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Mining Interesting Patterns and Rules
In a Time-evolving Graph

Yuuki Miyoshi*, Tomonobu Ozakj and Takenao Ohkawa

Abstract—Time-evolving graphs, i.e. dynamic networks @ o APL6)
changing their structures with time, are becoming ubiquitous P, E> .
recently. A typical example is an email communication network P, % 0 9 B—0O) O—0O)
whose vertex corresponds to an individual and whose edge . b
corresponds to an email communication within a time period. () ki ’ (b) *

For the effective analysis of such time-evolving graphs, it

must be important to utilize representative local structures Fig. 1. two types of graph evolutions
in networks as well as time information on edge formation

simultaneously.

In this paper, we consider a problem of mining frequent pat-  how the triangle is constructed. This kind of information

terns and valid rules representing graph evolutions or structural .
changes in a network with time information. In addition to an must be useful to understand what structure acts as a trigger

effective mechanism for extracting representative patterns and fOF graph evolutions. .
rules, we devise graph-based summarization of discovered rules. ~ Previous researches on graph pattern discovery have draw-

By using certain measures provided by the summary, we can back on analyzing graph evolutions. First, other than a few
fo obiain n the radiional suppart and confidence framework, < CPIoNS: MOst graph miners can not hande time infor-
O obtain . : :
The effectiveness of the proppc%ed framework was confirmed by mation directly. Sec_on_d, (_ju_e to a huge amou.”t of extracted
preliminary experiments using real world email data. patterns and rules, it is difficult to determine important and
significant ones. To overcome these difficulties, in this paper,
we propose a framework for discovering interesting patterns
and rules on graph evolutions. The proposed approach is
summarized in Fig. 2. We first mine frequent patterns with
a time information ((1) in Fig. 2). Frequent pattern miners
Recently, the study of human activities on social andften discover a huge amount of patterns. In order to com-
communication networks attract a large amount of attentiopress a set of frequent patterns into a representative set, we
In general, patterns on local structures in those networks cadopt a structural representative approach proposed in [4]
provide useful insight for understanding human activitie$(2) in Fig. 2). Then, the rules focused on the evolutions will
Furthermore, because a network changes its structure dynda-generated from the obtained patterns ((3) in Fig. 2). We
ically with time, taking account of temporal information ondevise two graph-based summarizations of a set of rules to
edge formation will help precise analysis. In this paper, weelp to discover interesting and important patterns ((4) in Fig.
consider the problem of mining frequent patterns and val). Finally, by investigating these summarizations, we extract
rules that representraph evolutionsi.e. structural changes characteristic patterns and chains of rules based on some
in a network with time information. network-based importance measure such as degree centrality
Two types of graph evolutions are discussed. One () in Fig. 2). The aim of employing network-based measure
an evolution by temporal aspect, and the other is by theto find interesting patterns which are difficult to discover
surrounding situation. These evolutions are explained wiih the standard framework based on support and confidence.
a simple example shown in Fig. 1. In this figure, we assume
that each vertex corresponds to a person and each edd€he rest of this paper is organized as follows. In section I,
represents a communication between persons. The numasic notations and definition will be introduced. In section
ber associated to an edge represents a time period whignour framework for discovering patterns and rules in time-
the communication is conducted. In Fig. 1(&), and P, evolving graphs will be explained in detail. Preliminary ex-
represent two graph evolutions with different time periodserimental results are reported in section IV. After describing
after the communication between A and B. The order amdlated work in section V, finally we conclude this paper in
timing of communications contained iR, and P, will give section VI.
useful insight to understand the evolutions. On the other
hands, Fig. 1(b) represents an evolution influenced by the Il. NOTATIONS AND DEFINITIONS
surrounding situationP; states that a triangleP) causes  According to the previous studies[1], [4], [3], we give
an communication between A and D while we do not cafermal notations and definitions on graphs, patterns and rules

