

Abstract— Almost all systems all over the world suffer from

outsider and insider attacks. Outsider attacks are those that

come from outside the system, however, insider attacks are

those that are launched from insiders of the system. In this

paper we concentrate on insider attacks detection on the

application level; database is our focus. Insider attacks differ

from outsider attacks in many ways; most importantly, insiders

have more knowledge about the underlying systems. Because of

their knowledge and their privileges of the system resources;

their risk can be greater and more severe. In fact, insiders can

find vulnerabilities in the system easily. Several techniques have

been proposed that tackled the insider threat problem, but most

of them concentrate on insider threat detection in computer

system level. We describe a method for insider threat detection

in database systems that handle entrants on the role of insiders

for such attacks. Our simulation results show resistance against

such attacks. Also, our results show good performance in terms

of reducing false alarms to the minimum.

Index Terms—About four key words or phrases in

alphabetical order, separated by commas, for example, visual-

servoing, tracking, biomimetic, redundancy, degrees-of-

freedom

I. INTRODUCTION

nsider attacks are a well-known problem acknowledged as

a threat as early as 1980s [1], but few works have been

conducted to deal with this problem effectively. Intruders are

divided into two types' insiders and outsiders. But most

Intrusion Detection Systems (IDSs) are designed to deal

with outsiders. IDSs aim to help in the detection of

important types of computer security violations. Although

outsider attacks are greater than the number of insider

attacks, the insider attacks are more severe [2]; these kinds

Many definitions exist in the literature for the insider. For

example, the authors of [3] define the insider as a person

who has privileges to access the underlying system. Another

definition of an insider would be "an individual who has the

knowledge of the organizations information system structure

to which he/she has authorized access" [4]. In [5] the authors

stated that an insider can be an employee that uses his/her

privileges to do activities based on his/her knowledge.of

attacks are very serious and dangerous due to their nature

which includes personnel who have privileges and

Nahla Shatnawi is a graduate student of the Computer Science

Department in the Jordan University of Science and Technology.

Qutaibah Althebyan is an Assistant Professor in the Software

Engineering Department, Jordan University of Science and Technology,

Irbid, Jordan P O Box 3030, 2210 (email: qaalthebyan@just.edu.jo).

Wail Mardidni is an Assistant Professor in the Computer Science

Department, Jordan University of Science and Technology, Irbid, Jordan, P

O Box 3030, 22110 (email: wail@just.edu.jo).

authorizations to access organizations' resources. Such

attacks also involve personnel who have, in addition to their

privileges, knowledge of the information system resources

and might know some vulnerabilities of the system. This

makes the problem more severe and serious. The insider has

general knowledge of everything in the organization as a

whole. For example, knowledge of other insiders in the

organization, knowledge of different kinds of dependencies

style menu. The style will adjust your fonts and line spacing.

In our work use the last definition, where the insider is one

of the organization/company employees and this explain

how he gains privileges and knowledge. The insider

knowledge of the underlying system entails him/her: access

all documentation on the underlying system, collect

intelligence and perform discovery without suspicion, know

detailed information about objects of the system and have

good intelligence on the entire system [7]. Because of the

nature of insiders who pose great risks on assets of the

system, those risks or threats should be discovered and

revealed either before they take place or as soon as they take

place.

Several models have been recently proposed that tackled

the insider threat problem, but very few models concentrate

on the application level such as databases. Databases is very

important where it contains mission-critical and sensitive

data; data that have been coordinated and maintained over

usually long period of time, which make their loss or damage

more costly. Most organizations and e-businesses use

Database Management System (DBMS) to manage and

deliver missions' critical and sensitive data. Database is a

collection of named data items (objects), or a collection of

related data [7]. Databases used to save the data that have

been collected and maintained over usually long period of

time were loss of such data will cost more than any other

components [8].

