢ and
|Urep D" ()| = n. Then the cover rate oP is equal to
o = (3¢ +n)/(3m + n). Therefore3-EC returnstrue.

Conversely, we suppose thatEC returnstrue. Then

replacements i to w.

We denote byP the set of atom patterns. For an integer
k, we denote byP!*! the set of atom patterns iR of length
at mostk. For two atom patterng, w’, we write w’ < w if
there is a substitutiofl such thaty’ = w6.

Definition 4 (Event patterns)We call a sequence of atom
W1, wa, ..., wy) € PRI x Pkl 5. plen]
wy,ws, ..., wy) and an
event patterrp = (wy,ws,...,wy), We writee =< p if for

In a similar way to Def. 1, we define agvent pattern
delay sequence

Definition 5 (EPD sequences):et r be a positive integer
and Ty,.x a positive real number. Lepy,ps,...,p,. ber
event patterns. And let,, 75, ..., 7._1 ber —1 positive real
numbers which are less than or equallig... Then we call
m = (p1,7T1,P2, T2, - - - s Tr—1, Pr) @N (7, Trax )-€VENt pattern
delay sequencéabbreviated to(r, Tiax)-EPD sequence

Definition 6 (Matching of EPD sequenced)et D be an
incident database and (P1, 71,02, T2y« « s Tr—1,Dr)
an (r, Tmax)-EPD sequence. For a subsBf of D with
|D| r, In similar way to Def. 2, we say that
m matches D’ if the following conditions hold: Let

((t1,€1), (t2,€2),...,(t,,e.)) be a sorted sequence of the
incidents in D’ with respect tot; (1 < i < r), i.e,
ty <ty <---<t,. Then,

(a) foralli (1 <i<r), e <p;, and

there is a setP of (3,Tmax)-ED sequences such that (b)foralli (1<i<r—1),t;y1 —t <.
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Let D be an incident database. In a similar way to Def. 3.4/, (w)

we define the cover rate of an EPD sequencr D and
the cover rate of a sa? of EPD sequences fab.

In order to consider a similar computational problem
to 3-EC, we have to define an ordering on EPD se-

guences. The most generalized EPD sequencegis=
(p(h Tmaxap()a cee 71—‘maxap0)a Wherepo (*7 *ooo., *) All
N——

incidents in any incident database can be col\\;eredobbut
it is meaningless.

Definition 7 (Size of delay sequencegpr an event pat-
ternp € Pl x plkal 5 ... x PlEn] we denote byis (p) the
number of symbols ir which appear irp, and byn+ (p)
the number of '?’ which appear ip. We define the size of
an event patterp as

size(p) = ne(p) x (Q + 1) +n~(p),

N
whereQ = Z k.
i=1
Letm = (pla T1,P2,7T2y .- 77—7’717]97”) be an(T, Tmax)'EPD
sequence. We define the sizemfas follows:

T r—1
size(w) = Z size(p;) + 2:(7’,11ax - 7).
i=1 i=1

For any (r, Timax)-EPD sequencer, size(wr) > 0. And
size(mp) = 0 for mg = (Po, Traxs P0s - - - » Tmax, Po), Where
po = (%, %, ..., %).

In a similar way to the definition oR-EC, we definek-
EVENT PATTERN DELAY SEQUENCE COVERR-EPC)
as follows:

R-EVENT PATTERN DELAY SEQUENCE COVER ( R-
EPC)
INSTANCE An incident databasé® and the following four

_ Hwi € Dy | w; X w}

- |Di

pE Pli] 5 ple2l 5 .. PlEN] et

_ {e |3t s.t.(t,e) € D ande < p}|
D '

. For any event pattern

freqn(p)

Algorithm FIND_EPD_SEQUENCES(FES);

Input: D = {(t,e) | t > 0ande € ¥F x ¥F2 x ... x
¥F~ 1. an incident database, a minimum cover rateS: a
minimum size of(R, Tmax)-EPD sequences;

Let § be a positive real number smaller than This
parameters plays an important role in this algorithm to
produce a good set dfR, Tr,.x)-EPD sequences.