Index Terms—frequent pattern mining, graph mining, graph
evolution rule

I. INTRODUCTION
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Fig. 2. An overview of the proposed

I an overview of a set of rules |

framework

labeled graph having a set of verticég, a set of edges

Eq C Vg x Vg, a labeling functionis :
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that maps each element of a graph to an alphabgt, iand

| a set of representative patterns |
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a time-stamp functiortg : Eg — 7 that assigns a time- %2 P

point in 7 to each edge. While multi-edges having different o o o _

. . . . 01_[‘3‘\3.\1](A_1)
time-stamps are allowed in a time-evolving graph, we assun ¢ T _

. . . . 02_[\5.\4.\:](A_-|-)
that labels of vertices and edges never change with time fc D= P e o _
the simplicity. A graph “input data” in Fig. 2 is an example 03=[v3.v,.V] (A=2)

04=[Vs.,Vy,Vy] (A=5)

of time-evolving graphs. In the graph, there are two edge
between vertices A and B. One has “1” of time-stamp, the

other has “3".

relative time patternwhich is

Fig. 3. Occurrences of a time pattefhin a time-evolving graplG
As a pattern in a time-evolving graph, we employ a

a connected time-evolving

graphP = (Vp, Ep,lp,tp) whose lowest time-stamp is zeroy,, v, andv, in G which correspond t@g,v; andw, in P,
(mineep, t,(e) = 0). The concept of relative time patternrespectively.

is originally introduced in [1]. In this paper, we extend the The support value of a time patternP in a

original definition to allow multi-edges among vertices time-evolving graph G is defined as supq(P)

represent plural relations and repeated communicationsniﬂnv_evp ’{O(Ui)‘o c q)g}’ / |Ve|, i.e. the ratio of minimum
different time-points. Note that, time-points associated ,mber of unique vertices(v;) in o € ®Z to the total

ISBN: 978-988-18210-3-4

edges in relative time patterns represent the relative relatigfimber of vertices. This definition is a simple adoption of
among the periods of edge formations. For example, e support value of a pattern in a single graph setting[3]. In
relative time patter?; in Fig. 2 states that an edge betweegig, 3, lo(vo)] is the minimum number and the support value
two vertices B and C is generated in the next period Whet p in ¢ is calculated asupc(P) = 0.4. Given a threshold
an edge between A and B is established. Hereafter, we Gally time patternP is said to befrequentif supg(P) > o
relative time pattern as time pattern for the sake of simplicityg|ds.

onThen, we consider rules between two time patterns for
representing graph evolutions. We adaptph evolution
ruleg1] in the form of P, — P, where P, and P, are
time patterns and?, is obtained by deleting all the edges
having the last or maximal time-point frof,. The formal
definition is given below. For two time patterng, and
P,, a rule P, — P, is defined as agraph evolution
Y(u,v) € Ep, [tp,((f(w), f(v))) = tp ((w,v)) + A]. An rule with respect toP, if the following conditions hold:
occurrenceof P; in P, with respect to a functioif satisfying ()Ep, = {e € Ep,|tp,(e) < maxeer, (tp, ()}

the conditions on subgraph relation is defined as a li§)Vp, = {v € Vp, |deg(v, Ep,) > 0} wheredeg(v, Ep,)

0 = [v1,v2, -, v, J(vi € Vi, v = flui),u; € Vi,) of denotes the degree ofin P,, and (iii))P; is connected.
vertices inP, mapped from vertices ify, by f. The notation ~ While every time patter®, can not form a graph evolu-
o(v;) is used to represent theth element in an occurrencetion rule P, — P,, P, determines its body?, uniquely if

o. All occurrences ofP; in P, is denoted asbg. Fig. 3 suchpP, exists. A notation(P,) is used to represent a unique
shows an example of a set of occurrencesPoin G (@@) rule P, — Py, obtained byP,. Arule of r(P;) = Ps — Prin

and their parameteA. A list 0, consists of three verticesFig. 2 is an example of graph evolution rule. This rule states

We introduce a subgraph relation and support value
time-evolving graphs. A time-evolving graph; is said to
be a subgraph of another time-evolving graph denoted
as P, C P, if there exists a parameteh € R and
an injective functionf : Vp, — Vp, which satisfies
the conditions: ()Yv € Vp, [lp,(v) = Ip,(f(v))], (ii)
Y(u,v) € Ep [lp,(u.v) = Ip(f(u), f(v))], and (i)
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that, if a graph pattern having two edges is established by
adding edges A-B and B-D in this order, then an additional @
edge between D and E will be generated in the next period 12 v
with a certain probability.

