
 

  

Abstract— Almost all systems all over the world suffer from 

outsider and insider attacks. Outsider attacks are those that 

come from outside the system, however, insider attacks are 

those that are launched from insiders of the system. In this 

paper we concentrate on insider attacks detection on the 

application level; database is our focus. Insider attacks differ 

from outsider attacks in many ways; most importantly, insiders 

have more knowledge about the underlying systems. Because of 

their knowledge and their privileges of the system resources; 

their risk can be greater and more severe. In fact, insiders can 

find vulnerabilities in the system easily. Several techniques have 

been proposed that tackled the insider threat problem, but most 

of them concentrate on insider threat detection in computer 

system level. We describe a method for insider threat detection 

in database systems that handle entrants on the role of insiders 

for such attacks. Our simulation results show resistance against 

such attacks. Also, our results show good performance in terms 

of reducing false alarms to the minimum. 

 

Index Terms—About four key words or phrases in 

alphabetical order, separated by commas, for example, visual-

servoing, tracking, biomimetic, redundancy, degrees-of-

freedom 

I. INTRODUCTION 

nsider attacks are a well-known problem acknowledged as 

a threat as early as 1980s [1], but few works have been 

conducted to deal with this problem effectively. Intruders are 

divided into two types' insiders and outsiders. But most 

Intrusion Detection Systems (IDSs) are designed to deal 

with outsiders. IDSs aim to help in the detection of 

important types of computer security violations. Although 

outsider attacks are greater than the number of insider 

attacks, the insider attacks are more severe [2]; these kinds 

Many definitions exist in the literature for the insider. For 

example, the authors of [3] define the insider as a person 

who has privileges to access the underlying system.  Another 

definition of an insider would be "an individual who has the 

knowledge of the organizations information system structure 

to which he/she has authorized access" [4]. In [5] the authors 

stated that an insider can be an employee that uses his/her 

privileges to do activities based on his/her knowledge.of 

attacks are very serious and dangerous due to their nature 

which includes personnel who have privileges and 
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authorizations to access organizations' resources. Such 

attacks also involve personnel who have, in addition to their 

privileges, knowledge of the information system resources 

and might know some vulnerabilities of the system. This 

makes the problem more severe and serious. The insider has 

general knowledge of everything in the organization as a 

whole. For example, knowledge of other insiders in the 

organization, knowledge of different kinds of dependencies 

style menu. The style will adjust your fonts and line spacing. 

In our work use the last definition, where the insider is one 

of the organization/company employees and this explain 

how he gains privileges and knowledge. The insider 

knowledge of the underlying system entails him/her: access 

all documentation on the underlying system, collect 

intelligence and perform discovery without suspicion, know 

detailed information about objects of the system and have 

good intelligence on the entire system [7]. Because of the 

nature of insiders who pose great risks on assets of the 

system, those risks or threats should be discovered and 

revealed either before they take place or as soon as they take 

place.  

Several models have been recently proposed that tackled 

the insider threat problem, but very few models concentrate 

on the application level such as databases. Databases is very 

important where it contains mission-critical and sensitive 

data; data that have been coordinated and maintained over 

usually long period of time, which make their loss or damage 

more costly. Most organizations and e-businesses use 

Database Management System (DBMS) to manage and 

deliver missions' critical and sensitive data. Database is a 

collection of named data items (objects), or a collection of 

related data [7]. Databases used to save the data that have 

been collected and maintained over usually long period of 

time were loss of such data will cost more than any other 

components [8]. 

As Kamra et al noted in [9], intrusion detection 

mechanisms for DBMS are important for the following three 

reasons; First, malicious actions on DBMS not necessarily 

malicious for the operating system or the network; and the 

IDSs for them are not effective for database attacks [8]. 

Second, data care done by various government regulations 

concerning with data management such as SOX, GLBA, 

HIPAA and so on, has been prepared by many 

organizations. Third, the most important reason, where the 

insider threat problem is recognized as a major threat, its 

solution needs a mechanism to detect access anomalies by 

insiders. 