1) LetD¢ := {w; | (¢, (w1,...,w;,...,wy)) € D} (1 <

i < N); Foralli (1 <i< N), we compute the sets
A;l
A; = {w e plki

freqpg (w) = 0}

We compute the set of event patterf's(Procedure
FREQ EVENT_PATTERNS (Fig. 1)):

2)

F = {p e Pl plhzly...x PENT| freqp(p) > 6);

3) We compute the set afR, Tr.x)-EPD sequence®

(Procedure REQ_PATTERN_SEQUENCES(Fig. 2)):

P= {77 = (plaTmam s 7TmaxapR) ‘ f’r‘qu(ﬂ') > 5}7

For each (R,T..x)-EPD sequence =«
(p1,7,..-.,7TR—1,Pr) 1N P, we try to decrease
each time delayr, (1 < ¢ < R — 1) as much
as possible (Procedure POATE TIME_DELAYS

(Fig. 3)).

5) OutputP.

B. A machine learning method

Here we define a partial order on EPD sequences and
a concept of maximal EPD sequences on a given incident
database. And then we give an idea of an algorithm for

parameters:
(a) K: a maximum number of EPD sequences,

(b) o: a minimum cover rat¢0 < o < 1),

(c) S: a minimum size of event patterns,

(d) Thhax: @ maximum time delay.
QUESTION: Is there a setP of (R,Twma.x)-EPD se-
guences that satisfy the following conditions: for all=
(P1,71,---sTR-1,PR) € P,

(@)|P| < K,

(b) coverp(P) > o,

(c) size(p;) > S (1 <i<R),

1

<i< and
(d)T’LSTmax(lglgR— .

)

We can easily see the following theorem from Theorem 2_:

Theorem 2:3-EPC is NP-complete.

IV. HEURISTICALGORITHMS FORR-EPC
A. An Apriori-like method

there arer integersjy, ja, . ..
Jr <1’ such that for alk (1 <i<r),

solving our problem.

Let 7 = (p177—17p277-2a R 77-7‘—17p7‘) be an (Ta T’max)'
EPD sequence and’ = (p},7{,p5, 75,....7} _1,p.) an
(', Tmax)-EPD sequence. We write’ < = if v/ > r and
e With 1<y <jo <0 <

Jit1—1
pj, <piand > 1 <t
=j;

Definition 8 (Maximal EPD sequences)et D be an in-
ident database and a minimum cover raté0 < o < 1).

We say thatr is a maximal (r, Ty,ax)-EPD sequencavith

respect taD ando if there is no(r, Ty,.x)-EPD sequence’
(7' # m) such thatr’ < = and coverp(n’) > o.

Let P be a set ofr, Thuax)-EPD sequence. we say that
is amaximal K-set of(r, Tr,.x )-EPD sequences with respect

In this section, we give a heuristic algorithm for computing® D and o if the following four conditions hold:

R-EPC by using an Apriori-like method twice.

Let D be an incident database. We denotelbythe set of
all the i-th stringsw; of the incidents(t, (w1, wa, ..., wy))
in D. For anyi (1 <i < N) and atom pattern € Pl¥i], |et

ISBN: 978-988-18210-3-4
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Procedure FREQ EVENT_PATTERNS(D, 0, N, {A4;});
Input: D: an incident databasé; a real numberV: an integer{A;}: a collection of sets of atom patterns;

begin
Fr=Ucicn Upen, {p=(w1,...,wp, ... wn) [ if £ =i thenw, = w elsew, ="+"};
for k:=2to N do begin
F =0
foreach p,p’ € Fj,_; do begin
Let p = (w1, wa,...,wy) @andp’ = (wi,wh,...,wh);
if there are two indices andj (¢ < j) which satisfy the following conditions:
lLw =w; (1 << N, l#4, andl # j),
22w, #'xandwy ="%" (i+1<¢<N), and
3.w;-7é’*’ andwy ="+ (i<l<j—1, j+1<{<N)
then begin
Letp” = (wf,...,wy,...,wy ) be the event pattern s.t. §f= j thenw] = w; elsew] = wy;
if freqp(p”) > ¢ then Fy, := F,, U {p"}
end
end
end;
return F:= U, cpen Fr
end; -

Fig. 1. Procedure REQ_EVENT_PATTERNS which is used at Step 2 in Algorithm FES.

Procedure FREQ PATTERN_SEQUENCESF, D, d, R);
Input; F': a set of event patternd): an incident databasé; a real numberR: an integer;

begin
P, :=F;
for r := 2 to R do begin
P.:=0;

foreach =, 7’ € P._; do begin
Letm = (ply Tiax, - - - aTmaxapr—l) andr’ = (p/17 Tax; - - - aTmaxap;fl);
if = andn’ satisfy the following conditions: for all (1 <i <r —2), p; = p}, andp,_1 # p,._;
then begin
Let ﬂ—// = (pla Tmaxa e 71—‘maxaprfla Tmaxvp;’—l);
if coverp(n”) > 6 then P.:= P.U{n"}
end
end
end,;
return Pg
end,

Fig. 2. Procedure REQ_PATTERN_SEQUENCESWwhich is used at Step 3 in Algorithm FES.