The probability or confidence of a graph evolution rules
is discussed below. While two definitions on the strength of
graph evolution rules are employed in the previous study[1],
we propose another definition of confidence of a graph
evolution rule P, — P, based on the occurrences 6.
The confidencevalue of a graph evolution rul®, — P,
is defined asconfa(P, — P) = |Op,(Py)|/|®E| where
Op,(Py) denotes a set of occurrenog € <I>gb which can
be extendable to an occurreneg € cI>gh. It is natural to
consider that an occurrence 6% grows into an occurrence
of P, by evolutions. Thus, we believe that this definition, i.e.
the ratio of occurrences i, grown into an occurrence in
Py, is suitable for capturing the strength of graph evolution
rules. Given a threshold, a graph evolution rule®, — P,
is said to bevalid if confg(P, — Pp) > 7.

DAG,zs DAGrSx

GER

Fig. 4. An example oD AGgpr and DAGTEE,

B. Representative Time Patterns Sp, contains all the occurrences in structural similar patterns

. . P, with P;. Then, thesmoothing supporvalue of P; € TP
Frequent pattern miners often discover a huge amoupt g supp <

. 1S defined ass P;) = min;; ) L,
of patterns[8]. In order to compress a set of frequent ti supc(P) = mimi<icivy | [{0(i) |0 € Sp}|

. . . using smoothing support, we define the preservation of
patterns into a representative set of manageable size, V\YG g g supp P

ao0lv a structural reoresentative aporoach proposed in pport value. Given a tolerance parameteve say that the
bply uctu P Ve app prop n pport of a patter®’ is preserved byanother patterrdP, if
which considers two aspects, (i)structural representabilify . .

- . ! X . inequality
and (ii)support preservation. This approach is originally

proposed for patterns in a graph database (a set of graphs) Ps(P',P) = |ssupg (P) — ssupg (P')]
without time-stamps, we extend it to handle relative time ’ max{ssupg(P), ssupc(P')} ~
patterns in a time-evolving graph. holds.

The structural representability is discussed first. Intuitively Given two parameter§ ande, a time patternP; will be
speaking, the structural difference between two time pattefggige as representative in a set of frequent time patterns
having the same vertex sets is measured as a degree of diffep — {P,---,P,} if aset
ence between edge sets. Given an error tolerance parametey,

d, thestructural differencéoetween two time patternd’ and C7p(P) ={P; € TP | Rs(P;,P;) <6,Ps(P;,P;) < ¢}

P is defined as follows: is large enough. A concrete algorithm for determining rep-
{ min d(P',P,f) (F(P',P)+() resentative time patterns will be introduced in section lIl.
dif f(P',P)={ Jr(F.P) .
o0 (otherwise) C. Graph Evolution DAGs
where F(P’, P) denotes a set of bijective mappings satisfy- Compared with the examination of individual graph evolu-
ing (Vo' € Vp [lp/(v') = Lp(f(v'))] and (i) d(P’, P, f) = tion rule one by one, consideration of a set of graph evolution