As Kamra et al noted in [9], intrusion detection

mechanisms for DBMS are important for the following three

reasons; First, malicious actions on DBMS not necessarily

malicious for the operating system or the network; and the

IDSs for them are not effective for database attacks [8].

Second, data care done by various government regulations

concerning with data management such as SOX, GLBA,

HIPAA and so on, has been prepared by many

organizations. Third, the most important reason, where the

insider threat problem is recognized as a major threat, its

solution needs a mechanism to detect access anomalies by

insiders.

II. RELATED WORK

In this section we discuss some related works about insider

Detection of Insiders Misuse in Database

Systems

Nahla Shatnawi, Qutaibah Althebyan, and Wail Mardini

I

attacks. The insider threat problem may exist on different

levels: network level, system level, and finally application

and data level, where our work is concentrated. We mention

methods and techniques that are proposed to detect, predict

and prevent, and assess such threats. Based on [8] there are

three methodologies for intrusion detection systems that

have been used, which are: Misuse Detection- based on

signatures that demonstrate the characteristics of well-

known system vulnerabilities and attacks. It works well with

known misuse patterns but fails with new ones, Anomaly

Detection- based on the behavior of the matter, e.g., user,

application, or component of a system. It’s the most popular

way of detection. It is better than the misuse detection

methodology because it has a better opportunity to detect

previously unknown attacks and Insider Misuse- sources

ranging from discontent employee (database administrators,

application developers, application users), who may

maliciously damage the data integrity to outsider that gain

access to the data [10]. The problem of insider misuse is

more dangerous in database systems because it works and

manages critical data.

A detection-oriented approach classifies insider misuses

based on the level of the system at which they might be

detected. The basis for this is that different types of misuses

manifest themselves at varying levels of the system (e.g.

some may be apparent at the network level, whereas others

are most visible at higher levels, such as the operating

system or application levels) [11]. Network-level misuses do

monitoring activity at the network traffic level. System-

Level misuses do monitoring at the system level necessitates

that monitoring activity be conducted upon individual host

systems. Our concentration will be on the application and

data-level misuses.

We choose to work on the database systems from

application and data level; due to the database importance.

The techniques that are proposed for network and system

level are not sufficient for application and data level.

Existing intrusion taxonomies mainly describe

characteristics of various attacks, and not developed

specifically for monitoring insider misuse. Anderson in [11]

was the first person to perform classification for insiders

who may misuse the IT systems into, masqueraders,

clandestine users, and misfeasors. However, this

classification only characterizes the type of users and not the

actual misuse or how they may be detected. Another

technique concentrates in detecting anomalous access

patterns in relational databases. This approach is based on

mining SQL queries from database log files. The mining

process results used to form profiles that model the normal

behavior of database access to determine intruders. Kamra et

al [13] consider two scenarios, in the first scenario; they

assume that database has a Role Based Access Control

(RBAC) model. Their ID system can identify role intruders,

which behave differently than expected. The advantage of

combining ID with the RBAC databases is that it can do

protection against insider threats. In the second scenario,

they assume that no roles are associated with users of the

database. So, they can look to users' behavior directly.

III. PROBLEM STATEMENT

Databases of an organization might face similar problems

of insider and outsider attacks to companies or

organizations. Employees (insiders) of the organization

might try to mislead the system by trying to implement

actions that look fine to the system; however, they can be

very dangerous. In this paper we built an insider threat

model that takes care of such threats on the application level;

threat is considered as an activity that violates the security

policy of a system [8]. In our model we seek preventing

insider threats as well as detecting possible threats for

individual tasks. As an indication of the effectiveness of our

proposed model, we want to minimize the false alarms

percentage which will be shown in our results and analysis

chapter.

