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Abstract—Accurate and timely detection of any faults in the 

semiconductor manufacturing process is an important issue for 

process control engineers to ensure both productivity and 

reliability. Fault detection is a major step of process control 

aiming at constructing a decision tool to help detecting as 

quickly as possible any equipment or process faults in order to 

maintain high process yields in manufacturing. Traditional 

statistical based techniques such as univariate and multivariate 

analyses have long been employed as a tool for creating model 

to detect faults. Unfortunately, modern semiconductor 

industries have the ability to produce measurement data 

collected directly from sensors during the production process 

and such highly voluminous data are beyond the capability of 

traditional process control method to detect fault in a timely 

manner. We thus propose the techniques based on the data 

mining technology to automatically generate an accurate 

model to predict faults during the wafer fabrication process of 

the semiconductor industries. In such process control context, 

the measurement data contain over 500 signals or features. The 

feature selection technique is therefore a necessary tool to 

extract the most potential features. Besides the feature 

selection method, we also propose a boosting technique to 

handle the imbalance situation of fail versus pass test cases. 

The experimental results support our assumption that choosing 

the right features and boosting rare cases can considerably 

improve detection accuracy of fault products and processes.  

 
Index Terms—fault detection model, semiconductor 

manufacturing process, feature selection, rare case boosting 

 

I. INTRODUCTION 

EMICONDUCTOR manufacturing is a highly complex 

production process composed of hundreds of steps. The 

major processes in most semiconductor industries [1], [8] 

are in the following sequence: production of silicon wafers 

from pure silicon material, fabrication of integrated circuits 

onto the raw silicon wafers, assembly by putting the 
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integrated circuit inside a package to form a ready-to-use 

product, and testing of the finished products. A constant 

advancement in the semiconductor industry is due mainly to 

persistent improvement of the wafer fabrication process. 

The fabrication process consists of a series of steps to cover 

special material layers over the wafer surface. Wafers 

reenter the same processing machines as each layer is 

successively covered. Some defects in this complicated 

process can make the final products fail the test. Fault 

detection and classification techniques [2], [3], [5-7], [11-

15] applied to this critical manufacturing process can 

obviously improve product quality and reliability. 

In recent years, many manufacturing tools are equipped 

with sensors to facilitate real-time monitoring of the 

production process. These tool-state and production-state 

sensor data provide an opportunity for efficient control and 

optimization. Unfortunately, such measurement data are so 

overwhelming that timely detection of any fault during the 

production process is difficult. In this paper, we study the 

problem of accurate detection of fault states in the wafer 

fabrication process. The dataset is donated by McCann et al 

[10] and publicly available for re-experimentation. 

II. RELATED WORK 

Process control is crucially important to the 

semiconductor industries that operate the multistage 

manufacturing systems on the product scale of lesser 300 

nanometers [12]. Modern technology in semiconductor 

manufacturing enables real time process control with the 

measurement data obtained from the equipment sensors and 

the final electrical test. With such high volume of data 

recorded during the entire production process, effective 

monitoring and optimal process control by investigating and 

analyzing these data are difficult work for process 

engineers. Traditional process control methodology like 

univariate and multivariate control charts is no longer an 

efficient method to control manufacturing systems with 

hundreds of processing stages. Instead automatic and 

advanced process control method is required. 

Ison and colleagues [6], [7] proposed a decision tree 

classification model to detect fault of plasma etch 

equipment. The model was built from the five sensor signal 

data. Many researchers also studied the fault detection 

problem during the etch process. Goodlin et al [3] proposed 

to build a specific control chart for detecting specific type of 

faults. They collected tool-state data directly from the 

etcher. These data consist of 19 variables. The work of 
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Spitzlsperger and colleagues [11] was also based on the 

statistical method. They adopted the multivariate control 

chart method to maintain changes in the mean and standard 

deviation coefficients by remodeling technique. 

Recent interest in fault detection has been shifted toward 

the non-parametric approaches. He and Wang [5] proposed 

to use the k-nearest neighbor rule for fault detection. 

Verdier and Ferreira [14], [15] also applied the k-nearest 

neighbor method, but they proposed to use the adaptive 

Mahalanobis distance instead of the traditional Euclidean 

distance. Tafazzoli and Saif [13] proposed a combined 

support vector machine methodology for process fault 

diagnosis. Ge and Song [2] applied support vector data to 

the principal component analysis method to detect process 

abnormalities. 