o wevp, 7 (W1 05) = IP(f(v1), f(vh))| < & in which rules all at once must be effective for finding interesting
I”(u,v) is an indicator function such that”(u,v) = 1 and important patterns related to graph evolution. For this
if (u,v) € E, and I”(u,v) = 0 otherwise. We define purpose, we consider a graph-based summarization of a set
the structure representable by using the structural differenog.graph evolution rules.
A time patternP’ is said tobe structure representable by Given a set of graph evolution rule§ER, a graph
another time patterd® if an inequality evolution DAGon GER, denoted adDAG¢gr, is defined
as a directed acyclic grapy = (V,E) where E =
{(po,pr) | P» — pn € GER} is a set of edges representing
A GER, andV = {p|p — p, € GERV p, — p € GER} is
holds where Ci"¥uc¢ denotes an induced subgrapla set of time patterns it ER. In other words,DAGgxr
relationship[4]. In simple words;” is structure representablejs obtained by merging the same heads and bodies among
by P if P has a subgrapt?” which shares the same vertexgraph evolution rulesDAGsgr consists of a set of trees
set and similar edge set with'. by definition. An example oD AG R is shown in Fig. 2.
Then, on specifying the degree of support preservatioile can expect to obtain new findings and precise insights on
smoothed supportor time pattern is proposed by slightlygraph evolutions by observing the relationships among time
modifying the original definition in [4]. Given a set of fre-patterns and graph evolution rules summarized in a graph

Rs(P',P) = min dif f(P',P") <3¢

|Ver |=|Ven | P Cinduce p

quent time pattern§’'P = {Py,---, P,} in a time-evolving evolution DAG from a global point of view precisely.

graph G, the smoothed supporting occurrence setPofis

defined asSp, = Up, crpairs(p.p<s ®(7.Inotherwords,  In order to capture the process of graph evolution in
ISBN: 978-988-18210-3-4 IMECS 2011
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an abstract point of view with respect to time-stamps, wegorithm TP-Miner, o, £)

consider a generalized time pattern obtained by removinéf %fe:a:cé}P cr
all time points except the last or maximal ones from ag. TP-Enum@, G, o, £, TP)

time pattern. In other words, edges in a time pattern aré@: return TP
categorized into two groups, (i)edges created in the lasbubroutine TP-Enum@, G, o, £, T'P)
period and (ii)edges before the last period. For example, & if ~isCan®) V supc(P) < o then return

time patternP;, will be abstracted intaPs, in Fig. 4 by 3 fzfe:;cr?feuéﬁ}B(P)

removing the time points ‘0", ‘1" and ‘2’ associated to three 4. for each ¢ € TL(P,e)
edges. By this abstraction, since the detailed order of edge P’ := P -¢; setTime¢, t) ;
formation is ignored, plural time patterns can be recognized: call TP-Enumf’, G, o, L, TP)

as an identical one in an abstract sense. Thus, we can expeCls  pseudo code of frequent time pattern miner

to provide an abstract overview of graph evolutions in a time-

evolving graph by using the abstract time patterns. Algorithm RTP-Selectorl P, 7.9 ¢, RTD)
Motivated by the above discussion, we construct an— pp.— [PETP| Hr(}?) =7 éonf(r(P)) ST

other directed acyclic graph from a graph evolution DAG2: RTP := {}

DAGgggr by replacing every time pattern i AGgegr 3.  while (RP # 0)

with their abstractions and merging vertices having identicaf select a patterd® € RP

abstract time pattern into one. We call such DAG as arp* St.|Cyp(P)| = maxperp |Opp(F)) |

abstract graph evolution DAG and denote it RSIGEEY,. .. gg{g —::R}I—ECCF()J ge{(]; }) TP = TP\ C35(P)

An example of abstract graph evolution DAG is shown in 8 return RTP TP\ - TP

Fig. 4 (DAGEE).

