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Abstract—As a major concern in designing various data
mining applications, privacy preservation has become a crit-
ical component seeking a trade-off between mining utilities
and protecting sensitive information. Data perturbation or
distortion is a widely used approach for privacy protection.
Either by adding noises or matrix decomposition methods,
many algorithms were developed based on the simulation
of attacker’s behaviors. Most of them are complicated and
computationally infeasible on dataset with huge attribute space.
In addition, the real-world data tend to be inconsistent, re-
dundant and consist of irrelevant part to target information.
Executing algorithms on such data is costly and ineffective.
Data preprocessing routines attempt to smooth out noise while
identifying outliers, and correct inconsistencies in the data. One
of the most important data preprocessing techniques is feature
selection. In this paper, we intensively studied Singular Value
Decomposition (SVD) based data distortion strategy and feature
selection techniques, and conducted experiments to explore how
feature selection approaches should be used and better serve
for privacy preservation purpose. Sparsified Singular Value
Decomposition (SSVD) and filter based feature selection are
used for data distortion and reducing feature space. We propose
a modified version of Exponential Threshold Strategy(ETS) as
our threshold function for matrix sparsification. Some metrics
are used to measure data distortion level. We also proposed a
novel algorithm to compute rank and gave its lower running
time bound. The mining utility of distorted data is tested with
a well known Classifier, Support Vector Machine (SVM).

Index Terms—SVD; SSVD; SVM; feature selection; pertur-
bation

I. INTRODUCTION

PRIVACY preserving data mining (PPDM) and privacy
preserving data publishing (PPDP) are two closely re-

lated research directions. The former concentrates on privacy
issues when data miners requesting real data for the mining
purpose; The latter stresses on an application-free protection
of data whenever in need of publishing data for business
transactions or research purpose. Both of them disguise
dataset in an effort to replace the original dataset for data
publications and data mining applications. With the rapid
growth of data exchange technology, collaborations with
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information between different parties become essential ap-
proach in many situations for business and research activities.
Without an acceptable level of privacy of sensitive informa-
tion, many data mining applications would not be applicable.
How can an entity be entrusted with access to sensitive
personal or business information, and how can sensitive
datasets be sufficiently protected from unauthorized access
without undermining accuracy of mining knowledge are the
important issues. Data privacy preservation is premised on
the maintenance of data analytical values. Preserving privacy
of data sets while still being able to extract valid data mining
results is a very challenging task. Among the widely used
approaches, Singular Value Decomposition (SVD) is one of
the most popular techniques to the above addressed issues. Its
derivative, Sparsified Singular Value Decomposition (SSVD)
concept was firstly introduced by Gao and Zhang in [2] for
reducing the storage cost and enhancing the performance
of SVD in text retrieval applications. Xu et al. applied
SVD and SSVD methods in a terrorist analysis system [3].
SSVD was further studied in [4] in which matrix structural
partition strategies were proposed and used to partition the
original data matrix into submatrices. The computational
cost incurred by matrix decomposition phase is substantially
reduced. In [5], Wang suggested that significance of features
for analysis purposes should be taken into consideration
and all features were ranked by using feature selection
methods. The objective of feature selection is to select most
correlated features regarding mining target while eliminating
the unrelated data and reducing dataset dimensionality and
hence, saving computational expense and achieving better
accuracy of mining results. However, the questions are that
can analysis results of data be preserved by performing
data distortion technique on selected features using feature
selection methods? And how can feature selection methods
produce better result or result in tolerable error rate on
perturbed data? Is it better to perform feature selection
before data distortion or is it better the other way around?
In our work, we take a close look at these interesting
questions. Mainly, three experiments are conducted in our
work to answer the questions above. We select subfeature
set according to their significance ranked by using filter
based feature selection method. The subset is distorted by
using SVD modification approaches, such as increment or
decrement of singular values in the diagonal matrix. A
new dataset is formed with combination of distorted and
undistorted subsets. In the second and third experiments,
we carry out experiment by interchanging the sequence of
feature selection and data distortion procedure. The results
indicate that performing the feature selection methods before
data perturbation process results in a better outcome. The
Support Vector Machine (SVM) and some distortion metrics
are used in the three experiments as a measurement for data



mining quality and data distortion level respectively.
The remainder of the paper is organized as follows. Sect.II

looks briefly at the SVD and SSVD processes, feature selec-
tion methods, and SVM method. Sect.III discusses various
data distortion metrics, their usages and we propose a novel
algorithm to compute rank and estimate its lower running
time bound. The experiments are carried out and the results
are presented and discussed in Sect.IV. We finally sum up
this paper and bring our future plans in Sect.V.

