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Abstract—Oral cancer is the sixth most common cancer and a 

major health problem in the world. We aimed at DNA repair 
genes such as X-ray repair cross-complementing group 
(XRCC)1, 2, 3, and 4. Single nucleotide polymorphisms (SNPs) 
dataset with 238 samples of oral cancer and control patients 
were chosen for disease prediction. All prediction experiments 
were conducted using the support vector machine. The result 
showed the performances of the holdout cross validation is 
superior to 10-fold cross validation, and the best classification 
accuracy is 64.2%. Although only four SNPs were used in this 
analysis, our proposed methodology is still high-throughput for 
genome-wide SNPs. Once more SNPs were introduced to oral 
cancer prediction, the prediction rate will be further improved. 
 

I. INTRODUCTION 
RAL cancer (OC) is the sixth most common cancer and a 
major health problem in the world. It has been identified 

as a huge threat to public health because of its high morbidity 
and mortality. Recent researches have shown that rate of OC 
have been steadily diminishing among males, but have grown 
sharply among females. However, it is one of the fastest 
increasing malignancies in Taiwan. OC’s occurrence is 
associated with exposure to smoking and alcohol 
consumption. Whatever, the majority of cases occur is mainly 
associated with betel quid chewing in Asia. In addition to 
genetic differences, the other risk factors include age, human 
papilloma virus infection, and race etc. Therefore, it is urgent 
for local researchers to understand the causes behind the trend 
in Taiwan [1-5]. With the completion of the Human Genome 
Project (HGP), new opportunities and challenges had been 
presented for uncovering the genetic basis of complex 
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diseases via genome-wide association studies. The gold of the 
Human Genome Project [6] provide a tool to help scientists 
understanding human genetic map and to decipher the genetic 
code. One of the major goals of the post-genome era is to 
understand the role of genetics in human health and disease. 
After the completion of the human genome project, increasing 
attention has focused on the identification of human genomic 
variations, especially single nucleotide polymorphisms (SNPs) 
[7-9]. DNA damage is the most important factor for 
carcinogenesis because of the insults of environmental 
carcinogens. Repair of DNA damage can protect cells against 
carcinogenesis, and the polymorphisms of the DNA repair 
gene have been implicated as susceptibility factors in cancer 
development [10]. Over 130 genes coding for proteins of the 
various DNA repair pathways have been identified [11] and in 
excess of 400 SNPs characterized within the 80 genes had 
been screened for variation [11]. SNPs are known to be the 
most common variant in the human genome and play an 
important role for drug development, cancer and genetic 
disease research. SNPs are defined as single base pair 
positions in genomic DNA at which different sequence 
alternatives (alleles) exist in normal individuals, these occur 
at appreciable frequent has an abundance of 1% or greater in 
the human population. With the genome-wide SNP discovery, 
many genome-wide association studies are likely to identify 
multiple genetic variants that are associated with complicated 
diseases [12, 13].  

Machine learning tasks are applied many wide 
bioinformatics research. In classification or regression, which 
is to predict the outcome associated with a whole samples. 
The purpose of classification is to build an efficient model for 
predicting the class membership of data. Many classification 
approaches have been proposed, such as: Nearest-Neighbor 
(NN), Naïve Bayes (NB), Random forest (RF), Support 
vector machine (SVM) and so forth. This model should 
produce a correct label on the training data and predict the 
label of any unknown data accurately. These methods had 
been applied in many fields, such as: decisions involving 
judgment, screening images, load forecasting, marketing and 
sales and diagnosis [14].  

In this study, we have focused our aim at X-ray repair 
cross-complementing group (XRCC) as it is not likely that 
every possible candidate genes can be investigated in a single 
study. We collected 238 samples of OC that applies machine 
learning for disease prediction using SNP data. All 
experiments were conducted using the Weka [14] machine 
learning software package with its standard settings. 
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II. MATERIALS AND METHODS 

A. Subjects 
This dataset was collected from our previous result [15] 

shown as TABLE I. We divided this dataset into oral cancer 
and control groups without considering the personal 
information. The type of SNP genotype is symbol, we convert 
to numerical as {-1, 0, 1}. For example, the genotype of SNP 
no.1 is CC = -1, CT = 0 and TT = 1.  
 

TABLE I. The SNPs genotype information 

SNP no. Gene (SNP) Genotype 
1 2 3 

1 XRCC1 (rs1799782) CC CT TT 
2 XRCC2 (rs2040639) AA AG GG 
3 XRCC3 (rs861539) CC CT TT 
4 XRCC4 (rs2075685) TT TG GG 

 

B. Support vector machine 
SVM is the one of state-of-the-art supervised learning 

approach which is the prediction problem, whose goal is to 
build a model from a set of positively and negatively labeled 
training vectors that can classify unlabelled test samples. 
SVM establishes a maximum margin that can find the best 
hyperplane to separate the two categories in Euclidean space 
[14, 16, 17]. SVM was trained to distinguish between case 
and control in SNP samples. In this study, the Weka [14] was 
used to perform the SVM work, using the sequential minimal 
optimization (SMO) algorithm and radial basis function (RBF) 
kernel. The RBF kernel function is defined as: 
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where Xi and Xj

C. Cross-Validation Test 

 are two feature vectors, and γ is the training 
parameter . The parameters are used as default in Weka. We 
considered OC cases as positive samples and controls as 
negative samples, and used SNP genotypes as categorical 
features. We adopted SVM to discriminate OC cases against 
controls in this research. 