Fig. 6. Pseudo code for selecting representative time patterns
IIl. DISCOVERY OFINTERESTINGPATTERNS AND RULES

A. An Overview . . . . .
multi-edge patterns, this algorithm is essentially the same as

Our objective in this paper is to find interesting patterng algorithm GERM proposed in [1]. In the algorithtd, o
and rules related to evolutions in time-evolving graphs. Tgnd L denote a time-evolving graph, a minimum support

achieve this objective, we propose the following proceduretﬁreshold and a set of labels, respectively. A &gt is
1) Discover a sef'P of all frequent time patterns from ysed for storing frequent time patterns obtained during the
a time-evolving graplt. o execution. For each graph pattefhhaving one vertex, new
2) Select a seRT'P of representative time patterns fromjme patterns will be generated by repeatedly applying a
TP by considering structural representability and SURsrocedure TP-Enum (line 2,3 of TP-Miner). In TP-Enum,

port preservation. . if a time patternP is not canonical ¢isCan(P) in line 1),
3) Build a setGER of valid graph evolution rules from then p will be pruned to avoid the duplicated enumerations
RTP. of the same patterns. As similar, infrequent patté&rwill

4) Construct a graph evolution DA@AGger from  pe also prunedsgipe(P) < o in line 1) since no frequent
GER as well as an abstract graph evolution DAGjme patterns can be obtained by the specializationPof

DAGEER _ After storing frequent relative time patterns (in line 2), the
5) Extraqtlnterestlng 'p{:\tterns and rules related with gra%htmost extension[7] will be applied for generating new
evolution by examiningD AGgrr and DAGE . candidates (in line 3-6). In this extension, a new candidate

Several criteria on importance and significance of patterps frequent time pattern®” = P - e will be generated
and rules can be considered in the last step of the abqi®y adding an edge in a set RMBP) of the rightmost
procedures. This issue will be discussed in section IV.  pranches[7] taP and (ii)by assigning a time-poirtin a set

Given a setRT P of representative time patterns obtained’L (P, e) of relative time-stamps foe with respect to the
in step 2, we can construct a set of graph evolution rules agécurrence ofP - e (setTime¢, t) in line 5).
graph evolution DAGs in a straightforward way. Thus, in the after obtaining a sef’P of all frequent time patterns, a
following, only a method for obtaining representative timggt TP of representative patterns is extracted fréiR by

patterns will be explained in detail. using a greedy covering algorithm shown in Fig. 6. To build
a useful graph evolution DAGs, we avoid selecting a time
B. Mining Representative Relative Time Patterns patternP € TP as a representative, I has no contribution

We take advantages of a frequent subgraph discovd®y build a graph evolution DAGs. For such purpose, we
algorithm named gSpan[7], which uses the rightmost exteprepare a seRP of time patterns from which valid graph
sion and the canonical representation[2] of graph pattergyolution rules can be obtained (line 1 in Fig. 6).

As pointed out in [1], while gSpan is originally designed While representative patterns will be selected fréiv,

for pattern mining from a set of graphs, it can be easilhe size ofC%; obtained byT' P will be employed as an
applicable for mining frequent time patterns (i)by a slightvaluation measure. The algorithm selects a time pattern
modification on the support computation and (ii))by an ex? € RP having the maximal significance as a representative
tension of canonical representation for graph pattern havipgttern and stores it int®7 P (line 4—6). Then, all patterns
time-points. covered byP are removed fromkRP and T P, respectively

An algorithm for mining frequent relative time patterns igline 7). These processes are iterated ufiP becomes
shown in Fig. 5. While we extend the algorithm to handlempty (line 3).
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TABLE |

