
Mining Interesting Patterns and Rules
in a Time-evolving Graph

Yuuki Miyoshi∗, Tomonobu Ozaki†, and Takenao Ohkawa‡

Abstract—Time-evolving graphs, i.e. dynamic networks
changing their structures with time, are becoming ubiquitous
recently. A typical example is an email communication network
whose vertex corresponds to an individual and whose edge
corresponds to an email communication within a time period.
For the effective analysis of such time-evolving graphs, it
must be important to utilize representative local structures
in networks as well as time information on edge formation
simultaneously.

In this paper, we consider a problem of mining frequent pat-
terns and valid rules representing graph evolutions or structural
changes in a network with time information. In addition to an
effective mechanism for extracting representative patterns and
rules, we devise graph-based summarization of discovered rules.
By using certain measures provided by the summary, we can
expect to find more interesting information that are difficult
to obtain in the traditional support and confidence framework.
The effectiveness of the proposed framework was confirmed by
preliminary experiments using real world email data.

Index Terms—frequent pattern mining, graph mining, graph
evolution rule

I. I NTRODUCTION

Recently, the study of human activities on social and
communication networks attract a large amount of attention.
In general, patterns on local structures in those networks can
provide useful insight for understanding human activities.
Furthermore, because a network changes its structure dynam-
ically with time, taking account of temporal information on
edge formation will help precise analysis. In this paper, we
consider the problem of mining frequent patterns and valid
rules that representsgraph evolutions, i.e. structural changes
in a network with time information.

Two types of graph evolutions are discussed. One is
an evolution by temporal aspect, and the other is by the
surrounding situation. These evolutions are explained with
a simple example shown in Fig. 1. In this figure, we assume
that each vertex corresponds to a person and each edge
represents a communication between persons. The num-
ber associated to an edge represents a time period when
the communication is conducted. In Fig. 1(a),P1 and P2

represent two graph evolutions with different time periods
after the communication between A and B. The order and
timing of communications contained inP1 andP2 will give
useful insight to understand the evolutions. On the other
hands, Fig. 1(b) represents an evolution influenced by the
surrounding situation.P4 states that a triangle (P3) causes
an communication between A and D while we do not care

∗Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada,
Kobe 657-8501, Japan. Email: miyoshi@cs25.scitec.kobe-u.ac.jp

†Cybermedia Center, Osaka University, 1-32 Machikaneyama, Toyonaka,
Osaka 560-0043, Japan. Email: tozaki@dcm.cmc.osaka-u.ac.jp

‡Graduate School of System Informatics, Kobe University, 1-1 Rokkodai,
Nada, Kobe 657-8501, Japan. Email: ohkawa@kobe-u.ac.jp

Fig. 1. two types of graph evolutions

how the triangle is constructed. This kind of information
must be useful to understand what structure acts as a trigger
for graph evolutions.

Previous researches on graph pattern discovery have draw-
back on analyzing graph evolutions. First, other than a few
exceptions, most graph miners can not handle time infor-
mation directly. Second, due to a huge amount of extracted
patterns and rules, it is difficult to determine important and
significant ones. To overcome these difficulties, in this paper,
we propose a framework for discovering interesting patterns
and rules on graph evolutions. The proposed approach is
summarized in Fig. 2. We first mine frequent patterns with
a time information ((1) in Fig. 2). Frequent pattern miners
often discover a huge amount of patterns. In order to com-
press a set of frequent patterns into a representative set, we
adopt a structural representative approach proposed in [4]
((2) in Fig. 2). Then, the rules focused on the evolutions will
be generated from the obtained patterns ((3) in Fig. 2). We
devise two graph-based summarizations of a set of rules to
help to discover interesting and important patterns ((4) in Fig.
2). Finally, by investigating these summarizations, we extract
characteristic patterns and chains of rules based on some
network-based importance measure such as degree centrality
((5) in Fig. 2). The aim of employing network-based measure
is to find interesting patterns which are difficult to discover
in the standard framework based on support and confidence.