 

In data mining like classification problem, a typical task is 
to construct a model from available data such a model may be 
a classifier. We can't make sure that a model can predict future 
unseen data well, so the model needs to demonstrate the 
prediction capability. In statistics, a cross validation is an 
approach to estimate the generalization performance of 
prediction. Two or more learning algorithms would be 
compared through cross validation that can be used in a 
statistical hypothesis test to know that one approach is 
superior to another. There are three common cross validation 
methods including holdout cross validation (holdout CV) and 
m-fold cross validation (m-fold CV) shown as fallow [14, 18]: 

 
Holdout cross validation 

A simplest kind of cross validation method is called 
holdout cross validation that is to separate the available data 
into two non-overlapped sets (i.e. training set and testing set). 
It is common to split 2/3 of the data as the training set and the 
remaining 1/3 as the test set. The model maybe a classifier fits 

a function using the training set. And then the testing set used 
to predict the output for the data using the model [18]. 

 
m-fold cross validation 

An improved cross validation approach from holdout 
validation method is called m-fold cross validation. In m-fold 
cross validation, the available data are separated into m 
non-overlapped and equally sized set. A variant of separated 
sets are randomly divide the data into training and testing sets 
m different times. The holdout method is repeated m times. 
One of the m subsets is used as the testing sets and the 
remaining m-1 subsets as the training sets. Then the average 
accuracy across all m trials is calculated [18]. 

 

D. Accuracy estimation 
The common estimation is used in medical diagnosis 

including: Positive hit rate (i.e. Sensitivity, SN), Negative hit 
rate (i.e. Specificity, SP) and Accuracy (ACC) rate. If the case 
with the "positive" class (with disease) correctly classified as 
positive called True Positive (TP), however the case with the 
"positive" class classified as negative called False Negative 
(FN). Conversely, the case with the "negative" class (without 
disease) correctly classified as negative called True Negative 
(TF), while the case with the "negative" class classified as 
positive called False Positive (FP). SN is the proportion of 
cases with positive class that are classified as positive. On the 
other hand, the SP is the proportion of cases with negative 
class that are classified as negative. The sensitivity and 
specificity are computed as formula (2) and (3). The ACC rate 
is calculated as formula (4).  
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III. RESULTS AND DISCUSSION 

A. Experimental results 
Association between individual polymorphisms for DNA 
repair genes and oral cancer 

TABLE II shows the estimated effect (odds ratio and 95% 
CI) of individual SNPs of XRCC1, XRCC2, XRCC3, and 
XRCC4 genes on the occurrence of oral cancer. Except for 
XRCC3 rs861539-CT, no specific SNP was significantly 
associated with the risk of occurrence of oral cancer. All these 
genotype frequencies were in agreement with the 
Hardy-Weinberg equilibrium. 

 
Classifier estimation 

This study performed SVM training and test analysis to 
observe the combination of SNPs. The prediction outcomes 
were estimated by the SVM classifier that distinguished the 
case and control SNP genotype data. The holdout 



 

cross-validation and 10-fold cross-validation were used to 
assess the performance of the SVM models and reported in 
TABLE III. We compare classifier to each SNP combination 
that is evaluated using cross validation. The result show, the 
performances of 10-fold cross validation are the same in each 
combination of SNPs, and the best ACC is 57.14%. The 
holdout cross validation is superior to 10-fold cross validation, 
and the best ACC is 64.2%. The prediction accuracy is 
underperformed using SVM. Under observation, we found 
the distribution of case/control of SNP data are closely, so it is 
difficult to classify clearly. 

 

B. Discussion 
Typically, the complex diseases are caused by joint factors 

of multiple genetic variations instead of a single genetic 
variation [17]. In this study, our rationale for exploring the 
gene–gene interactions is justified because interactions of 
multiple genes are widely hypothesized to influence risk for 
OC. The development of new analytical methods makes it 
feasible to systematically explore genome-wide interactions. 
We introduced this idea to examine the important role of 
combinational SNPs for four DNA repair genes XRCCs 1-4 
in oral cancer. Other SNPs in different DNA repair genes that 
may be involved in the association of oral cancer were not 
included completely in this study. Our main focus was to 
understand the contribution to oral cancer risk of functionally 
relevant joint effect for combinational SNPs within and 
between different cancer pathways like XRCCs 1-4. There 
has been increasing evidence regarding the combined effect 
of commonly occurring SNPs on cancer risk, supported by 
polygenic models in cancers of the lung etc [15]. 