Most work on fault detection methods has studied the 

process control problem with a few features of tool-state 

and process-state measurement data. McCann and his team 

[9] proposed a rather different setting in which the 

measurement data from the wafer fabrication process 

contain as much as 590 features. With such abundant 

features or variables, feature selection techniques [4] are 

obviously necessary in order to improve both the prediction 

and the computational performances. 

In this paper, we also analyze the wafer fabrication data 

[10] collected from 590 sensors with the last feature is a 

label stating pass or fail state. The observed data contain 

1,463 pass cases with only 104 fail cases. In this work not 

only a feature selection method for extracting the post 

discriminative sensors is proposed, but also a boosting 

technique is devised to deal with highly imbalance between 

the pass and fail cases. 

III. FAULT DETECTION TECHNIQUE 

The SECOM dataset [10] contains 1567 examples taken 

from a wafer fabrication production line. Each example is a 

vector of 590 sensor measurements plus a label of pass/fail 

test. Among the 1567 examples, there are only 104 fail 

cases which are labeled as positive (encoded as 1), whereas 

much larger amount of examples pass the test and are 

labeled as negative (encoded as -1). The imbalance of pass 

and fail examples in addition to the large number of 

metrology data obtained from hundreds of sensors make this 

dataset a difficult one to accurately analyze. It is thus our 

main focus to devise a method based on data mining 

techniques to build an accurate model for fault detection. 

The framework of our study is presented in Fig.1.  

Feature selection techniques in our study are ranging 

from simply removing features with a constant value and 

features containing numerous missing values (more than 

55% of values are missing), to statistical based analysis such 

as chi-square and principal component analysis (PCA) and 

information theoretical based such as gain ratio. We also 

devise a cluster based technique call MeanDiff to analyze 

discrimination power of each feature. On the model building 

phase, we apply four methods to induce the fault-detection 

model namely decision tree, naïve Bayes, logistic 

regression, and k-nearest neighbor.  

 
Fig. 1 Framework of proposed method and research study 

 

The dataset is in a form of matrix; rows represent each 

observation or instance and columns represent features 

which are values recorded from each sensor. The steps in 

our proposed method for creating an accurate model to 

detect fault case from highly imbalance data with numerous 

features are as follows: 

 

Data Cleaning Phase 

(1) Investigate data observed from each sensor, i.e. data 

in each column. If the data appear to be a single 

value, then remove that feature. 

(2) Count in each column the „not available‟ or missing 

values. If data are missing more than 55%, then 

remove that feature. 

Feature Selection Phase 

(3) Apply two statistical based feature selection 

techniques: chi-square and principal component 

analysis (PCA), and save the result as two separate 

datasets. 

(4)  Apply an information theoretical based technique: 

gain ratio, and save the result in a separate dataset. 

(5) Apply the following cluster-based feature selection 

technique, called MeanDiff: 

(5.1) Clustering data into two clusters (fail cluster 

and pass cluster) 

(5.2) Compare value differences in every feature of 

the fail cluster mean and the pass cluster mean 

(5.3) Ranking features in descending order according 

to the magnitude of mean differences 

computed in step 5.2, and output the ranked 

features 

Case Boosting Phase 

(6) Separate data obtained from step 2 into two datasets: 

train data and test data. Each data set maintains the 

same proportion of pass and fail cases. 

(7) Pumping the fail cases in the train data by duplicating 

the fail cases to be the same amount as the pass 

cases. 

Model Building Phase 

(8) Build a prediction model with decision tree, naïve 

Bayes, k-nearest neighbor, and logistic regression 

algorithms. 

(9) For datasets from steps 3-5, evaluate model accuracy 



 

with 10-fold cross validation technique. Dataset from 

step 7 is evaluated with the test set. 

 

We assess the model performance based on the four 

metrics: true positive rate (TP rate or recall), precision, F-

measure, and false positive rate (FP rate or false alarm). The 

computation methods of these metrics are given in Fig. 2 

(TP = true positive, FP = false positive, FN = false negative, 

TN = true negative). 
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Fig.2 Fail/pass classification matrix and performance computation 

IV. EXPERIMENTAL RESULTS 

A. Feature Selection Technique Comparison 

We use the WEKA software [16] to perform a series of 

experiments. The first part of our study aims at selecting 

principal features that show the most discrimination power 

of differentiating fail cases from pass cases. In the cleaning 

step, we remove 137 features that contain a single value and 

lots of missing values. From the remaining 454 features, we 

select the best 168 features (to maintain around 95% of 

variances) by means of principal component analysis 

(PCA), Chi-square test, gain ratio computation, and our own 

MeanDiff method. The fault detection models are then 

derived from each feature selected data. We want the model 

that shows the highest values of TP rate, precision, and F-

measure, but the lowest value in FP rate. The experimental 

results on the four model measurement metrics are shown in 

Figs. 3-6. 