The rest of this paper is organized as follows. In section II,
basic notations and definition will be introduced. In section
III, our framework for discovering patterns and rules in time-
evolving graphs will be explained in detail. Preliminary ex-
perimental results are reported in section IV. After describing
related work in section V, finally we conclude this paper in
section VI.

II. N OTATIONS AND DEFINITIONS

According to the previous studies[1], [4], [3], we give
formal notations and definitions on graphs, patterns and rules
with time information.

A. Patterns and Rules in a Time-evolving Graph

A time-evolving graphG = (VG, EG, lG, tG) on a set of
labels L and a set of time-stampsT is represented as a

Fig. 2. An overview of the proposed framework

labeled graph having a set of verticesVG, a set of edges
EG ⊆ VG × VG, a labeling functionlG : VG ∪ EG → L
that maps each element of a graph to an alphabet inL, and
a time-stamp functiontG : EG → T that assigns a time-
point in T to each edge. While multi-edges having different
time-stamps are allowed in a time-evolving graph, we assume
that labels of vertices and edges never change with time for
the simplicity. A graph “input data” in Fig. 2 is an example
of time-evolving graphs. In the graph, there are two edges
between vertices A and B. One has “1” of time-stamp, the
other has “3”.

As a pattern in a time-evolving graph, we employ a
relative time patternwhich is a connected time-evolving
graphP = (VP , EP , lP , tP) whose lowest time-stamp is zero
(mine∈Ep tp(e) = 0). The concept of relative time pattern
is originally introduced in [1]. In this paper, we extend the
original definition to allow multi-edges among vertices to
represent plural relations and repeated communications in
different time-points. Note that, time-points associated to
edges in relative time patterns represent the relative relation
among the periods of edge formations. For example, a
relative time patternP4 in Fig. 2 states that an edge between
two vertices B and C is generated in the next period when
an edge between A and B is established. Hereafter, we call
relative time pattern as time pattern for the sake of simplicity.

We introduce a subgraph relation and support value on
time-evolving graphs. A time-evolving graphP1 is said to
be a subgraph of another time-evolving graphP2, denoted
as P1 ⊂ P2, if there exists a parameter∆ ∈ R and
an injective functionf : VP1 → VP2 which satisfies
the conditions: (i)∀v ∈ VP1 [lP1(v) = lP2(f(v))], (ii)
∀(u, v) ∈ EP1 [lP1(u, v) = lP2(f(u), f(v))], and (iii)
∀(u, v) ∈ EP1 [tP2((f(u), f(v))) = tP1((u, v)) + ∆]. An
occurrenceof P1 in P2 with respect to a functionf satisfying
the conditions on subgraph relation is defined as a list
o = [v1, v2, · · · , v|VP1 |](vi ∈ VP2 , vi = f(ui), ui ∈ VP1) of
vertices inP2 mapped from vertices inP1 by f . The notation
o(vi) is used to represent thei-th element in an occurrence
o. All occurrences ofP1 in P2 is denoted asΦP1

P2
. Fig. 3

shows an example of a set of occurrences ofP in G (ΦP
G)

and their parameter∆. A list o1 consists of three vertices

Fig. 3. Occurrences of a time patternP in a time-evolving graphG

v3, v2 andv1 in G which correspond tov0, v1 andv2 in P ,
respectively.

The support value of a time pattern P in a
time-evolving graph G is defined as supG(P) =
minvi∈VP

∣∣{o(vi)|o ∈ ΦP
G}

∣∣ / |VG|, i.e. the ratio of minimum
number of unique verticeso(vi) in o ∈ ΦP

G to the total
number of vertices. This definition is a simple adoption of
the support value of a pattern in a single graph setting[3]. In
Fig. 3, |o(v0)| is the minimum number and the support value
of P in G is calculated assupG(P) = 0.4. Given a threshold
σ, a time patternP is said to befrequentif supG(P) ≥ σ
holds.