II. RELATED WORK 

In this section we discuss some related works about insider 
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attacks. The insider threat problem may exist on different 

levels: network level, system level, and finally application 

and data level, where our work is concentrated. We mention 

methods and techniques that are proposed to detect, predict 

and prevent, and assess such threats. Based on [8] there are 

three methodologies for intrusion detection systems that 

have been used, which are: Misuse Detection- based on 

signatures that demonstrate the characteristics of well-

known system vulnerabilities and attacks. It works well with 

known misuse patterns but fails with new ones, Anomaly 

Detection- based on the behavior of the matter, e.g., user, 

application, or component of a system. It’s the most popular 

way of detection. It is better than the misuse detection 

methodology because it has a better opportunity to detect 

previously unknown attacks and Insider Misuse- sources 

ranging from discontent employee (database administrators, 

application developers, application users), who may 

maliciously damage the data integrity to outsider that gain 

access to the data [10]. The problem of insider misuse is 

more dangerous in database systems because it works and 

manages critical data.  

A detection-oriented approach classifies insider misuses 

based on the level of the system at which they might be 

detected. The basis for this is that different types of misuses 

manifest themselves at varying levels of the system (e.g. 

some may be apparent at the network level, whereas others 

are most visible at higher levels, such as the operating 

system or application levels) [11]. Network-level misuses do 

monitoring activity at the network traffic level. System-

Level misuses do monitoring at the system level necessitates 

that monitoring activity be conducted upon individual host 

systems. Our concentration will be on the application and 

data-level misuses.  

We choose to work on the database systems from 

application and data level; due to the database importance. 

The techniques that are proposed for network and system 

level are not sufficient for application and data level. 

Existing intrusion taxonomies mainly describe 

characteristics of various attacks, and not developed 

specifically for monitoring insider misuse. Anderson in [11] 

was the first person to perform classification for insiders 

who may misuse the IT systems into, masqueraders, 

clandestine users, and misfeasors. However, this 

classification only characterizes the type of users and not the 

actual misuse or how they may be detected. Another 

technique concentrates in detecting anomalous access 

patterns in relational databases. This approach is based on 

mining SQL queries from database log files. The mining 

process results used to form profiles that model the normal 

behavior of database access to determine intruders. Kamra et 

al [13] consider two scenarios, in the first scenario; they 

assume that database has a Role Based Access Control 

(RBAC) model. Their ID system can identify role intruders, 

which behave differently than expected. The advantage of 

combining ID with the RBAC databases is that it can do 

protection against insider threats. In the second scenario, 

they assume that no roles are associated with users of the 

database. So, they can look to users' behavior directly. 

III. PROBLEM STATEMENT 

Databases of an organization might face similar problems 

of insider and outsider attacks to companies or 

organizations. Employees (insiders) of the organization 

might try to mislead the system by trying to implement 

actions that look fine to the system; however, they can be 

very dangerous. In this paper we built an insider threat 

model that takes care of such threats on the application level; 

threat is considered as an activity that violates the security 

policy of a system [8]. In our model we seek preventing 

insider threats as well as detecting possible threats for 

individual tasks. As an indication of the effectiveness of our 

proposed model, we want to minimize the false alarms 

percentage which will be shown in our results and analysis 

chapter.   

A. Model 

In our model, we assume that the number of tasks an 

insider can execute is limited. We assume that the number of 

transactions the insider can execute is limited. This means 

that the order of executing a task can be predefined and 

hence, the order of executing the associated transactions that 

are needed to perform the associated task can also be 

predefined. In our model, we try to control the insiders by 

watching their sequence of actions. An insider before 

implementing his/her action has to declare his/her intention 

by specifying the work that he/she needs to do. Based on 

that, a list of objects/ transactions that he/she needs to follow 

to finish his/her task and the data items (objects) that he/she 

can use will be prepared by the system. After specifying the 

set of objects and transactions by the system based on the 

user intended work, a dependency graph can be set up; this 

shows dependency relationships among objects and/or 

transactions. This process can be achieved because we 

assume that the number of tasks and the number of 

transactions are limited. Based on these dependencies, the 

sequence of objects to be accessed within a transaction and 

the sequence of the transactions themselves to be executed 

can be determined. For example: to perform task TS1, we 

need to perform the following transaction in the following 

order: T1 → T2 → T3 (and so on). Moreover, within each 

transaction, we can specify the set of objects and operations 

to be performed in a specific order: T1: R1 → W2 → W3. 

Each transaction's information will be kept in the log file.  