A. Model

In our model, we assume that the number of tasks an

insider can execute is limited. We assume that the number of

transactions the insider can execute is limited. This means

that the order of executing a task can be predefined and

hence, the order of executing the associated transactions that

are needed to perform the associated task can also be

predefined. In our model, we try to control the insiders by

watching their sequence of actions. An insider before

implementing his/her action has to declare his/her intention

by specifying the work that he/she needs to do. Based on

that, a list of objects/ transactions that he/she needs to follow

to finish his/her task and the data items (objects) that he/she

can use will be prepared by the system. After specifying the

set of objects and transactions by the system based on the

user intended work, a dependency graph can be set up; this

shows dependency relationships among objects and/or

transactions. This process can be achieved because we

assume that the number of tasks and the number of

transactions are limited. Based on these dependencies, the

sequence of objects to be accessed within a transaction and

the sequence of the transactions themselves to be executed

can be determined. For example: to perform task TS1, we

need to perform the following transaction in the following

order: T1 → T2 → T3 (and so on). Moreover, within each

transaction, we can specify the set of objects and operations

to be performed in a specific order: T1: R1 → W2 → W3.

Each transaction's information will be kept in the log file.

Any deviation from the above mentioned order of

transactions and/or objects in the log file will be a possible

threat. In case this situation happens, our model should

detect this situation and catch it. The following contains

important definitions that will help in understanding our

model and its description. We will start by defining task:

Definition: a task is some work done by a user and can be

specified in many ways [7].

Definition: in [14] Yi Hu et al introduce user’s tasks as “a

group of transactions that are always submitted to the DBMS

together to achieve a certain goal”. For example, in order to

perform withdrawal in a banking application, many

transactions may be sent to the database consecutively to

fulfill the task. An application program may contain several

transactions separated by the transaction boundaries (i.e.

Begin and End of transaction). And it’s used to interact with

database [7].

Definition: a transaction is a logical unit of database

processing that includes one or more access operations (i.e.

read -retrieval, write - insert or update, delete) [14].

The definition of equivalent tasks based on the next

definition, where two tasks are equivalent if the transactions

that these tasks used are equivalent, e.g. taskn and taskm are

equivalent if taskn transactions are equivalent to taskm

transactions.

Definition: semantically equivalent transactions are

"transactions that have the same effect on the database as a

sequence of transactions. If (T1, T2… Tn) is a sequence of

transactions, then the semantically equivalent transaction of

this sequence is denoted by T1,2,…,n".

Definition: dependency graphs help in showing

dependencies among transactions and/or objects. In fact, this

technique can be used and implemented because objects of

the database and hence transactions on database are

dependent of each others [8].

Definition: read operation for object x can be defined as

read_item(X) which reads a database item named X into a

program variable [1].

Definition: write operation for object x can be defined as

write_item(X) writes the value of program variable X into

the database item named X [1].

B. Model Description

We discuss in this section the details and operations of

our model. Our model will work in two phases, the first

phase is to limit the number of malicious activities that the

user can do; this is done by put limitations on the user work

and on the way of doing this work. In this step we assume

that the user work is limited i.e. the user can do limited set of

tasks. Each task can work using limited number of

transactions in specific order. The second phase detects

possible threats.

First, in the proposed model the user needs to identify

his/her intended work that he/she wants to do under specific

application; the task must be from a limited set of tasks that

he/she is authenticated to do. Then, the system will call the

database; to return ordered transactions and objects from a

predefined set for the called task to user, and transactions

and objects for the equivalent task if exist. The user uses

these transactions and objects (of the task or of the

equivalent) to do his/her work; in normal ways or as a threat.

The system will draw dependency graphs for the user work

that is stored in the log file, for the task, and for the

equivalent task (if exist). A comparison of user work graph

with the task graph, and with the equivalent task graph (if

exist) is performed to find possible threats. Any transaction

performed by any user will be stored in the log file. Any

deviation in the order of transactions and/or objects

displayed by the dependency graph (for task/equivalent task)

comparing with the log file transactions and/or objects graph

(of user work) might be a possible threat. In case this

situation happens, our model should detect this situation and

catch it.