Then, we consider rules between two time patterns for
representing graph evolutions. We adoptgraph evolution
rules[1] in the form of Pb → Ph where Pb and Ph are
time patterns andPb is obtained by deleting all the edges
having the last or maximal time-point fromPh. The formal
definition is given below. For two time patternsPh and
Pb, a rule Pb → Ph is defined as agraph evolution
rule with respect toPh if the following conditions hold:
(i)EPb

= {e ∈ EPh
| tPh

(e) < maxe′∈EPh
(tph

(e′))},
(ii)VPb

= {v ∈ VPh
| deg(v,EPb

) > 0} wheredeg(v, EPb
)

denotes the degree ofv in Pb, and (iii)Pb is connected.
While every time patternPh can not form a graph evolu-

tion rule Pb → Ph, Ph determines its bodyPb uniquely if
suchPb exists. A notationr(Ph) is used to represent a unique
rulePb → Ph obtained byPh. A rule of r(P7) = P5 → P7 in
Fig. 2 is an example of graph evolution rule. This rule states

that, if a graph pattern having two edges is established by
adding edges A–B and B–D in this order, then an additional
edge between D and E will be generated in the next period
with a certain probability.

The probability or confidence of a graph evolution rules
is discussed below. While two definitions on the strength of
graph evolution rules are employed in the previous study[1],
we propose another definition of confidence of a graph
evolution rulePb → Ph based on the occurrences ofPb.
The confidencevalue of a graph evolution rulePb → Ph

is defined asconfG(Pb → Ph) = |OPb
(Ph)|/|ΦPb

G | where
OPb

(Ph) denotes a set of occurrenceob ∈ ΦPb

G which can
be extendable to an occurrenceoh ∈ ΦPh

G . It is natural to
consider that an occurrence ofPb grows into an occurrence
of Ph by evolutions. Thus, we believe that this definition, i.e.
the ratio of occurrences inPb grown into an occurrence in
Ph, is suitable for capturing the strength of graph evolution
rules. Given a thresholdτ , a graph evolution rulePb → Ph

is said to bevalid if confG(Pb → Ph) ≥ τ .

B. Representative Time Patterns

Frequent pattern miners often discover a huge amount
of patterns[8]. In order to compress a set of frequent time
patterns into a representative set of manageable size, we
apply a structural representative approach proposed in [4]
which considers two aspects, (i)structural representability
and (ii)support preservation. This approach is originally
proposed for patterns in a graph database (a set of graphs)
without time-stamps, we extend it to handle relative time
patterns in a time-evolving graph.

The structural representability is discussed first. Intuitively
speaking, the structural difference between two time patterns
having the same vertex sets is measured as a degree of differ-
ence between edge sets. Given an error tolerance parameter
δ, thestructural differencebetween two time patternsP ′ and
P is defined as follows:

diff(P ′, P) =

{
min

f∈F(P ′,P)
d(P ′, P, f) (F(P ′, P) ̸= ∅)

∞ (otherwise)

whereF(P ′, P) denotes a set of bijective mappings satisfy-
ing (i)∀v′ ∈ VP ′ [lP ′(v′) = lP (f(v′))] and (ii) d(P ′, P, f) =∑

v′
1,v′

2∈VP ′ |I
P ′

(v′
1, v

′
2) − IP (f(v′

1), f(v′
2))| ≤ δ in which

IP (u, v) is an indicator function such thatIP (u, v) = 1
if (u, v) ∈ Ep and IP (u, v) = 0 otherwise. We define
the structure representable by using the structural difference.
A time patternP ′ is said tobe structure representable by
another time patternP if an inequality

Rs(P ′, P) = min
|VP ′ |=|VP ′′ |,P ′′⊆induce

0 P
diff(P ′, P ′′) ≤ δ

holds where ⊆induce
0 denotes an induced subgraph

relationship[4]. In simple words,P ′ is structure representable
by P if P has a subgraphP ′′ which shares the same vertex
set and similar edge set withP ′.