II. BACKGROUND AND RELATED WORK

A. Singular Value Decomposition

Singular value Decomposition (SVD) is a popular method
in data mining and information theory, since it has some very
nice mathematical properties.

• Def: Any matrix A ∈ Rm×n can be decomposed
uniquely as:

A = UDV T (1)

U is m×m orthonormal matrix, V is n×n orthonormal
matrix. D is m×n diagonal matrix whose non-negative
entries on its diagonal are called singular values. Let
δ(σ1, σ1, . . . , σk) = diag(D), where k = min(m,n), the
singular values are ordered such that σ1 ≥ σ2, . . . ,≥ σk.
And λi ⊆ (σ2

1 , σ
2
2 , . . . , σ

2
k) ∀i ∈ [1, k], where λi represents

the egienvalues of ATA. Let xi be the eigenvector belonging
to λi. It follows that:

‖Axi‖2 = xTi A
TAxi = λix

T
i xi = λi ‖xi‖2 (2)

Hence

λi =
‖Axi‖2

‖xi‖2
(3)

The equation (3) shows that the induced operator two norm
of A equals σ1. Since the rank of A equals the number of
singular values, It further implicates that the main charac-
teristics of A can be captured by lower rank items. On the
other hand, the singular values around the bottom of the
diagonal of D are relatively small and insignificant. If we
introduce perturbations on those insignificant singular values
i.e., making them zero, we can represent A in a perturbed
form Ā. Furthermore, let E = A−Ā, then, the removed part
E can be considered as noise in A [7]. Thus, Ā can be seen
as both a distorted copy of A and a faithful representation of
the original data [4].

B. Sparsified SVD

In order to sparsify a matrix A, we can set a threshold and
the entry values of A less than the threshold are set to zero.
The rank of original matrix A is reduced when we apply
this strategy to the matrix D. It can be seen from Figure 1
that a distorted matrix Ār can be composed with dimension
reduced matrices by doing simple block matrix operations:

Ār = U1D1V
T
1 (4)

where U1 is an m×r matrix, D1 is a r×r matrix, and an
V1

T is r×n matrix.

To increase distortion level, we also set small entries in U1

and V1T less than predefined threshold zero. Such operation
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Fig. 1. Singular Value Decomposition

is referred to as dropping operation in [2]. Therefore, the
SSVD can be seen as a process further perturbing the matrix
A:

A = Ār + E1 + E2 (5)

After dropping operations on the small entries in U1 and V1T ,
the significant values are still kept, thus the mining utility of
A is well preserved and distorted twice at the same time.

Three sparsification strategies were proposed in [2], where
the Exponential Threshold Strategy (ETS) showed the best
empirical results. In our work, we propose a modified ETS
threshold function: METS. METS, as in (6), defines a smooth
threshold function using an exponential function in which the
threshold value is customized for each column of the matrix.

Tj =
ε

m

m∑
i=1

|aij | ej·r
−2

(6)

The original ETS threshold formula is modified in METS by
having parameter α redefined. Rather than setting different
value for α every time, we substitute it with a fraction
number r−1, whose magnitude is determined by r, which
is the number of the singular values kept. The computed
threshold value for each column is adjustable with scaling
factor ε. Note that different from ETS, the absolute value of
aij is computed in METS. This is because that during SVD
decomposition, some of the entries in decomposed matrices
U and V might become negative. As a result, the threshold
calculated based on the original ETS formula may be large
for low rank items and small for high rank items. Calculating
threshold value with absolute entry value ensures that larger
threshold values are computed for entry value with higher
column index. Therefore, the most important entries are kept,
whereas more trivial entries will be dropped to zero.

C. Feature Selection

Feature selection research has found applications in many
fields where large volumes of data present challenges to
effective data analysis and processing. As data evolve to be
ubiquitous and abundant, new challenges arise everyday and
expectations of feature selection are also elevated. Feature
selection algorithms have two main components: feature
search and feature subset evaluation.

Feature search strategies have been widely used for
searching feature space. An exhaustive search would cer-
tainly find the optimal solution; however, for a dataset of
N features, a search on 2N possible feature combinations is
obviously computationally impractical. More realistic search
strategies have been studied to make the problems more
tractable. Sequential search methods generally use greedy ap-
proach and result in an O(N2) worst case search. Marill and
Green [5] proposed the sequential backward selection, which
starts with full feature space and sequentially eliminates the
feature that contributes least to the criterion function one at
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a time. Whitney [6] introduced sequential forward selection,
which starts with empty set and sequentially adds one feature
at a time. Random search methods such as genetic algorithms
add some randomness in the search procedure to escape from
a local optimum. Individual search methods evaluate each
feature individually and select features that either satisfy the
condition or are top-ranked. In our work, a sequential search
Best First Search (BFS) is used.

