

Abstract—Container code examination is an essential step in

the container flow management. To date, this step is mostly
achieved by human visual inspections, which are however
time-consuming and error-prone. We hence propose a new
computer vision system for automated container code
recognition. The proposed system consists of model
construction and code recognition stages. In the model
construction stage, we first incorporate a locally thresholding
method with prior knowledge of code character geometry to
segment the code characters, including English characters A-Z
and numeric characters 0-9, from a training set of container
images. With the segmentation results of each character, we
subsequently construct its Eigen-feature model using the
principal component analysis (PCA). In the recognition stage,
the code characters are firstly segmented from the given
container image. Each segmented character is then recognized
by finding the best matched Eigen-feature model that maintains
the minimal PCA reconstruction error of the character
appearance. Experiments showed that the proposed method
achieved the code recognition with a high recognition rate and
little recognition time for each image automatically. Overall,
our proposed system has great potential for improving the
efficiency of container terminals as well as enhancing the
container management.

Index Terms—code recognition, locally thresholding,
character geometry, Eigen-feature model, principal component
analysis

I. INTRODUCTION

ONTAINER code examination is a critical step in the
procedure of container security and flow management.

Manuscript received December 28, 2010. This work was supported under

contract CSIST-0839-V201 (99) from the Chung-Shan Institute of Science
and Technology, Taiwan, R.O.C. and utilized the shared facilities supported
by the Program of Top 100 Universities Advancement, Ministry of
Education, Taiwan, R.O.C..

H.C. Chen is with Department of Computer Science and Information
Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C.
(e-mail: wale1212@gmail.com).

C.K. Chen is with Department of Computer Science and Information
Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C.
(e-mail: heartthrob.kai@gmail.com).

F.Y. Hsu is with Department of Computer Science and Information
Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C.
(e-mail: cash.barca@gmail.com).

Y.S. Lin is with Airborne Electronic Section, Electronic System Research
Division, Chung-Shan Institute of Science and Technology, Taoyuan,
Taiwan, R.O.C. (e-mail: dostoevosky@yahoo.com.tw).

Y.T. Wu is with Department of Biomedical Imaging and Radiological
Sciences, National Yang-Ming University, Taipei, Taiwan, R.O.C. (e-mail:
ytwu@ym.edu.tw).

Y.N. Sun is with Department of Computer Science and Information
Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C.
(corresponding author to provide phone: +886-6-2757575 ext. 62526; fax:
+886-6-2747076; e-mail: ynsun@mail.ncku.edu.tw).

Nowadays, human visual inspection, which is laborious and
error-prone, remains the most common approach in port
gates for checking the information of containers. Rapidly and
reliably examining the container code, which is helpful for
increasing the economic efficiency of container terminals,
hence becomes important. For this purpose, our research
aims to develop a computer vision system for automated
container code recognition.

The proposed computer vision system contains two
technical parts, which are code segmentation and recognition.
Up to present, there have been several kinds of methods
developed for image segmentation, and a popular one is the
thresholding-based method [1]–[5]. Otsu’s thresholding
method [1] is a typical one of global thresholding. It divides
the image into foreground and background regions based on
the optimal computation with intensity histogram of the
entire image. Basically, the Otsu’s method is easy to
implement and efficient in computation. However, it may not
be suited for the images whose intensity histogram is not
bimodal.

On the other hand, locally thresholding methods estimate a
threshold value for every pixel in the image based on the
intensity distribution of its neighborhood. Therefore, they are
less constrained by the global intensity distribution of the
image. Pradhan et al. [3] proposed a locally thresholding
method with adaptive window to segment objects from the
images under uneven lighting condition. Moreover, the
locally thresholding techniques were employed in the
applications of medical image analysis for segmenting tissues
of interest, such as the works of Zhang et al. [4] and Peng et al.
[5]. Overall, the thresholding-based methods segment objects
mainly based on the intensity value. Hence, irrelevant regions
with intensity values similar to the target objects’ tend to be
included in the thresholded results. To resolve this problem,
features other than intensity value, should be taken into
account in the segmentation protocols. For example,
Sankaran et al. [6] incorporated the geometry information of
cells, including area and shape, into the segmentation process
and obtained satisfactory segmentation results.