Then, on specifying the degree of support preservation,
smoothed supportfor time pattern is proposed by slightly
modifying the original definition in [4]. Given a set of fre-
quent time patternsTP = {P1, · · · , Pn} in a time-evolving
graph G, the smoothed supporting occurrence set ofPi is
defined asSPi =

∪
Pj∈TP,diff(Pi,Pj)≤δ ΦPJ

G . In other words,

Fig. 4. An example ofDAGGER andDAGmax
GER

SPi contains all the occurrences in structural similar patterns
Pj with Pi. Then, thesmoothing supportvalue ofPi ∈ TP
is defined asssupG(Pi) = min1≤i≤|VPi

| |{o(i) | o ∈ SPi}|.
By using smoothing support, we define the preservation of
support value. Given a tolerance parameterϵ, we say that the
support of a patternP ′ is preserved byanother patternP , if
an inequality

Ps(P ′, P) =
|ssupG(P) − ssupG(P ′)|

max{ssupG(P), ssupG(P ′)}
≤ ϵ

holds.
Given two parametersδ and ϵ, a time patternPi will be

judge as representative in a set of frequent time patterns
TP = {P1, · · · , Pn} if a set

Cδ,ϵ
TP (Pi) = {Pj ∈ TP | Rs(Pj , Pi) ≤ δ, Ps(Pj , Pi) ≤ ϵ}

is large enough. A concrete algorithm for determining rep-
resentative time patterns will be introduced in section III.

C. Graph Evolution DAGs

Compared with the examination of individual graph evolu-
tion rule one by one, consideration of a set of graph evolution
rules all at once must be effective for finding interesting
and important patterns related to graph evolution. For this
purpose, we consider a graph-based summarization of a set
of graph evolution rules.

Given a set of graph evolution rulesGER, a graph
evolution DAGon GER, denoted asDAGGER, is defined
as a directed acyclic graphG = (V,E) where E =
{(pb, ph) | pb → ph ∈ GER} is a set of edges representing
GER, andV = {p | p → ph ∈ GER ∨ pb → p ∈ GER} is
a set of time patterns inGER. In other words,DAGGER

is obtained by merging the same heads and bodies among
graph evolution rules.DAGGER consists of a set of trees
by definition. An example ofDAGGER is shown in Fig. 2.
We can expect to obtain new findings and precise insights on
graph evolutions by observing the relationships among time
patterns and graph evolution rules summarized in a graph
evolution DAG from a global point of view precisely.

In order to capture the process of graph evolution in

an abstract point of view with respect to time-stamps, we
consider a generalized time pattern obtained by removing
all time points except the last or maximal ones from a
time pattern. In other words, edges in a time pattern are
categorized into two groups, (i)edges created in the last
period and (ii)edges before the last period. For example, a
time patternP3a will be abstracted intoP5b in Fig. 4 by
removing the time points ‘0’, ‘1’ and ‘2’ associated to three
edges. By this abstraction, since the detailed order of edge
formation is ignored, plural time patterns can be recognized
as an identical one in an abstract sense. Thus, we can expect
to provide an abstract overview of graph evolutions in a time-
evolving graph by using the abstract time patterns.

Motivated by the above discussion, we construct an-
other directed acyclic graph from a graph evolution DAG
DAGGER by replacing every time pattern inDAGGER

with their abstractions and merging vertices having identical
abstract time pattern into one. We call such DAG as an
abstract graph evolution DAG and denote it asDAGmax

GER.
An example of abstract graph evolution DAG is shown in
Fig. 4 (DAGmax

GER).

III. D ISCOVERY OFINTERESTINGPATTERNS AND RULES

A. An Overview

Our objective in this paper is to find interesting patterns
and rules related to evolutions in time-evolving graphs. To
achieve this objective, we propose the following procedures:

1) Discover a setTP of all frequent time patterns from
a time-evolving graphG.