Any deviation from the above mentioned order of 

transactions and/or objects in the log file will be a possible 

threat. In case this situation happens, our model should 

detect this situation and catch it. The following contains 

important definitions that will help in understanding our 

model and its description. We will start by defining task: 

 

Definition: a task is some work done by a user and can be 

specified in many ways [7]. 

 

Definition: in [14] Yi Hu et al introduce user’s tasks as “a 

group of transactions that are always submitted to the DBMS 

together to achieve a certain goal”.  For example, in order to 

perform withdrawal in a banking application, many 

transactions may be sent to the database consecutively to 

fulfill the task. An application program may contain several 



 

transactions separated by the transaction boundaries (i.e. 

Begin and End of transaction). And it’s used to interact with 

database [7]. 

 

Definition: a transaction is a logical unit of database 

processing that includes one or more access operations (i.e. 

read -retrieval, write - insert or update, delete) [14]. 

The definition of equivalent tasks based on the next 

definition, where two tasks are equivalent if the transactions 

that these tasks used are equivalent, e.g. taskn and taskm are 

equivalent if taskn transactions are equivalent to taskm 

transactions. 

 

Definition: semantically equivalent transactions are 

"transactions that have the same effect on the database as a 

sequence of transactions. If (T1, T2… Tn) is a sequence of 

transactions, then the semantically equivalent transaction of 

this sequence is denoted by T1,2,…,n". 

 

Definition: dependency graphs help in showing 

dependencies among transactions and/or objects. In fact, this 

technique can be used and implemented because objects of 

the database and hence transactions on database are 

dependent of each others [8].  

 

Definition: read operation for object x can be defined as 

read_item(X) which reads a database item named X into a 

program variable [1].  

 

Definition: write operation for object x can be defined as 

write_item(X) writes the value of program variable X into 

the database item named X [1]. 

 

B. Model Description 

We discuss in this section the details and operations of 

our model. Our model will work in two phases, the first 

phase is to limit the number of malicious activities that the 

user can do; this is done by put limitations on the user work 

and on the way of doing this work. In this step we assume 

that the user work is limited i.e. the user can do limited set of 

tasks. Each task can work using limited number of 

transactions in specific order. The second phase detects 

possible threats. 

First, in the proposed model the user needs to identify 

his/her intended work that he/she wants to do under specific 

application; the task must be from a limited set of tasks that 

he/she is authenticated to do. Then, the system will call the 

database; to return ordered transactions and objects from a 

predefined set for the called task to user, and transactions 

and objects for the equivalent task if exist. The user uses 

these transactions and objects (of the task or of the 

equivalent) to do his/her work; in normal ways or as a threat. 

The system will draw dependency graphs for the user work 

that is stored in the log file, for the task, and for the 

equivalent task (if exist). A comparison of user work graph 

with the task graph, and with the equivalent task graph (if 

exist) is performed to find possible threats. Any transaction 

performed by any user will be stored in the log file. Any 

deviation in the order of transactions and/or objects 

displayed by the dependency graph (for task/equivalent task) 

comparing with the log file transactions and/or objects graph 

(of user work) might be a possible threat. In case this 

situation happens, our model should detect this situation and 

catch it.  

IV. SIMULATION AND RESULTS 

This section demonstrates the main assumptions used in the 

simulation explained by examples. We discuss how the 

simulator works based on these assumptions. The following 

are our assumptions: We consider twenty users, each user 

has limited number of tasks to do. 

Example:   U1  TS1  TS2  TS3  TS5  TS32  TS33  TS34 

………… 

 U2  TS3  TS5  TS6  TS7  TS8    TS9    TS10 

 U20  TS4  TS5  TS8  TS14  TS15  TS32  TS33 …….. 

Where U: user, TS: task, Number: define the user or the 

task. 

 

We consider that there are five applications; some users can 

work under more than one application. 

 

Example:   APP1  U1  U2  U3  U4  U17 

APP2  U1  U2  U3  U11  U16  U19  U20 

…………… 

APP5  U6  U10  U12  U13 

Where APP: application. 

 

We consider that there is 100 individual tasks run under 

the five applications; some tasks can run under more than 

one application.   

 

Example:  APP1  TS1  TS2  TS3  TS6  TS7  …………… 

APP3  TS1  TS2  TS16  TS17  TS18  ………. 

 

We divide the tasks into normal tasks and malicious tasks. 