IV. EXPERIMENTS RANKING OF TIME PATTERNS WR.T NETWORK CENTRALITIES
In order to assess the effectiveness of the proposed frame- o -
. . . . ranking inDAGgER ranking in DAGZES
work, we implement a series of algorithms in Java languagesz = a 5
o . ) © sup | pat. | C sup | pat. C sup || C' sup
and conduct preliminary experiments by using the Enronz 1 | P 1| 13 | P 1 1 1 5
Email Dataset[5] on a PC (CPU:Intel(R) Xeon(R), 3.3GHz) 2 5 | P 2 5 | P 2 | 13 2 | 63
: ; ; ) 3| 8 | P 3 | 250 | Py 3 | 63 || 3| 88
with 32GByte of main memory running Windows XP. 9 | p 4 1| P 1 | 63 4 | 245
By extracting email communications within a particular 5 | 13 | p; 5 | 88 | Ppo 5 5 5 | 88
year from the Enron data, a time-evolving gragh with 6 | 23 | B 6 | 250 | Pi3 6 | 88 6 | 88
. . . . . _ 7 64 Py 7 64 Py 7 9 7 63
daily granularity is prepared in which each vertex corre 8 9 | B 8 | 88 | Pis s | 16 s | ss8
sponds to a person and each edge represents a certaq | 64 | P, 9 | 88 | Pig 9 | 23 9 1
communication between persons. While the position in thel0 | 16 | Pio || 10 | 64 | P 10 | 88 || 10 | 63

occupation is used as a vertex label, the sort of email C<: rank on degree centralityC: rank on closeness centrality.
communications (To, Cc and Bcc) is employed as edge  sup: rank on support value. pat.: pattern number in Fig. 7
labels. The resulting time-evolving gragh consists of 155

vertices and 5,606 edges. In addition, we prepare anothe- 00 -
time-evolving graphG, with monthly granularity in the Pl®_® Pﬁ®_®_®

same manneis; contains 155 of vertices and 2,208 edges,

P
o To To:1l
respectively. rEO—® »

To:3 To:l
i A Bee:0 To:1
A. Effects of thresholds on extracting time patterns and ®* ((==E&) P @%@ e (E—E)—)
graph evolution rules To'l N
To:0 To:3 0 0.
O ONEENG O ORIO OO

A time-evolving graphG; is used as a target data in
the first experiments. Given several combinations of three To:0/~\To 0 Bec:0

T
. . .. P:
thresholds, (iy for support value of time patterns, (i) ‘ Pis T“ )
for confidence value of graph evolution rules, and diii) p®H®T_®

for representative time patterns, we measure the number ¢

frequent time patterns and the number of graph evolutior p_®ﬂ®ﬁ® PB

rules obtained from representative patterns. In addition, the

number of vertices and edges in graph evolution DAG3g. 7. Time patterns having high centrality

(DAGggr) as well as abstract graph evolution DAGs

(DAGEER) are examined. Note that, the number of edges

in a graph evolution DAG is identical with the number ofvolutions. On the other hand, all patterns with high close-

graph evolution rules. In all experiments, fourth threshbld ness centrality do not have high support value. And, most

for representative time patterns was set to 1. patterns ranked in high place consist of more than two ver-
The experimental results are shown in Table II. All resuliéces. Thus, these patterns correspond to certain intermediate

are obtained within a reasonable computation time. Numb&€ps in graph evolutions. While the concrete time patterns

of discovered frequent time patterns are greatly differefif€ not shown, a similar tendency can be observed in an

between two support threshold = 0.07 and ¢ = 0.05. abstract graph evolution DAG.

The same tendency can be observed on the number oil'hese results show the ability of our proposal to extract

graph evolution rules. Compared with thresholdsr and time patterns that are difficult to obtain in the traditional

¢ seem to give small impact on the results. While it doespport-based framework.

not necessarily to hold because of the greedy algorithm,

the number of representative time patterns increases ag.a Examples of graph evolutions

thresholde becomes smaller.

14

Py

In Fig. 8, we show examples of the process of graph

s S oo ek Tt e Gpons found name-evoving ragh, unde h same
. : conditions in the second experiments (= 0.07, 7 = 0.1
representative patterns are reduced to 26.4% and 59.8% P ( g

. aflde = 0.1).
o = 0.07 and o = 0.05, respectively. In case af = 0.05, ¢=01)

: . . In this figure, while the left process (a) is obtained
the number of vertices in the DAGs is reduced to 84'90Pom a graph evolution DAGIAG ¢ zz), the right one (b)

. o ) .
in average and to 82.3% in the maximal by the abstractio presents a process in an abstract graph evolution DAG

Compared with the reduction of the vertices, the reducti ™ . . .
. ' AGEEE). An tract tim tterdPy;, in w ilt
rate of edges is very small. (i GEir) abstrac e patteriy, in (b) was bu

by merging two time patterngs, and Ps, in (a) into one.