2) Select a setRTP of representative time patterns from
TP by considering structural representability and sup-
port preservation.

3) Build a setGER of valid graph evolution rules from
RTP .

4) Construct a graph evolution DAGDAGGER from
GER as well as an abstract graph evolution DAG
DAGmax

GER.
5) Extract interesting patterns and rules related with graph

evolution by examiningDAGGER andDAGmax
GER.

Several criteria on importance and significance of patterns
and rules can be considered in the last step of the above
procedures. This issue will be discussed in section IV.

Given a setRTP of representative time patterns obtained
in step 2, we can construct a set of graph evolution rules and
graph evolution DAGs in a straightforward way. Thus, in the
following, only a method for obtaining representative time
patterns will be explained in detail.

B. Mining Representative Relative Time Patterns

We take advantages of a frequent subgraph discovery
algorithm named gSpan[7], which uses the rightmost exten-
sion and the canonical representation[2] of graph patterns.
As pointed out in [1], while gSpan is originally designed
for pattern mining from a set of graphs, it can be easily
applicable for mining frequent time patterns (i)by a slight
modification on the support computation and (ii)by an ex-
tension of canonical representation for graph pattern having
time-points.

An algorithm for mining frequent relative time patterns is
shown in Fig. 5. While we extend the algorithm to handle

Algorithm TP-Miner(G, σ, L)
1: TP := {}
2: for each P ∈ L
3: TP-Enum(P , G, σ, L, TP)
4: return TP
Subroutine TP-Enum(P , G, σ, L, TP)
1: if ¬isCan(P) ∨ supG(P) < σ then return
2: TP := TP ∪ {P}
3: for each e ∈ RMB(P)
4: for each t ∈ TL(P, e)
5: P ′ := P · e; setTime(e, t) ;
6: call TP-Enum(P ′, G, σ, L, TP)

Fig. 5. Pseudo code of frequent time pattern miner

Algorithm RTP-Selector(TP , τ , δ, ϵ, RTP)
1: RP := {P ∈ TP | ∃r(P) s.t. conf(r(P)) ≥ τ}
2: RTP := {}
3: while (RP ̸= ∅)
4: select a patternP ∈ RP

5: s.t. |Cδ,ϵ
TP (P) | = maxPj∈RP |Cδ,ϵ

TP (Pj) |
6: RTP := RTP ∪ {P}
7: RP := RP \ Cδ,ϵ

TP (P); TP := TP \ Cδ,ϵ
TP (P)

8: return RTP

Fig. 6. Pseudo code for selecting representative time patterns

multi-edge patterns, this algorithm is essentially the same as
an algorithm GERM proposed in [1]. In the algorithm,G, σ
and L denote a time-evolving graph, a minimum support
threshold, and a set of labels, respectively. A setTP is
used for storing frequent time patterns obtained during the
execution. For each graph patternP having one vertex, new
time patterns will be generated by repeatedly applying a
procedure TP-Enum (line 2,3 of TP-Miner). In TP-Enum,
if a time patternP is not canonical (¬isCan(P) in line 1),
thenP will be pruned to avoid the duplicated enumerations
of the same patterns. As similar, infrequent patternP will
be also pruned (supG(P) < σ in line 1) since no frequent
time patterns can be obtained by the specialization ofP .
After storing frequent relative time patterns (in line 2), the
rightmost extension[7] will be applied for generating new
candidates (in line 3–6). In this extension, a new candidate
of frequent time patternP ′ = P · e will be generated
(i)by adding an edgee in a set RMB(P) of the rightmost
branches[7] toP and (ii)by assigning a time-pointt in a set
TL(P, e) of relative time-stamps fore with respect to the
occurrence ofP · e (setTime(e, t) in line 5).