If a user do malicious task, then this must be discovered 

because it is a threat. The table below contains the normal 

and malicious tasks. 
 

TABLE 1: NORMAL TASKS AND MALICIOUS TASKS  

No. of 

transactions 

per task 

Normal tasks 
Malicious 

tasks 

1 TS6-TS10 TS1-TS5 

2 TS11-TS15 TS16-TS20 

3 TS21-TS24,TS30 TS25-TS29 

4 

TS31,TS32,TS38-

TS40 TS33-TS37 

5 TS41,TS47-TS50 TS42-TS46 

6 TS56-TS60 TS51-TS55 

7 

TS61-

TS63,TS69,TS70 TS64-TS68 

8 TS71-TS74,TS80 TS75-TS79 

9 

TS81,TS82,TS88-

TS90 TS83-TS87 

10 TS91-TS95 TS96-TS100 

 

We consider that there is a varying number of transactions 

per task with predefined order; tasks can take one or more 

transactions as in the following example. 



 

 

Example:  TS1  T1 

TS12   T20   T1 

 ……. 

TS100   T19   T10   T6   T7   T2   T16   T5   T18   T4   T3   

T20 

 

We consider twenty transactions that can be used by 

different tasks in specific and predefined order. The program 

starts when a user needs to do some work from an 

application (user and its intended work generated randomly). 

The same user can do the same work more than one time. 

Different users can do same work. 

 

Example 1:  U1 TS1, 

Task:  TS1  T1  R1  W5  W2  R9  W12  R4  R6   

Equivalent Task:  TS4  T3  R4  R1  W5  W2  W12  R11 

Where T1, T3 are the transactions 1 and 3 respectively. R: 

mean read operation, W: mean write operation, the number 

identify the transaction/object. 

 

From Example 1, User 1 wants to do Task 1; Task 1 has 

Task 4 as equivalent task. The user can do his/her intended 

work by doing transactions of Task 1 or of Task 4. After 

that, the user may do the work in one of the next three ways: 

• The user may do a task, or do the equivalent task to 

finish his/her intended work (task) in its normal way; i.e. 

no threat will happen if the user does it as is. 

 

• The user may do part of task transactions and (or) part of 

the equivalent task transactions or transactions of both in 

different order. Threat will happen. 

 

• The user may do the task transactions or the 

equivalent task transactions in different order 

comparing with the predefined. Threat will happen. 

 

From Example 1 the user may do the work in one of the 

following ways: 

- U1 TS1  T1  R1  W5  W2  R9  W12  R4  R6 ,  

- U1 TS4  T3  R4  R1  W5  W2  W12  R11 ,  

- U1 TS1  T1  R1  W5  W2  R9  W12  R4  R6  T3  R4  

R1  W5  W2  W12  R11 , or 

- U1 TS1  T3  R4  R1  W5  W2  W12  R11 T1  R1  

W5  W2  R9  W12  R4  R6  

 

The user work will be stored in the log file; a timestamp 

will be added to determine the time that the user does the 

work in. See Example 2. 

 

Example 2:   U1 TS1 starts 

T1  R1  W5  W2  R9  W12  R4  R6  T3  R4  R6  R1  W5  

W2  W12  R11   

Where User 1 does Task 1  

 

The user work will be displayed as a graph after the 

simulator read it from the log file. The task and the 

equivalent will be displayed into graphs too as in Example 3. 

We use graphs to display the user work, task, and equivalent 

task and to make comparison between user work and task/ 

equivalent task more efficient. 

 

Example 3:  based on Example 2, User 1 does Task 1 by 

doing Transaction 1 then Transaction 3. The simulator reads 

this user and its work from the log file and draws a graph for 

it as in the following figure. 

 

 
 
Figure 1: User and its intended work. 

 

A. Results and Analysis 

In our proposed model we concentrate on minimizing the 

false alarms percentage; false positive and false negative. 

Table 2 shows the simulator results when we run it on the set 

that contains tasks that have one transaction, on 20, 40, 60, 

80, and 100 tasks. As in the table our model gives bad 

results. 