IV. SIMULATION AND RESULTS

This section demonstrates the main assumptions used in the

simulation explained by examples. We discuss how the

simulator works based on these assumptions. The following

are our assumptions: We consider twenty users, each user

has limited number of tasks to do.

Example: U1 TS1 TS2 TS3 TS5 TS32 TS33 TS34

…………

 U2 TS3 TS5 TS6 TS7 TS8 TS9 TS10

 U20 TS4 TS5 TS8 TS14 TS15 TS32 TS33 ……..

Where U: user, TS: task, Number: define the user or the

task.

We consider that there are five applications; some users can

work under more than one application.

Example: APP1 U1 U2 U3 U4 U17

APP2 U1 U2 U3 U11 U16 U19 U20

……………

APP5 U6 U10 U12 U13

Where APP: application.

We consider that there is 100 individual tasks run under

the five applications; some tasks can run under more than

one application.

Example: APP1 TS1 TS2 TS3 TS6 TS7 ……………

APP3 TS1 TS2 TS16 TS17 TS18 ……….

We divide the tasks into normal tasks and malicious tasks.

If a user do malicious task, then this must be discovered

because it is a threat. The table below contains the normal

and malicious tasks.

TABLE 1: NORMAL TASKS AND MALICIOUS TASKS

No. of

transactions

per task

Normal tasks
Malicious

tasks

1 TS6-TS10 TS1-TS5

2 TS11-TS15 TS16-TS20

3 TS21-TS24,TS30 TS25-TS29

4

TS31,TS32,TS38-

TS40 TS33-TS37

5 TS41,TS47-TS50 TS42-TS46

6 TS56-TS60 TS51-TS55

7

TS61-

TS63,TS69,TS70 TS64-TS68

8 TS71-TS74,TS80 TS75-TS79

9

TS81,TS82,TS88-

TS90 TS83-TS87

10 TS91-TS95 TS96-TS100

We consider that there is a varying number of transactions

per task with predefined order; tasks can take one or more

transactions as in the following example.

Example: TS1 T1

TS12 T20 T1

 …….

TS100 T19 T10 T6 T7 T2 T16 T5 T18 T4 T3

T20

We consider twenty transactions that can be used by

different tasks in specific and predefined order. The program

starts when a user needs to do some work from an

application (user and its intended work generated randomly).

The same user can do the same work more than one time.

Different users can do same work.

Example 1: U1 TS1,

Task: TS1 T1 R1 W5 W2 R9 W12 R4 R6

Equivalent Task: TS4 T3 R4 R1 W5 W2 W12 R11

Where T1, T3 are the transactions 1 and 3 respectively. R:

mean read operation, W: mean write operation, the number

identify the transaction/object.

From Example 1, User 1 wants to do Task 1; Task 1 has

Task 4 as equivalent task. The user can do his/her intended

work by doing transactions of Task 1 or of Task 4. After

that, the user may do the work in one of the next three ways:

• The user may do a task, or do the equivalent task to

finish his/her intended work (task) in its normal way; i.e.

no threat will happen if the user does it as is.

• The user may do part of task transactions and (or) part of

the equivalent task transactions or transactions of both in

different order. Threat will happen.

• The user may do the task transactions or the

equivalent task transactions in different order

comparing with the predefined. Threat will happen.

From Example 1 the user may do the work in one of the

following ways:

- U1 TS1 T1 R1 W5 W2 R9 W12 R4 R6 ,

- U1 TS4 T3 R4 R1 W5 W2 W12 R11 ,

- U1 TS1 T1 R1 W5 W2 R9 W12 R4 R6 T3 R4

R1 W5 W2 W12 R11 , or

- U1 TS1 T3 R4 R1 W5 W2 W12 R11 T1 R1

W5 W2 R9 W12 R4 R6

The user work will be stored in the log file; a timestamp

will be added to determine the time that the user does the

work in. See Example 2.