After obtaining a setTP of all frequent time patterns, a
setRTP of representative patterns is extracted fromTP by
using a greedy covering algorithm shown in Fig. 6. To build
a useful graph evolution DAGs, we avoid selecting a time
patternP ∈ TP as a representative, ifP has no contribution
to build a graph evolution DAGs. For such purpose, we
prepare a setRP of time patterns from which valid graph
evolution rules can be obtained (line 1 in Fig. 6).

While representative patterns will be selected fromRP ,
the size ofCδ,ϵ

TP obtained byTP will be employed as an
evaluation measure. The algorithm selects a time pattern
P ∈ RP having the maximal significance as a representative
pattern and stores it intoRTP (line 4–6). Then, all patterns
covered byP are removed fromRP and TP , respectively
(line 7). These processes are iterated untilRP becomes
empty (line 3).

IV. EXPERIMENTS

In order to assess the effectiveness of the proposed frame-
work, we implement a series of algorithms in Java language
and conduct preliminary experiments by using the Enron
Email Dataset[5] on a PC (CPU:Intel(R) Xeon(R), 3.3GHz)
with 32GByte of main memory running Windows XP.

By extracting email communications within a particular
year from the Enron data, a time-evolving graphG1 with
daily granularity is prepared in which each vertex corre-
sponds to a person and each edge represents a certain
communication between persons. While the position in the
occupation is used as a vertex label, the sort of email
communications (To, Cc and Bcc) is employed as edge
labels. The resulting time-evolving graphG1 consists of 155
vertices and 5,606 edges. In addition, we prepare another
time-evolving graphG2 with monthly granularity in the
same manner.G2 contains 155 of vertices and 2,208 edges,
respectively.

A. Effects of thresholds on extracting time patterns and
graph evolution rules

A time-evolving graphG1 is used as a target data in
the first experiments. Given several combinations of three
thresholds, (i)σ for support value of time patterns, (ii)τ
for confidence value of graph evolution rules, and (iii)ϵ
for representative time patterns, we measure the number of
frequent time patterns and the number of graph evolution
rules obtained from representative patterns. In addition, the
number of vertices and edges in graph evolution DAGs
(DAGGER) as well as abstract graph evolution DAGs
(DAGmax

GER) are examined. Note that, the number of edges
in a graph evolution DAG is identical with the number of
graph evolution rules. In all experiments, fourth thresholdδ
for representative time patterns was set to 1.

The experimental results are shown in Table II. All results
are obtained within a reasonable computation time. Number
of discovered frequent time patterns are greatly different
between two support thresholdσ = 0.07 and σ = 0.05.
The same tendency can be observed on the number of
graph evolution rules. Compared withσ, thresholdsτ and
ϵ seem to give small impact on the results. While it does
not necessarily to hold because of the greedy algorithm,
the number of representative time patterns increases as a
thresholdϵ becomes smaller.

We succeeded in compressing a set of frequent time
patterns into a small representative set. The numbers of
representative patterns are reduced to 26.4% and 59.8% in
σ = 0.07 and σ = 0.05, respectively. In case ofσ = 0.05,
the number of vertices in the DAGs is reduced to 84.9%
in average and to 82.3% in the maximal by the abstraction.
Compared with the reduction of the vertices, the reduction
rate of edges is very small.

B. Interesting time patterns and graph evolution rules

In Table I (left), we show a ranking of top-10 time patterns
having high value of centralities in the graph evolution DAG
having 419 vertices and 421 edges obtained fromG2 under
the condition ofσ = 0.07, τ = 0.1 and ϵ = 0.1.