 
TABLE 2: RESULTS ON SET OF ONE TRANSACTION PER TASK 

No. of 

users 

tasks 

No. of 

threats 

detected 

No. of 

threats 

False 

negative 

Percentage 

of false 

negative 

20 1 11 10 0.91 

40 3 19 16 0.84 

60 8 43 35 0.81 

80 9 48 39 0.81 

100 14 70 56 0.8 

 

Table 3 shows the simulator results when we run it on the 

sets that contain five transactions per task, on 20, 40, 60, 80, 

and 100 tasks. The results in these tables show that our 

model gives better results when we increase the number of 

transactions per task; the number of comparisons increase. 

 
TABLE 3: RESULTS ON SET OF FIVE TRANSACTIONS PER TASK 

No. of 

users 

tasks 

No. of 

threats 

detected 

No. of 

threats 

False 

negative 

Percentage of 

false negative 

20 12 15 3 0.2 

40 28 33 5 0.15 

60 47 54 7 0.13 

80 60 69 9 0.13 

100 78 88 10 0.11 

 

The following table shows the false negative percentage 

values when we run the simulator on different sets of tasks, 

U1 

TS1  T1  

R1 

T3  

W5 

W2 

R4 

R6  

R1 

R6 R11 



 

different number of tasks with different number of 

transactions per task. As the table shows, as we increase the 

number of tasks; the number of false alarms decreases and 

hence, the performance of our model behaves better. 

 
TABLE 4: FALSE NEGATIVE PERCENTAGE ON DIFFERENT TASKS 

No. of 

users 

tasks 

Percentage of false negative (false negative/No. of 

threats)  

1 

trans/t

ask 

2 

trans/tas

k 

3 

trans/tas

k 

4 

trans/tas

k 

5 

trans/tas

k 

20 0.91 0.47 0.33 0.25 0.2 

40 0.84 0.4 0.26 0.23 0.15 

60 0.81 0.37 0.245 0.22 0.13 

80 0.81 0.365 0.24 0.21 0.13 

100 0.8 0.36 0.235 0.2 0.11 

 

The next figure shows the previous table results. Obviously, 

our model detects more insider threats when the number of 

transactions per task increase; more comparison times. The 

more the insider threats detected the less number of false 

negative alarms, the smaller value for false negative 

percentage. 
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Figure 2: False negative alarms for different sets 

 

The next figure shows that our model give good resistant 

against false negative alarms; small values for false negative 

percentage. Although the false negative percentage values 

when we run the simulator on 100 tasks greater than the 

value when we run the simulator on sets that contain 6, 7…, 

10 transactions per task. We also find that our model 

decreases the false negative percentage value. Our model 

removes the false positive alarms; no false positive alarms 

for all previous simulator runs, the following figure shows 

the false positive values when we run the simulator on set of 

all sets. 
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Figure 3: False positive alarms for different sets 

 

Figure 3 shows that the false positive alarms value based on 

timestamp threats; threats done when not authenticated user 

try to do a task more than once in a small period. The false 

positive value is one when we run the simulator on 20, 40, 

and 60 tasks of different users, but this value become 0 for 

80 and 100 tasks. Our model removes the false positive 

alarms as we increase the number of tasks that we run the 

simulator on. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper we evaluated the insider threat problem. The 

insider threat attacks are very serious and dangerous due to 

their nature. The insider threat problem can be done on 

different levels: network level, system level, and application 

and data level; most importantly the database systems. Our 

focus is on the detection of insider threats at the application 

level; database systems.  We proposed a new model that 

tried to prevent and detect insider threats in application 

level. Our model works in two phases, the first phase is to 

limit the number of malicious activities that the user can do; 

this is done by limiting the user work. The second phase 

detects possible threats. In our work we use graphs to 

compare the user work with the task and equivalent task (if 

exist). Our model shows good resistant against false alarms; 

false positive and false negative alarms. Our simulator 

results show that our model removes the false positive 

alarms, decrease the false negative alarms and the false 

negative percentage values when we increase the number of 

transactions per task; increase the number of comparisons.   

Enhancement and improvement can be done for our 

proposed model. Some of intended works to do these 

improvements are: detect attacks that happens when a user 

do two tasks from different applications at the same time 

using multithreading; this may be more maliciously. So, a 

detection model must be developed to handle such attacks. 

Also, classification of threats based on changes that the user 

do on the application level and on the data level can be 

achieved. This will help in understanding of threats, made 

prevention and detection more reliable and minimize the 

false alarms.  
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