Example 2: U1 TS1 starts

T1 R1 W5 W2 R9 W12 R4 R6 T3 R4 R6 R1 W5

W2 W12 R11

Where User 1 does Task 1

The user work will be displayed as a graph after the

simulator read it from the log file. The task and the

equivalent will be displayed into graphs too as in Example 3.

We use graphs to display the user work, task, and equivalent

task and to make comparison between user work and task/

equivalent task more efficient.

Example 3: based on Example 2, User 1 does Task 1 by

doing Transaction 1 then Transaction 3. The simulator reads

this user and its work from the log file and draws a graph for

it as in the following figure.

Figure 1: User and its intended work.

A. Results and Analysis

In our proposed model we concentrate on minimizing the

false alarms percentage; false positive and false negative.

Table 2 shows the simulator results when we run it on the set

that contains tasks that have one transaction, on 20, 40, 60,

80, and 100 tasks. As in the table our model gives bad

results.

TABLE 2: RESULTS ON SET OF ONE TRANSACTION PER TASK

No. of

users

tasks

No. of

threats

detected

No. of

threats

False

negative

Percentage

of false

negative

20 1 11 10 0.91

40 3 19 16 0.84

60 8 43 35 0.81

80 9 48 39 0.81

100 14 70 56 0.8

Table 3 shows the simulator results when we run it on the

sets that contain five transactions per task, on 20, 40, 60, 80,

and 100 tasks. The results in these tables show that our

model gives better results when we increase the number of

transactions per task; the number of comparisons increase.

TABLE 3: RESULTS ON SET OF FIVE TRANSACTIONS PER TASK

No. of

users

tasks

No. of

threats

detected

No. of

threats

False

negative

Percentage of

false negative

20 12 15 3 0.2

40 28 33 5 0.15

60 47 54 7 0.13

80 60 69 9 0.13

100 78 88 10 0.11

The following table shows the false negative percentage

values when we run the simulator on different sets of tasks,

U1

TS1 T1

R1

T3

W5

W2

R4

R6

R1

R6 R11

different number of tasks with different number of

transactions per task. As the table shows, as we increase the

number of tasks; the number of false alarms decreases and

hence, the performance of our model behaves better.

TABLE 4: FALSE NEGATIVE PERCENTAGE ON DIFFERENT TASKS

No. of

users

tasks

Percentage of false negative (false negative/No. of

threats)

1

trans/t

ask

2

trans/tas

k

3

trans/tas

k

4

trans/tas

k

5

trans/tas

k

20 0.91 0.47 0.33 0.25 0.2

40 0.84 0.4 0.26 0.23 0.15

60 0.81 0.37 0.245 0.22 0.13

80 0.81 0.365 0.24 0.21 0.13

100 0.8 0.36 0.235 0.2 0.11

The next figure shows the previous table results. Obviously,

our model detects more insider threats when the number of

transactions per task increase; more comparison times. The

more the insider threats detected the less number of false

negative alarms, the smaller value for false negative

percentage.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100

No. of users tasks

F
a
ls

e
 n

e
g

a
ti

v
e
 p

e
rc

e
n

ta
g

e

1 transaction/task

2 transactions/task

3 transactions/task

4 transactions/task

5 transactions/task

Figure 2: False negative alarms for different sets

The next figure shows that our model give good resistant

against false negative alarms; small values for false negative

percentage. Although the false negative percentage values

when we run the simulator on 100 tasks greater than the

value when we run the simulator on sets that contain 6, 7…,

10 transactions per task. We also find that our model

decreases the false negative percentage value. Our model

removes the false positive alarms; no false positive alarms

for all previous simulator runs, the following figure shows

the false positive values when we run the simulator on set of

all sets.

All tasks

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100

No. of users tasks

F
a
ls

e
 p

o
s
it
iv

e

Figure 3: False positive alarms for different sets

Figure 3 shows that the false positive alarms value based on

timestamp threats; threats done when not authenticated user

try to do a task more than once in a small period. The false

positive value is one when we run the simulator on 20, 40,

and 60 tasks of different users, but this value become 0 for

80 and 100 tasks. Our model removes the false positive

alarms as we increase the number of tasks that we run the

simulator on.