As to the character recognition part, the correlation
coefficient is commonly used to evaluate the similarity of
grey-level distribution between two segmented character
regions [7]. However, the correlation coefficient is sensitive
to the pose variation between the characters. To overcome
this problem, Wakahara et al. [8] proposed a character
recognition algorithm based on the non-rigid registration.
Unfortunately, their method suffers a lot from computational
cost. The computation problem and recognition rate can be
significantly improved by carefully selecting the image space
of character recognition. Moreover, the eigen space is a

A Computer Vision System for Automated
Container Code Recognition

Hsin-Chen Chen, Chih-Kai Chen, Fu-Yu Hsu, Yu-San Lin, Yu-Te Wu, Yung-Nien Sun*

C

widely adopted feature space for character recognition. Park
et al. [9] and Manjunath et al. [10] recognized characters
based on the Eigen-feature space and achieved good results.
These literatures mainly focused on character recognition,
and however, less discussed the details of segmentation.

In this paper, character segmentation and recognition are
both addressed for automated container code recognition.
The features of proposed method are described below. First,
we incorporate a locally thresholding method with prior
knowledge of character geometry to segment the characters
from container images automatically. Second, the
Eigen-feature space, which can better accommodate the
noises and deformation in character appearances, is thus
adopted to recognize the segmented code characters. Third,
we employ the generation rule of code characters in the
recognition protocol to reduce the mis-recognition rate.
Experimental results showed that our proposed system could
achieve promising results with a high recognition rate and
low computational time.

II. OVERVIEW OF THE PROPOSED METHOD

The proposed method consists of model construction and
code recognition stages. In the model construction stage, we
firstly segment the code characters from a training set of
container images by incorporating a locally thresholding
method with prior knowledge of code character geometry.
We subsequently construct an Eigen-feature model for each
code character based on its segmentation results on the
training images. Given a container image in the code
recognition stage, we segment the code characters using the
above-mentioned segmentation protocol. Each segmented
character is then recognized by finding the best matched
Eigen-feature model that maintains the minimal
reconstruction error of character appearance. The details of
the proposed method are described in the following sections.

III. MODEL CONSTRUCTION

A. Locally Thresholding Segmentation

Three intensity properties of container image are used to
segment the container code characters. First, the code
characters are with similar intensities to each other. Second,
the intensity contrast of characters with respect to their
surroundings is large. Third, there is possible uneven sunlight
illumination in the image. Based on these observations, we
hence select the locally thresholding method [11] to segment
the container code characters.

The locally thresholding method is designed based on the
intensity distribution of the neighborhood of every individual
pixel in the image. At first, we transform the input image
from RGB color to grayscale. Then, we slide a fixed-sized
window over the image. For each pixel at the center of the
window, we calculate the average intensity from the
neighborhood pixels covered by the window. The examined
pixel is classified as the foreground (with zero intensity in
Fig. 1(c) and Fig. 1(d)) if its intensity is lower than c percent
of the average intensity, and is assigned as the background
otherwise. After this step, we can obtain the segmented

(a)

(b)

(c)

(d)
Fig. 1. Locally thresholding segmentation: (a) and (b) the original container
images; (c) and (d) the segmentation results of (a) and (b) respectively.

foreground denoted as FG. We also employed the integral
image technique to speed up the threshold computation. The
length of the side of the sliding window was set to 1/30 of the
image width, and c was assigned as 80. The aforementioned
thresholding criterion is only suitable for the container image,
in which the code character regions are darker than the
surrounding regions. In some cases, the intensities of code
characters, however, may be higher than those of
surrounding regions. An erroneous segmentation may thus
occur such that the code characters are misclassified into the
background. Therefore, a confirmation strategy is designed
to compensate this limitation. At first, we apply the Otsu’s
method [1] to the original grayscale image and obtain two
clusters of pixels denoted as C1 and C2. Since the container
occupies most parts of the image, it is supposed to be
included in the larger sized cluster (assumed to be C1). On
the other hand, as the code characters and markers are darker
or brighter than the surroundings in intensity (i.e. higher in

intensity contrast) and smaller in size in the container image,
the code characters are contained in the other cluster C2. We
subsequently calculate the average intensity on the original
grayscale image for C1 and C2 respectively. If the difference
between average intensities of FG and C1 is smaller than the
one between FG and C2, an error of local segmentation is
detected. We then change the criterion of the local
thresholding and process the image again. A pixel is
classified into the foreground if its intensity is higher than the
average intensity of its neighborhood, and into the
background otherwise. Based on the confirmation process,
we efficiently obtain acceptable segmentation results of the
code characters in either black or white, as shown in Fig 1.