4) for anyw € P, there is no(r, Tyax)-EPD sequence  Proposition 1: Let m and «’ be (r, Thuax)-EPD sequence
7' ¢ P such thatr’ < 7 and coverp(P — {w} U and (', Tmax)-EPD sequence, respectively. Thengzif< =

{n'}) > 0. thensize(n’) > size(r).
We define R-MAXIMAL EVENT PATTERN DELAY Proof: First, we show thaty’ < p = size(p') >
SEQUENCE COVER R-MEPC) as follows: size(p). By the definition of the size of an event pattern,
we have

R-MAXIMAL EVENT PATTERN DELAY SEQUENCE
COVER (R-MEPC) _ no_ N
INSTANCE: An incident databas® and the following four = @+ Dns(p) —ns(p)) + (w2 () =2 (p)-
parameters:

K: a maximum number of EPD sequences,a minimum

cover rate(0 < o < 1), Tipax! a maximum time delay. anytime. Since the absolute value of the first term is larger
QUESTION: Is there a maximali-set P of (R, Tmax)-  than or equal to that of the second terye(p') — size(p) >
EPD sequences that satisfy the following conditions: (})ig satisfied even if the absolute value of the second term is
coverp(P) = o and (ii) forallr = (p1, 71, ..., 7Tr-1,Pr) € negative. Therefore, we hayé < p = size(p’) > size(p).

size(p') — size(p)

From the definition of X’, symbols in% which appears in
p must appear irp’. Therefore we haveis(p) < nx(p’)

P’ Ti S ﬂnax' Let ™ == (p1>7—17p277—27'~'7Tr717pr) and ﬂ—/ =
(P, 71, Py, Ty -y, Dh). From 7’ <, the following
ISBN: 978-988-18210-3-4 IMECS 2011

ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)



Proceedings of the International MultiConference of Engineers and Computer Scientists 2011 Vol I,
IMECS 2011, March 16 - 18,2011, Hong Kong

Procedure UrPDATE_TIME_DELAYS(P, D, 0, S);
Input: P: a set of EPD sequenceB;: an incident database, a real numberS: an integer;
begin
foreach 7 = (p1, Timax - - - » Tmax, Pr) € P do begin
' =m P:=P—{r};
T(W) = {(tl,tg, - ,tR) ‘ there is a subseb’ = {(tl, 61)7 (tz, 62), ey (tR, eR)} C D st
7w matchesD’ wheret; <ty <--- <tg};
for £:=1to R — 1 do begin
Let Tg(’/‘() = {tg_;,_l — 1ty ‘ (tl, RN 728 7% PO ,tR) € T(ﬂ)};
Let T2"(r) be the decreasing ordered sequenc&gf), i.e., Te™d(x) = (7|7, ..., 71Ty,
whereT(x) = {\"), ..., 7™} and 7V > ... > 77D,
for ¢ :=1 to |Ty(w)| do begin
Let 7/ be the EPD sequence obtained frafmby replacing the-th time delay withre(z);
if coverp(PU{n"}) > o and size(n”) > S then 7’ .= n”;
end
end;
P:=Pu{n'}
end,
return P
end,

Fig. 3. Procedure BDATE_TIME_DELAYS which is used at Step 4 in Algorithm FES.

equations hold: minimum size of(R, Tmax)-EPD sequences;
. o Output: D’: screened incident database;
> r and Z < Z”' 1) Let P be an output of Algorithm FES for input®,
- i o, and S,

Then, 2) OutputD — D(P);

-1 r—1 Algorithm SCR takes exponentially large time depending

> (Twax = 7) = > (Tomax — 72)- on the size of a given incident databag®|. To overcome

i=1 i=1 this difficulty, we divide a given database into some smaller
Moreover we have databases whose sizes are specified previously.