. ] ) Two rules Py, — Py, and P3, — Py in (b) say that

B. Interesting time patterns and graph evolution rules it the four communications within three time periods are
In Table | (left), we show a ranking of top-10 time patternsonducted between two individuals labelBdone additional

having high value of centralities in the graph evolution DAGommunication will be performed between one individaal

having 419 vertices and 421 edges obtained fi@gnunder and new individualA in fourth time period. As this simple

the condition ofc = 0.07, 7 = 0.1 ande = 0.1. example shows, on one hanBAGarr shows the detailed
Since most patterns having high degree centrality consggaph evolutions with concrete time points. Precise insights

of two vertices, they correspond to the beginning of grapin discovered graph evolutions can be expected to obtain by
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TABLE I
EXPERIMENTAL RESULTS

T € o | pat. | rule | [Vp| [ [V | [EE] | time o pat. rule | [Vpl | IVE | |ED] time
0.9 4 7 6 41 42 2,738 [ 3,029 | 2,615| 2,635 | 257.0
03 | 05 4 7 6 4 4.2 2,735 | 3,045 | 2,643 | 2,650 | 258.6
0.1 4 7 6 4| 40 2,795 | 3,090 | 2,656 | 2,691 | 261.5
0 4 7 6 4 4.0 2,828 | 3,103 | 2,657 | 2,724 | 261.1
0.9 10 17 15 10 4.1 3,645 | 3,887 | 3,318 | 3,542 | 279.7
0.1 | 05| 007| 79| 10 17 15 10 | 4.0 | 0.05| 6,041 | 3,776 | 3,991 | 3,351 | 3,673 | 284.1
0.1 34 37 35 34 4.0 3,983 | 4,159 | 3,450 | 3,879 | 289.5
0 34 37 35 34 4.2 4,164 | 4,248 | 3,534 | 4,060 | 311.6
0.9 20 28 28 20 | 4.2 3,870 | 4115 3,540 | 3,767 | 285.9
0.05| 0.5 20 28 28 20 4.2 3,983 | 4,206 | 3,585 | 3,880 | 288.6
0.1 53 56 54 53 | 45 4,296 | 4,469 | 3,739 | 4,192 | 304.7
0 53 56 54 53 4.3 4,560 | 4,588 | 3,847 | 4,456 | 415.9

pat.: number of discovered time patterns.

[V number of vertices ilD AGE LY.

rule: number of graph evolution rules,|: number of vertices D AGgER

|ET | number of edges iD AGE4%,. time: execution time in second.

Bcc:.0

v "

graph evolution DAGs built from representative and abstract
graph evolution rules will help users’ understand by giving an
brief overview of discovered patterns and rules. In addition,
those DAGs enable us to evaluate the significance of patterns

Bcc:0
eme from the aspect of relationships among patterns. In other
= words, graph evolution DAGs provide additional criteria
To2 Po, f . ... . K
. or pattern discovery other than traditional interestingness

measures such as support and confidence.

For future work, further experiments with large-scale
datasets and detailed assessment of the quality of obtained
graph evolution DAGs are necessary. Furthermore, we in-
vestigate to develop a frequent subgraph miner specialized
for discovering abstract time patterns having last time-stamp
only, i.e. patterns iID AGE 4%, directly from time-evolving
graphs. By combining the rules with detailed time informa-
tion and the abstract ones, we can expect to discover useful
considering the whole structure of a graph pattern as well pgtterns and rules having appropriate time granularity for
the order of edge formation. On the other habtG¢%, ~ capturing important and critical processes in time-evolving
advises us the processes of graph evolutions in an abstgréphs.
level.

Bcc:.0

Fig. 8. Examples of graph evolutions represented in two DAGs
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