Feature subset evaluation process as in Figure 2 is used to
identify irrelevant and redundant features. In classification,
the feature evaluation criterions are naturally related to the
labeled classes, thus filter based methods are often used.
In clustering where class labels may be unavailable, either
filter or wrapper approaches are used. As shown in Figure 3,
the wrapper approach wraps the feature search by learning
algorithms whereas filter approach utilizes the intrinsic prop-
erty of the data alone to select feature subspace. Intuitively,
wrapper approach may result in a better performance. How-
ever, wrapper methods are more expensive since they run the
learning algorithm for each candidate feature subset. In our
experiments, we use filter method as we use SVM classifier
for data utility metric.

D. Support Vector Machine

In this paper, Support Vector Machine (SVM) is chosen
as the data utility measure to assess how much a dataset
keeps the analytical values of data mining techniques after
the data distortion. SVM is a method for classification. It
uses a nonlinear mapping to transform the original training
data that are linearly inseparable into a higher dimension. It
then searches for the linear optimal separating hyperplane.
A hyperplane that separates data from different classes can
always be found by mapping data into a sufficiently high
dimension. The basic SVM process is shown in Figure 4.
Essentially two hyperplanes H1, H2 with maximum margin
are defined for every class pairs. Any training tuples that fall
on H1 or H2 are called support vectors. Tuples that falls on
or above H1 belong to class A, and tuples that falls on or
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below H2 belong to class B. The SVM finds the hyperplane
using support vectors and maximum margins.

III. DATA DISTORTION MEASUREMENTS

Data distortion metrics are used to measure the degree of
data distortion. In this paper, we implemented the metrics
that were introduced in the literatures [3, 4]. These metrics
are designed based on the original data A and its perturbed
counterpart Ā.

A. Value Difference(VD)

After a data distortion, the distance between original data
and perturbed data is measured by their relative changes as
shown in (7). Frobenius norm is used to map matrix A ∈
Rm×n to R.

V D =

∥∥A− Ā∥∥
F

‖A‖F
(7)

B. Rank Difference(RD)

To measure data position changes, the values in each
column are ranked in an ascending order. The ranks change
between original data and perturbed data after distortion.
Rank Position (RP) and Rank Maintenance (RM) [3,4] are
used here. RP is used to denote the average change of rank
for all the data values. RM represents the percentage of
elements that keep their ranks of magnitude in each column
after the distortion [3].

One may infer the content of one feature from its relative
value difference compared with the other attributes. Thus
it is desirable that the order of the average value of each
attribute varies after the data distortion [4]. The rank of a
feature is assigned according to its average value. Change of
Rank of Features (CP) and Maintenance of Rank of Features
(CK) [3,4] are used in our work to indicate the changes
of rank of the average value of the features and assess
the percentage of the features that keep their ranks after
the distortion. Interested readers might refer to [3,4] for a
detailed description.

C. Compute Ranks(CR)

We now propose a novel algorithm (CRK) to compute
ranks, as shown below.



Algorithm 1 Compute Ranks (CRK)
Require: m× n DataSet S, A[m][n][3]
Ensure: Numerical Data Type

1: for i = 1 to n do
2: for j = 1 to m do
3: A(j, i)[1]← S(j, i)
4: A(j, i)[2]← j
5: end for
6: end for
7: Sort Col(A) by A(, n)[1]
8: for i = 1 to n do
9: for j = 1 to m do

10: A(j, i, 3)← j
11: end for
12: end for
13: Sort Col(A) by A(, n)[2]
14: return A(, )[3]

In the Algorithm 1, A is a multidimensional array, and each
cell can hold up to 3 values. We use notation A(m,n)[x] to
represent each value in A. For example, A(i, j)[k] denotes
for the kth value of the entry in ith row and jth column,
where k∈[1, 3]. Similarly, S(i, j) denotes the data entry in
ith row and jth column of S. If m and n are not specified,
the whole row or the whole column is being considered. For
example, A(, j)[k] denotes for the kth value in jth column
and A(, n)[k] denotes for the kth value of each entry in all
the columns.

In the steps 1-6 of the Algorithm, the 1st and 2nd values
of entry in A are assigned with the data values in S and
their corresponding row index respectively. We then sort each
column of A in ascending order by the first value in each
entry in step 7. In the steps 8-12 we assign the 3rd value of
each entry in A with the current corresponding row index.
Finally, we sort each column of A in ascending order by the
second value in corresponding entry in step13. Step13 is to
rearrange A back to the original form. The 3rd values in a
newly arranged order after step13 form a nice rank table.