Since most patterns having high degree centrality consist
of two vertices, they correspond to the beginning of graph

TABLE I
RANKING OF TIME PATTERNS W.R.T NETWORK CENTRALITIES

ranking inDAGGER

Cd sup pat. Cc sup pat.
1 1 P1 1 13 P5

2 5 P2 2 5 P2

3 88 P3 3 250 P11

4 9 P4 4 1 P4

5 13 P5 5 88 P12

6 23 P6 6 250 P13

7 64 P7 7 64 P14

8 9 P8 8 88 P15

9 64 P9 9 88 P16

10 16 P10 10 64 P9

ranking inDAGmax
GER

Cd sup Cc sup
1 1 1 5
2 13 2 63
3 63 3 88
4 63 4 245
5 5 5 88
6 88 6 88
7 9 7 63
8 16 8 88
9 23 9 1
10 88 10 63

Cd: rank on degree centrality.Cc: rank on closeness centrality.
sup: rank on support value. pat.: pattern number in Fig. 7

Fig. 7. Time patterns having high centrality

evolutions. On the other hand, all patterns with high close-
ness centrality do not have high support value. And, most
patterns ranked in high place consist of more than two ver-
tices. Thus, these patterns correspond to certain intermediate
steps in graph evolutions. While the concrete time patterns
are not shown, a similar tendency can be observed in an
abstract graph evolution DAG.

These results show the ability of our proposal to extract
time patterns that are difficult to obtain in the traditional
support-based framework.

C. Examples of graph evolutions

In Fig. 8, we show examples of the process of graph
evolutions found in a time-evolving graphG2 under the same
conditions in the second experiments (σ = 0.07, τ = 0.1
and ϵ = 0.1).

In this figure, while the left process (a) is obtained
from a graph evolution DAG (DAGGER), the right one (b)
represents a process in an abstract graph evolution DAG
(DAGmax

GER). An abstract time patternP4b in (b) was built
by merging two time patternsP3a and P5a in (a) into one.
Two rules P2b → P4b and P3b → P4b in (b) say that
if the four communications within three time periods are
conducted between two individuals labeledE, one additional
communication will be performed between one individualE
and new individualA in fourth time period. As this simple
example shows, on one hand,DAGGER shows the detailed
graph evolutions with concrete time points. Precise insights
on discovered graph evolutions can be expected to obtain by

TABLE II
EXPERIMENTAL RESULTS

τ ϵ σ pat. rule |VD| |V m
D | |Em

D | time σ pat. rule |VD| |V m
D | |Em

D | time
0.9 4 7 6 4 4.2 2,738 3,029 2,615 2,635 257.0

0.3 0.5 4 7 6 4 4.2 2,735 3,045 2,643 2,650 258.6
0.1 4 7 6 4 4.0 2,795 3,090 2,656 2,691 261.5
0 4 7 6 4 4.0 2,828 3,103 2,657 2,724 261.1

0.9 10 17 15 10 4.1 3,645 3,887 3,318 3,542 279.7
0.1 0.5 0.07 79 10 17 15 10 4.0 0.05 6,041 3,776 3,991 3,351 3,673 284.1

0.1 34 37 35 34 4.0 3,983 4,159 3,450 3,879 289.5
0 34 37 35 34 4.2 4,164 4,248 3,534 4,060 311.6

0.9 20 28 28 20 4.2 3,870 4,115 3,540 3,767 285.9
0.05 0.5 20 28 28 20 4.2 3,983 4,206 3,585 3,880 288.6

0.1 53 56 54 53 4.5 4,296 4,469 3,739 4,192 304.7
0 53 56 54 53 4.3 4,560 4,588 3,847 4,456 415.9

pat.: number of discovered time patterns. rule: number of graph evolution rules.|VD|: number of vertices inDAGGER

|V m
D |: number of vertices inDAGmax

GER. |Em
D |: number of edges inDAGmax

GER. time: execution time in second.

A

E
To:0

E

Bcc:0

Cc:0

To:4

E
To:0

E

Bcc:0

Cc:0

To:2

E
To:0

E

Bcc:0

Cc:0

To:2

E
To:0

E

Bcc:0

Cc:0

To:3

A

To:4

E
To:0

E

Bcc:0

Cc:0

To:3

E
To:0

E

Bcc:0

Cc:0

E
To

E

Bcc

Cc

To:2

E
To

E

Bcc

Cc

To:3

A

To:4

E
To

E

Bcc

Cc

To

(a) (b)

P1a

P2a

P3a

P4a

P5a

P1b

P2b P3b

P4b

Fig. 8. Examples of graph evolutions represented in two DAGs

considering the whole structure of a graph pattern as well as
the order of edge formation. On the other hand,DAGmax

GER

advises us the processes of graph evolutions in an abstract
level.