For this specific data domain, it can be noticed that 

feature selection can considerably improve the accuracy of 

fault detection models. The proposed MeanDiff method 

contributes the most to decision tree model, whereas the 

gain ratio method is the best feature selection method for the 

naive Bayes and logistic regression model building 

approaches. The k-nearest neighbor method (in which k was 

set to be one on our experiments because it yields the best 

result) needs a cleaned dataset without any other feature 

selection facility. If model comprehensibility is a major 

concern, the model built from a MeanDiff feature selected 

data with a decision tree approach is the most appropriate 

one. It is worth mentioning here that for such a large 

number of features like this application the neural network 

and support vector machine approaches consume so much 

memory that they cannot run to completion. Among the four 

model building methods, naïve Bayes model can detect fault 

cases at the success rate as high as 90%, but the false alarm 

(FP rate) is also as high as 80% as well. We compare the TP 

rate versus the FP rate of each model and provide the result 

in Fig. 7. 

 

 
Fig. 3 TP rate of fault detection models on different feature 

selection methods 

 
Fig. 4 Precision of fault detection models on different feature 

selection methods 

 
Fig. 5 F-measure of fault detection models on different feature 

selection methods 

 
Fig. 6 FP rate of fault detection models on different feature 

selection methods 
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Fig. 7 TP rate versus FP rate comparison of each fault detection 

model 

 

B. Rare Case Boosting Results 

For the specific problem of fault detection, the number of 

fail test is very few (104 instances in the SECOM dataset) 

comparative to the number of pass test (1463 instances). It 

is therefore a difficult task to build automatically the 

accurate model that can detect such rare cases. We thus 

propose the idea of separating the SECOM dataset into a 

train set and a test set. The test set contains 468 instances in 

which 59 instances are fail test and 409 are pass test. The 

train set contains 45 instances of fail test and 1054 of pass 

test. We then duplicate the number of fail test in the training 

data to be 1096 instances. The fault detection models are 

built from this rare case boosting training dataset. The 

models are then evaluated their classification performances 

by the separated test dataset. The classification error 

matrices of models built from the four different learning 

methods are given in Fig. 8 and the performance criteria are 

summarized in Table 1. The boosted true positive rate, 

precision, F-measure, and the lower false positive rate of 

each model are also graphically provided in Fig. 9. 
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Fig. 8 Classification error matrices of fault detection models 

TABLE I 

FAULT DETECTION MODEL ASSESSMENT 

 k-Nearest 

Neighbor 

Logistic 

Regression 

Naïve 

Bayes 

Decision 

Tree 

TP rate 0.983 1.0 0.746 1.0 

FP rate 0.24 0.335 0.352 0.161 

Precision 0.372 0.301 0.234 0.472 

F-measure 0.54 0.463 0.356 0.641 



 

 

 

 
 

 
 

 
 

 

Fig. 9 High increases in TP rate, Precision, and F-measure but low 

increase in FP rate of fault detection models from applying the 

boosting technique 

 

 

 

 

The high true positive but low false positive of the 

decision tree model make it a good candidate for automatic 

generation of the fault detection model to be used in the 

semiconductor manufacturing process. The fault detection 

model in a form of decision tree is given in Fig.10. The top 

level of the decision tree is on the left hand side in which 

the value from sensor number 511 is the first parameter to 

be considered. The normal state (encoded as -1) is expected 

if the value of sensor 511 is less than or equal 28.3784. The 

fault state is to be detected when the following sensor values 

are reported: S511 > 28.3784, S470 > 4.3751, S16 > 

401.1307, S472 > 4.4751, S51 ≤ 646.9073, S4 > 905.1501, 

S188 > 11.54, S431 > 3.8926, S439 > 28.6219, S495 > 

1.3638 S56 > 2875, S548 > 398.552, S178 ≤ 0.448, S29 ≤ 

73.4556, S578 ≤ 16.4303, S474 ≤ 27.9511, and S39 ≤ 

86.3506. Other prediction rules can be interpreted in the 

same manner. 