Recently, there are many computational methods have been 
proposed to analysis SNP data using Multifactor Dimensional 
Reduction (MDR), or machine learning algorithms. The 
gene-gene interactions of SNPs are very important in 
determining individual susceptibility to complex diseases 
[16]. Therefore, this study introduces a machine learning 
approach for SNP data of OC. In classification problems, 
overfitting appears when computationally intensive search 
algorithms are used. Estimates may be overfitted and yield 
biased predictions under these circumstances [19]. If the 
training data lies too closely together, the classifier 
predictions are of poor quality. This occurs when there is 
insufficient data to train the classifier and the data does not 
fully cover the concept being learned. This problem is 
common in many real world samples where the available data 
may be rather noisy [20]. In order to avoid overfitting, some 
additional techniques have been discussed, such as 
cross-validation, regularization, and early termination or 
resampling [21, 22]. We try whole possible of SNP 
combination for SVM that used holdout cross validation and 
10-fold cross validation. In the holdout cross validation, the 
best accuracy of combination SNP all include XRCC3 (see 
TABLE III). On the other hand, because of case and control 
data distributions are closely and 10-fold cross validation 
approach increase the training set that lead to data more 
closely. It makes the performance is not significant in each 
combination SNP. The effects of SNP-SNP interaction are 
recognized for the biological issues previously, such as oral 

cancer [15], osteoporosis [23] and type 2 diabetes mellitus 
[16] etc. We may need more exact features (i.e. SNPs), more 
reliable samples and more powerful computational approach 
for precise disease prediction. 

 

IV. CONCLUSION 
The DNA repair pathways investigated in this study have 

been reported in oral cancer development. However, their 
genetic interactions, detected through variant alleles (SNPs), 
have not been described previously. The gold of this study to 
use SNP data for experiments that is to demonstrate our 
proposed approach can obtained advantage ability of 
prediction and SNP selection. Experimental results show that 
SVM obtained 64.2% classification accuracy. The novelty of 
our study is the demonstration of significant joint effect 
between SNPs that did not have an individual effect on oral 
cancer risk. Therefore, this approach for joint effect of 
combinational SNPs has the potential to assist in the 
identification of complex biological relationships among 
cancer processes during the development of oral cancer. In 
the future work, to use machine learning methods to predict 
other disease or to acquire more SNP of OC search for 
significant or helpful information. 
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TABLE II. Estimated effect (odds ratio and 95% CI) of individual SNP of XRCC1, XRCC2, XRCC3, and XRCC4 genes on the occurrence of oral 

cancer 
Gene SNP genotype Number of control ⁄ number of cases Crude odds ratio 95% CI p-value 

XRCC1 (rs1799782) 1:CC 23/17 1.00   
 2:CT 86/83 1.31 0.65-2.62 0.45 
 3:TT 19/10 0.71 0.26-1.92 0.50 
XRCC2 (rs2040639) 1:AA 20/18 1.00   
 2:AG 75/48 0.71 0.34-1.48 0.36 
 3:GG 33/44 1.48 0.68-3.23 0.32 
XRCC3 (rs861539) 1:CC 122/96 1.00   
 2:CT 6/14 2.97 1.10-8.00 0.03 
 3:TT 0/0    
XRCC4 (rs2075685) 1:TT 4/4 1.00   
 2:TG 47/39 0.83 0.19-3.54 1.00 
 3:GG 77/67 0.87 0.21-3.61 1.00 
XRCC, X-ray repair cross-complementing group; SNP, single nucleotide polymorphism; CI, confidence interval. 

 
TABLE III. Performance measures for the holdout cross validation and 10-fold cross validation of the SVM to predict each combination of SNPs 

data of oral cancer. 

Holdout cross validation  10-fold cross validation  
SN SP ACC  SN SP ACC SNP selected 

0.114286 0.73913 0.469136  0 1 0.537815 XRCC 1 

0 1 0.567901  0 1 0.537815 XRCC 2 

0.228571 0.956522 0.64198  0.127273 0.953125 0.571429 XRCC 3 

0 1 0.567901  0 1 0.537815 XRCC 4 

0.114286 0.73913 0.469136  0 1 0.537815 XRCC 1,2 

0.285714 0.717391 0.530864  0.127273 0.953125 0.571429 XRCC 1,3 

0.114286 0.76087 0.481481  0 1 0.537815 XRCC 1,4 

0.228571 0.956522 0.64198  0.127273 0.953125 0.571429 XRCC 2,3 

0 1 0.567901  0 1 0.537815 XRCC 2,4 

0.228571 0.956522 0.64198  0.127273 0.953125 0.571429 XRCC 3,4 

0.285714 0.717391 0.530864  0.127273 0.953125 0.571429 XRCC 1,2,3 

0.114286 0.76087 0.481481  0 1 0.537815 XRCC 1,2,4 

0.285714 0.717391 0.530864  0.127273 0.953125 0.571429 XRCC 1,3,4 

0.228571 0.956522 0.64198  0.127273 0.953125 0.571429 XRCC 2,3,4 

0.257143 0.782609 0.555556  0.127273 0.953125 0.571429 XRCC 1,2,3,4 
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