7’ r Algorithm LARGE_SCREENING (LSC);
Zsize(p;) > Zsize(pi). Input: D = {(t,e) | t > 0ande € ¥ x ¥k2 x ... x
i=1 i=1 ¥k~ }: an incident database; a minimum cover rate, S:

From the definition of the size of an EPD sequence, we hagenmum size Of(R, Tinax)-EPD sequences;: a size of
7 <= size(n') > size(n). small d.atrjt.bases; o
We can solveR-MEPC by specializing EPD—sequenceQUtpUt'D : screened incident database. .

step by step with a machine learning method proposed byl) Let ((t1,e1),(t2,€2). ... (tp,€p|)) be the time-
Arimura et al. [4]. We omit the detail of the strategy. From  Sorted sequence ab, ie.,t; < {y < --- < t|p|;
Prop. 1, a maximakK-set of (R, Tiax)-EPD sequences has Let r:= [|D[/s];

a local optimal solution with respect to its size. In the next 2) For al i (1 < @ < x), let D; :=
section, we use Algorithm FES rather than a strategy based {(fs-(i—1)+1; €s.(i—1)41); -+ (Esis €s.0) }3 I s <[ D,

on maximalities, in order to obtain a set of EPD sequences 18t Di+1 1= {(ts-m{rl’emﬂ)’ A (tllDlae\D\)};
which has a sufficient large size. 3) For eachD; (1 <i <k + 1), let D} be an output of

Algorithm SCR for inputsD;, o, and S;

4) OutputD’ := , Di;
V. APPLICATION TO A SCREENINGMETHOD FOR ) P U1§z§n+1 ¢

INTERNETACCESSLOGS
A. A screening method B. Experiments on Internet access logs

A typical Internet access log (darknet observation data)
ludes the time, transmitter’s IP address, transmitter’s port
namber, and receiver's port number. The data has no re-
ceiver's IP address. This is owing to the concealment of the
darknet. Let= = {0,1,2,...,9}. We divide the transmitter’s
address into four parts according to the form of IP address,
Algorithm SCREENING (SCR); and those parts are calletidresst, address2, address3,
Input: D = {(t,e) | t > 0ande € ¥* x ¥*2 x ... x and address4 from the head, respectively. In addition to
YF~ . }: an incident database; a minimum cover rateS: a those addresses, we have two port numbers, which are called

In this section, we propose a screening method for remaov-
ing irregular packets which are supposed to be occurred
well-known malwares.

We assume that any evenis an element ob*: x k2 x
N Ek’N i
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Fig. 4. The solid line (resp. dotted line) means the number of packets before (resp. after) screening every ten minutes. The numbers of packets after
screening are 4,258,470 (24th May, 2009, remaining rate 66.98%) and 3,039,185 (25th May, 2009, remaining rate 75.55%), respectively.

port-1 and port-2. Then, we have a set of atom daff we used in each experiments, are shown in Table I.
(1 < i< 6) (defined in Algorithm FES) which includes all
atom data aboutddress: (1 <4 < 4) andport-i (i = 1,2). TABLE |
.. . . . DARKNET OBSERVATION DATE AND QUANTITIES OF RECEIVED PACKETS
Eachaddress: is a string in{0,1,...,255}, and port-i is
a string in{0,1,...,65535}. Then an event consists 6f Observation day| Total packets received
strings whose lengths are at mas8, 3, 3, 5, 5, respectively. 8th Nov, 2006 4,039,197
In the following experiment, we consider onli3, Tyax)- 10th Sep, 2008 2.864,598
g exp , Y, Lmax 23rd Jan, 2009 2,884,381
EPD sequences. The second paraméigy, is specified 2nd Apr, 2009 10,261,071
later. 24th May, 2009 6,358,187
. . . . . 25th May, 2009 4,022,849
In the screening aIgont_hm_LSC, if an input quent >1th Juan 5009 2.275.630
database is larger thanwhich is the maximum quantities 12th Jul, 2009 6,691,671

of packets in each data, we divide it to some data whose
quantities of packets are We call the time span between Parameters for screening.
the first received packet and the last received packet in each )
data theattack periodof the data. When the attack period is - Cove_zr rate.g =0.1.
short, many packets are received in a short period of time. - 'V'f'”F'm“m t|_me delayTrax = 0.5 (second).
— Minimum size of event patternsS = 69. If an

o Experimental Data. event pattern has at leadtsymbols in¥, the size
The observation data and the quantity of packets, which of the event pattern is more than or equabfo
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—non-peak

Fig. 5. In the upper graph, the solid line, broken line, and dotted line show the numbers of peaks against their cover ratds2of thepeak set,
(1.6,2.0)-peak set, an@.0-peak set, respectively. Similarly, the lower graph describes the line for the non-peak séb (iLe2)-peak set). The average
cover rates are 38.44%, 47.73%, 70.72%, and 29.90% fo(1ti¥e 1.6)-peak set(1.6,2.0)-peak set2.0-peak set, and non-peak set, respectively.