V. CONCLUSIONS AND FUTURE WORK

In this paper we evaluated the insider threat problem. The

insider threat attacks are very serious and dangerous due to

their nature. The insider threat problem can be done on

different levels: network level, system level, and application

and data level; most importantly the database systems. Our

focus is on the detection of insider threats at the application

level; database systems. We proposed a new model that

tried to prevent and detect insider threats in application

level. Our model works in two phases, the first phase is to

limit the number of malicious activities that the user can do;

this is done by limiting the user work. The second phase

detects possible threats. In our work we use graphs to

compare the user work with the task and equivalent task (if

exist). Our model shows good resistant against false alarms;

false positive and false negative alarms. Our simulator

results show that our model removes the false positive

alarms, decrease the false negative alarms and the false

negative percentage values when we increase the number of

transactions per task; increase the number of comparisons.

Enhancement and improvement can be done for our

proposed model. Some of intended works to do these

improvements are: detect attacks that happens when a user

do two tasks from different applications at the same time

using multithreading; this may be more maliciously. So, a

detection model must be developed to handle such attacks.

Also, classification of threats based on changes that the user

do on the application level and on the data level can be

achieved. This will help in understanding of threats, made

prevention and detection more reliable and minimize the

false alarms.

REFERENCES

[1] Ramkumar Chinchani, Anusha Iyer, Hung Q. Ngo, Shambhu

Upadhyaya. Towards a theory of insider threat assessment. IEEE CS

digital library 2005; 108-117.

[2] Hyeran Mun, Kyusuk Han, Chan Yeob Yeun, Kwangjo Kim. Yet

another intrusion detection system against insider attacks. The 2008

Symposium on Cryptography and Information Security 2008; 22-25.

[3] Nam Nguyen, Peter Reiher, Geoffrey H. Kuenning. Detecting insider

threats by monitoring system call activity. IEEE CS digital library

2003.

[4] Qutaibah Althebyan. Design and analysis of knowledge-base centric

insider threat models [dissertation]. University of Arkansas; July

2008.

[5] Mark Maybury, Penny Chase, Brant Cheikes, Dick Brackney, Sara

Matzner et al. Analysis and detection of malicious insiders.

International Conference on Intelligence Analysis; McLean, VA.

2005.

[6] Silberscatz, Korth, Sudarshan. Database system concepts. 4th ed.

New York: McGraw-Hill; 2001.

[7] Silberscatz, Korth, Sudarshan. Database system concepts. 4th ed.

New York: McGraw-Hill; 2001.

[8] Michael Gertz, Sushil Jajodia. Handbook of database security. Berlin:

Springer- Verlag; 2007.

[9] Department of Defense. DoD insider threat mitigation: report of the

insider threat integrated process team. Washington DC, USA:

Technical report; 2000.

[10] A.H.Phyo, S.M.Furnell. A Detection-oriented classification of insider

IT misuse. Network Research Group 2004.

[11] C. Chung, M. Gertz, K. Levitt. DEMIDS: A misuse detection system

for database systems. 3ed Annual IFIP TC-11 WG 11.5 Working

Conference on Integrity and Internal Control in Information Systems,

Kluwer Academic; November 1999; California, USA.

[12] Ashish Kamra , Evimaria Terzi, Elisa Bertino. Detecting anomalous

access patterns in relational databases. 2005.

[13] Yi Hu, Brajendra Panda. Design and analysis of techniques for

detection of malicious activities in database systems. Journal of

Network and Systems Management 2005; 13(3).

[14] Hui Wang, Shufen Liu, Xinjia Zhang. A prediction model of insider

threat based on multi-agent. 1st International Symposium on

Pervasive Computing and Applications 2006.