We also define that if two elements in the data table have
the same value, the element with the lower row index to
have the higher rank. Assuming that the data set is an n×n
square matrix, since comparison based sorting algorithms
have lower bound o(nlog(n)) and CRK sorts the data twice
for each column, the estimated time is o(2n2log(n)). Since
it is not growing exponentially, for a large scale data set, this
is an acceptable computation cost.

IV. EXPERIMENTS AND RESULTS

We conduct experiments to test the performance of the
SVM on distorted data produced by feature selection and
data perturbation procedure in different sequence. The results
are compared with outcomes produced by performing SVM
on original data without any distortion. The sequence that
generates closer result to the result produced from original
data without perturbation is considered preserving better
mining utility. The data distortion level and degree of feature
selection are also compared and contrasted with metrics
discussed in Sect.III.

A. Setup and Dataset

We implemented dropping strategy METS for matrix spar-
sification, all five data distortion measures described in [3,4]
and simulated decomposition and composition processes of
SVD method. We download “Wisconsin Breast Cancer (Di-
agnostic)” data set and Connectionist Bench (Sonar, Mines
vs. Rocks) data set from [8,9]. The Wisconsin Breast Cancer
data set has 32 features, such as diagnosis, texture, smooth-
ness, concavity, concave points, fractal dimension, etc. These
features are computed from a digitized image of a fine needle
aspirate (FNA) of a breast mass. They describe characteristics
of the cell nuclei present in the image. The target feature is
Diagnosis: “B” = benign, “M” = malignant. The dimension of
the data matrix is 569×32. Connectionist Bench data set has
60 features and 208 instances. This data set contains patterns
obtained by bouncing sonar signals off a metal cylinder or
rocks at various angles and under different conditions. Each
pattern is a set of 60 numbers in the range from 0.0 to 1.0,
which represents the energy within a particular frequency
band integrated over a certain period of time. For the target
feature, the label associated with each record is letter “R” if
the object is rock and “M” if it is a metal cylinder.

Correlation-based feature evaluator is used to assess the
worthiness of a feature subset by considering the individual
predictive ability of each feature along with the degree of re-
dundancy between them. We choose Best First Search (BFS)
to search the feature space by greedy hill climbing either
augmented with a forward tracking facility or decremented
with a backward searching facility.

B. Experiment 1

In experiment 1, we perform feature selection (Fs) on
original data (Org) without any data distortion. We then use
SVM to generate the correct predict rate. Ten folds cross
validation is set to split the data in 10 approximately equal
parts D1, . . . , D10. Training set Dt

i is obtained by removing
part of Di from D.

TABLE I
SVM RESULTS

DataSet: WBC Sonar

exp# F Size SVM Rate F Size SVM Rate
Org 32 97.89% 60 75.96%
Fs 12 96.66% 19 77.40%
Ep2 12 92.26% 19 76.44%
Ep3 7 90.86% 13 75.00%

The results are shown in Table I, 1st and 2nd rows for both
data sets. The Wisconsin Breast Cancer (WBC) data set had
32 features and was reduced to 12 after feature selection
procedure. Consequently, the correct predict rate dropped
slightly by 1.23 percent. For ”Sonar” data set, 12 out of
60 features were selected and the correct predict rate, on the
contrary, raised by 1.44 percent. This is due to the fact that
those irrelevant features which can be regarded as noise are
singled out and discarded with feature selection process. We
also observe that the feature space is reduced significantly for
both data sets after feature selection with only tiny effects on



correct predict rate, which indicates that both data sets consist
of large proportion of unwanted information that has very
little perturbation values. Applying data distortion procedure
on selected feature space would result in better performance.

C. Experiment 2

In experiment 2, we carried out the experiment in the
sequence that performing feature selection before data distor-
tion. We select feature subspace on original data. A new data
set is then formed with selected feature subspace. We only
perform distortion on selected feature space as it has high
perturbation values and the discarded features are considered
irrelevant or trivially related to target feature. We treat the
newly form data set as a matrix and perform SVD on it.
We then use the sparsification strategies discussed in Sect II
on decomposed matrices U and V. For each singular values
σi on the diagonal of decomposed matrix D, we define the
sparsification rule as follows:

σi =

{
σi if σi > 1
0 otherwise (8)

Only the singular values greater than one are kept. For the
decomposed matrices U and V, we use MEST to compute
threshold value ζ for each column. The scaling parameter
ε of METS is set to be 0.6. The entry values in U and V
less than ζ are set to zero, or remain untouched otherwise.
To be consistent, both data sets are perturbed using the
same settings. After sparsification, a perturbed data matrix
is recomposed by multiplications of the sparsified matrices
U , D and V T . We then assess its distortion levels according
to the distortion metrics discussed in Sect. III. The data
distortion level results are shown in Table II and Table III
below, where NSV stands for number of singular values,
and SK stands for number of singular values kept after
sparsification.