— Upper bound of packets in each divided data= solid line still remains after screening. There are also many
10, 000. For example, the observation databases phckets caused by complex attack patterns which cannot be
24th May, 2009 and 25th May, 2009 are dividedietected by our method.
into 637 and 403 files (incident databases), respec-In Table I, we show the quantities of remained packets
tively. obtained from databases in Table | with their cover rates.

) ) . The average cover rate of all databases is 36.39%.
We show the relationship between the quantities of

screened database and the unit time in Fig.4, where the TABLE Il

upper graph iS for 24th May, 2009 and the lower graph forQUANTITIES OF REMAINED PACKETS AFTER SCREENING AND THEIR
25th May, 2009. Those two graphs shows the transition of
guantities of packets which is received per 10 minutes in the

COVER RATES

Observation day| Total remained packets Cover rate (%)

time sequence each day and the quantities of packets which [~gth Nov, 2006 2,006,190 50.33
is left by screening the packets. The horizontal and vertical | 10th Sep, 2008 1,736,558 39.38
axes mean time sequence and the quantities of packets, §3£jd :ané%%%g %ggg‘jg gg-gg
respectively. The solid and dotted lines mean the quantities 22th ,\,‘lj;y, 2009 7.258.470 33.00
of packets before and after screening, respectively. A peak of [ 25th May, 2009 3,039,185 24.45
the solid lines shows a mass of packets are received during [ 21th Jun, 2009 1,797,655 21.00
a short period. In the graph for 24th May, 2009, there is 12th Jul, 2009 3,109,089 53.54

no peak of the dotted line. And so, we can say attacks

indicated by peaks of the solid line are caused by well-known Next we show the relationship between the increasing rates
malwares, and our screening method could detective theofi.peaks and their corresponding cover rates. We call a 10
Therefore, we achieved our purpose, removing of packetsn interval anm-peakif the quantity of the packets received
caused by well-known malwares. Furthermore, in the grajpdr the interval is more them times the average of two 10
for 25th May, 2009, most of the peaks of the solid line ammin intervals before and after it. Moreover, for < n, we
removed by the screening. But, around 16:30, a peak of teal a 10 min interval arfm, n)-peakif the interval is anm-

ISBN: 978-988-18210-3-4 IMECS 2011
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)



Proceedings of the International MultiConference of Engineers and Computer Scientists 2011 Vol I,

IMECS 2011, March 16 - 18,2011, Hong Kong

peakbut not ann-peak Let I be a 10 min interval. Let(I)
andr(I) be a start time off and the cover rate of after
screening. We call the set of all pai{g1), (1)) of m-peaks

I anm-peak setWe define an(m, n)-peak setsimilarly. [8]

We obtained thé1.2,1.6)-peak set(1.6, 2.0)-peak set and
2.0-peak set from screened results of all data in Table 1. We
show the distribution of the number of peaks against their

cover rates in Fig. 5, where the upper graph describes the

(1.2,1.6)-peak set(1.6,2.0)-peak set an@.0-peak set, and
the lower graph describes the non-peak set (ilel.2)-peak

set). The horizontal and vertical axes mean the cover rates
and the number of peaks, respectively. In the upper graph,

the solid, broken, and dotted lines me&h2,1.6)-peak,
(1.6,2.0)-peak, and2.0-peak, respectively. For example, for
the (1.2, 1.6)-peak set, the number of peaks whose cover rate
is more than or equal to 15% and less than 20% M/e can

say the higher the peak is, the larger the cover rate. In other
words, our method succeeds to detect attacks by malwares
that has simple attack patterns even if the quantities of them

are large.

VI. CONCLUSIONS

In this paper, we proposed a screening method taking

advantage of time-span sequential patterns. Moreover we
applied our proposed method to darknet observation data and

showed its effectiveness for identification of packets caused
by well-known malwares. In many cases the reduction rate
before and after screening is proportional to the frequency of

receiving packets. But experiments showed there are some
cases the reduction rate is low despite the concentrated

attacks.
As future works, we should inspect to declare the relation
between the reduction rate and the frequency of receiving

packets on tuning appropriate establishments. Furthermore,

to attain the online screening, we are considering efficient
algorithms to find a set of time-span sequential patterns.
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