 
S511 <= 28.3784: Predict -1  

S511 > 28.3784 

|   S470 <= 4.3751: Predict -1  

|   S470 > 4.3751 

|   |   S16 <= 423.3311 

|   |   |   S16 <= 401.1307: Predict -1  

|   |   |   S16 > 401.1307 

|   |   |   |   S472 <= 4.4751: Predict -1  

|   |   |   |   S472 > 4.4751 

|   |   |   |   |   S51 <= 646.9073 

|   |   |   |   |   |   S4 <= 905.1501: Predict -1  

|   |   |   |   |   |   S4 > 905.1501 

|   |   |   |   |   |   |   S188 <= 11.54: Predict -1  

|   |   |   |   |   |   |   S188 > 11.54 

|   |   |   |   |   |   |   |   S431 <= 3.8926: Predict -1  

|   |   |   |   |   |   |   |   S431 > 3.8926 

|   |   |   |   |   |   |   |   |   S439 <= 28.6219: Predict -1  

|   |   |   |   |   |   |   |   |   S439 > 28.6219 

|   |   |   |   |   |   |   |   |   |   S495 <= 1.3638 

|   |   |   |   |   |   |   |   |   |   |   S56 <= 2875 

|   |   |   |   |   |   |   |   |   |   |   |   S548 <= 398.552: Predict -1  

|   |   |   |   |   |   |   |   |   |   |   |   S548 > 398.552 

|   |   |   |   |   |   |   |   |   |   |   |   |   S178 <= 0.448 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   S29 <= 73.4556 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   S578 <= 16.4303 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   S474 <= 27.9511 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   S39 <= 86.3506: Predict 1  

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   S39 > 86.3506: Predict -1  

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   S474 > 27.9511: Predict 1  

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   S578 > 16.4303 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   S161 <= 614: Predict -1  

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   S161 > 614: Predict 1  

|   |   |   |   |   |   |   |   |   |   |   |   |   |   S29 > 73.4556 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   S414 <= 25.0931: Predict -1  

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   S414 > 25.0931: Predict 1  

|   |   |   |   |   |   |   |   |   |   |   |   |   S178 > 0.448 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   S273 <= 19.8922: Predict 1  

|   |   |   |   |   |   |   |   |   |   |   |   |   |   S273 > 19.8922: Predict -1  

|   |   |   |   |   |   |   |   |   |   |   S56 > 2875 

|   |   |   |   |   |   |   |   |   |   |   |   S28 <= 7.373: Predict -1  

|   |   |   |   |   |   |   |   |   |   |   |   S28 > 7.373: Predict 1  

|   |   |   |   |   |   |   |   |   |   S495 > 1.3638: Predict -1 

|   |   |   |   |   S51 > 646.9073: Predict -1  

|   |   S16 > 423.3311: Predict -1 

 
Fig. 10 Decision tree model for fault-detection in the 

semiconductor process control 

 



 

V. CONCLUSION 

In semiconductor manufacturing process control and 

monitoring, hundreds of metrology data are available for 

process engineers to analyze for the purpose of maintaining 

efficient operations and getting optimum yield of high 

quality products. For such a large volume of measurement 

data, automatic fault detection technique is essential. We 

thus investigate the application of data mining techniques 

such as decision tree induction, naïve Bayes analysis, 

logistic regression, and k-nearest neighbor classification for 

creating an accurate model for fault case detection in the 

wafer fabrication process of semiconductor industries.  

From a series of experimentation, we found that naïve 

Bayes model built from a subset of features selected by a 

gain ration criteria can detect the fault cases at the very high 

rate of 90%. But the false alarm rate, or false positive, is 

also as high as 80%. The decision tree method built from 

our MeanDiff feature selection method generates a more 

comprehensible form of fault detection model with false 

alarm rate at only 4.5%. But the precision and true positive 

rate, or recall, of the tree model are still low at 20.5% and 

16%, respectively.  

We thus devise a boosting technique to improve the 

precision of tree-based model for fault detection by 

pumping the number of rare cases, or fault test, to the equal 

number of majority cases, or pass test. The outcome is 

surprising that the true positive rate of the tree-based model 

can increase up to 100%, whereas the false alarm rate is still 

low at the 16%. We plan to investigate this boosting 

technique to other domains that show imbalance among data 

classes in our future research.  
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