TABLE II
WISCONSIN BREAST CANCER DATA

exp#
Level Of Distortion

VD RP RM CP CK SK NSV
Ep2 0.03 140.5 0.022 2.0 0.33 7 12
Ep3 0.33 84.95 0.015 0.0 1.0 15 31

TABLE III
SONAR DATA

exp#
Level Of Distortion

VD RP RM CP CK SK NSV
Ep2 0.20 32.49 0.022 1.263 0.631 7 19
Ep3 0.18 19.63 0.033 0.308 0.769 22 60

We can see from results that VD and RP values for both
data sets appear to be small due to the small data entry
values. The RM values and CK values, on the other hand,
explicitly indicates that both data sets are well perturbed.
It shows that only 2.2% data ranks are kept unchanged for
both WBC data, and Sonar data. 67% ranks of the average
feature value are changed for WBC and 36.9% for Sonar data
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sets. From the data utility results shown in Table I, there is
no significant changes in overall correct predict rate. The
interesting thing is that, after data distortion, the predictive
power of SVM is still better than the correct predict rate for
original data (Org) by 0.48 percent. This demonstrates SVD’s
ability to rule out trivial values and noises. After removing
those insignificant entry values during sparsification process,
the data are ”purified” and thus result in better mining
performance.

D. Experiment 3

In comparison with experiment 2, we carried out the
experiment 3 in a reversed sequence. We instead, distort
original data using SVD first, and then select features on
perturbed data. Again, we use SVM to generate correct
predict rate. The parameter settings and configuration for
data distortion and SVM are the same as in Experiment 1
and Experiment 2 for consistency purpose.

The Figure 5 shows the SVM results for both data sets in
different experiments. As we can see, There is no significant
differences in SVM predict rates for all experiments. As
shown in both Table I and Figure 5, the results for SVM rate
in Experiment 3 followed a similar trend to Experiment 2,
although the data distortion degree is better. Particularly for
the WBC data as shown in Table II, the ranks of the average
value for each feature stayed the same in Experiment 3, but
changed greatly in Experiment 2 by 67%. From the feature
selection’s perspective, Experiment 3 has better results for
both data sets. The sizes of selected feature space for both
data sets have evident drops with only insignificant impacts
on SVM results, which is a further empirical evidence of
SVD’s ability to filter out noises.

E. Summary

By comparing the empirical results, some important and
interesting facts can be drawn from our observations.

• The results in our experiments indicate that, for classi-
fication purpose, data owner publishing perturbed data
before feature selection results in no significant differ-
ence in correct predict rate than the other way around.

• Data distortion process should be done on selected fea-
ture space. The discarded features by feature selection
procedure have very little perturbation values.

• Applying SSVD and performing sparsification process
on small entries of decomposed matrices has potential



to eliminate garbage information and improve mining
qualities.

• For Feature Selection, performing feature selection pro-
cess after sparsification process by SSVD would result
in better outcomes, i.e. more irrelevant features can be
identified.

Based on the facts listed above, we conclude that perform-
ing feature selection before data perturbation is a better ap-
proach than the other way around for classification purpose,
since there is no major distinguishable contrasts in predict
outcomes and discarded features have little perturbation
values. On the other hand, the perturbed data published by
data owner also have little effects on correct predict rate, but
could result in significantly better feature selection results.
Empirical tests are required for choosing the rank of SVD
and setting proper threshold parameters. How many singular
values to keep or how large a threshold should be set is
different from applications to applications and, of course, is
dependent on the nature of the data to be distorted.

V. CONCLUSION AND FUTURE PLANS

In this paper, we studied Singular Value Decomposition
(SVD), Sparsified Singular value Decomposition (SSVD),
Support Vector Machine (SVM), and various data distortion
metrics. We proposed a new threshold function METS which
is based on ETS and takes negative entry values into consid-
eration. We also proposed a novel algorithm to compute rank
and give a theoretical lower run time bound. The empirical
results in our work indicate that feature selection methods
should be performed before perturbing data for classification.
In the future, we would like to try more real world data sets
as well as synthetic data sets, and carry out experiments
with more data distortion methods on other data mining
applications such as association rules, clustering etc.
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