V. RELATED WORK

Two graph miners GERM[1] and LFR-Miner[6] are the
most related work with our proposal. GERM[1] extracts
relative time patterns and graph evolution rules in a time-
evolving graph. As mentioned previously, our proposal in
this paper can be regarded as a modification of [1] by
allowing multi-edges in a pattern as well as by changing the
definition of confidence. LFR-Miner[6] finds Link formation
rules which capture the formation of a new link between
specified two vertices as a postcondition of existing con-
nections between the two vertices. Link formation rules are
closely related to the abstract time patterns. But they are
different from the abstract time patterns in the following two
points: (i) all edges in a rule must be connected to pre-
specified two vertices and (ii) only one edge in a rule is
allowed to have the last time period. An abstract time pattern
does not have the above restrictions.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we propose a framework for discovering
interesting patterns and rules in time-evolving graphs. The
usefulness of proposed framework was evaluated by prelimi-
nary experiments with real world datasets. In the framework,

graph evolution DAGs built from representative and abstract
graph evolution rules will help users’ understand by giving an
brief overview of discovered patterns and rules. In addition,
those DAGs enable us to evaluate the significance of patterns
from the aspect of relationships among patterns. In other
words, graph evolution DAGs provide additional criteria
for pattern discovery other than traditional interestingness
measures such as support and confidence.

For future work, further experiments with large-scale
datasets and detailed assessment of the quality of obtained
graph evolution DAGs are necessary. Furthermore, we in-
vestigate to develop a frequent subgraph miner specialized
for discovering abstract time patterns having last time-stamp
only, i.e. patterns inDAGmax

GER, directly from time-evolving
graphs. By combining the rules with detailed time informa-
tion and the abstract ones, we can expect to discover useful
patterns and rules having appropriate time granularity for
capturing important and critical processes in time-evolving
graphs.

REFERENCES

[1] M. Berlingerio, F. Bonchi, B. Bringmann and A. Gionis, “Mining
Graph Evolution Rules,” inProc. of the European Conference on
Machine Learning and Knowledge Discovery in Databases, Part I,
2009, pp.115–130.

[2] C. Borgelt, “On canonical forms for frequent graph mining”,Working
Notes of the Third International ECML/PKDD-Workshop on Mining
Graphs, Trees and Sequences, 2005, pp.1–12.

[3] B. Bringmann and S. Nijssen, “What is frequent in a single graph?”,
Proc. of the 12th Pacific-Asia Conference on Knowledge Discovery
and Data Mining, 2008, pp.858–863.

[4] C. Chen, C. X. Lin and X. Yan and J. Han, “On effective presentation
of graph patterns: a structural representative approach”,Proc. of the
17th ACM conference on Information and knowledge management,
2008, pp.299–308.

[5] B. Klimt and Y. Yang, “The enron corpus: A new dataset for email
classification research,” inProc. of the 15th European Conference on
Machine Learning, 2004, pp. 217–226.

[6] C. W.-k. Leung, E.-P. Lim, D. Lo and J. Weng, “Mining Interesting
Link Formation Rules in Social Networks”, inProc. of the 19th
ACM Conference on Information and Knowledge Management, 2010,
pp.209-218.

[7] X. Yan and J. Han, “gSpan : Graph-based substructure pattern mining,”
in Proc. of the 2nd IEEE International Conference on Data Mining,
2002, pp. 721–724.

[8] X. Yan and J. Han, “CloseGraph: Mining closed frequent graph
patterns,” inProc. of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2003, pp. 286–295.