B. Character Extraction Based on Geometry Features

The thresholding result however contains a number of
non-code character regions. As the code characters are
supposed to be with certain geometry properties, e.g., with
the size in a certain range, we then estimate for each region
several geometry parameters, including area, circumference,
width, and height. If the values of parameters of a region are
out of the empirically determined ranges, it is filtered out, and
otherwise is preserved. After that, those irrelevant regions
such as the levers on the container door can be easily
removed, as shown in Fig. 2(a). Next, it is further considered
that the code characters are located close together. We thus
design a distance-based grouping algorithm to pick out the
code character regions:

Step 1. Label all the regions as FALSE and set their

grouping states to UNGROUPED.
Step 2. Label an arbitrary FALSE region as TRUE.
Step 3. If there is any FALSE region satisfying the

following two rules:
(1) The distance between its center and the centers
of any TRUE & UNGROUPRED regions is
smaller than one-hundred pixels,
(2) The difference of x- or y-axis coordinates
between its center and the center of any TRUE &
UNGROUPRED regions is smaller than eight
pixels,
then the examined region is labeled as TRUE.

Step 4. Go to step 3 until there are no more TRUE regions
found.

Step 5. Group these TRUE & UNGROUPRED regions
together, and set their grouping state to
GROUPED.

Step 6. Go to step 2 until there are no more groups found.

After the grouping process we can obtain several groups as
shown in Fig. 2(b). The code character regions can be
identified by the largest sized group indicated by the red
rectangle, and each individual character can also be readily
extracted (see Fig. 2(c)).

C. Eigen-feature Models

Using the proposed segmentation method, we can
automatically extract the character regions from the training

(a)

(b)

(c)

Fig. 2. Character extraction from Fig. 1(c): (a) the filtering result by
geometry features; (b) the grouping result by character distance; (c) the
character extraction result.

images. For each English and numeric character, we
construct an Eigen-feature model based on the PCA to
characterize its appearance variation among different training
images. In the model construction process, its binary
segmentation results are first aligned to each other to
eliminate the pose differences. The alignment results then
serve as the training samples, denoted as X = (x1, x2,…, xi,…,
xm-1, xm), where m is the number of training samples. Each
training sample xi is represented by a one-dimensional vector
(x1, x2,…, xj,…, xn-1, xn)

T, where xj is the intensity value of the
j-th pixel in the training sample and n is the number of pixels.
Next, we average the m samples to obtain the mean vector x ,
and then calculate the covariance matrix C implying the
variance between each training sample and the mean vector.

And C is given by

m

i

T
ii

m 1
))((

1
xxxx . We subsequently

solve the eigenvalues (v1, v2,…, vi,…, vn-1, vn) and their
corresponding eigenvectors (u1, u2,…, ui,…, un-1, un) from
the covariance matrix. Given the eigenvalues in descending
order, the dimension of the eigen features is reduced by
preserving the first t components, subject to

95.0)(
11

n

i
i

t

i
i vv . At last, the resulting Eigen-feature

model, characterized with the mean vector and eigenvectors,
can be utilized to identify the character appearance. By
applying this construction process to all the characters
including 0-9 and A-Z, we can consequently obtain a set of
Eigen-feature models and apply them to the subsequent
recognition stage.

IV. CODE RECOGNITION

In the recognition stage, we first segment the code
characters from a given image. Each unknown character is
then compared to all Eigen-feature models, and is recognized
by finding the best matched model which maintains the
minimal PCA reconstruction error of the character
appearance. The details of character recognition algorithm
are delineated below.

Step 1. Input an unknown character Cunknown (i.e., a

one-dimensional intensity vector) and the set of
Eigen-feature models.

Step 2. Select an Eigen-feature model and project the
character vector Cunknown from the image space

onto the model space,][xC

u

u

u

y 2

1

 unknown

t

.

Step 3. Reconstruct the character appearance through a

back projection process, xy

u

u

u

x 2

1

T

t

ˆ .

Step 4. Calculate the reconstruction error, xC ˆunknown .

Step 5. Record the value of the error, and then go to step 2
until all the Eigen-feature models are examined.

Step 6. Find the character with the minimal reconstruction
error as the recognition result of Cunknown.

An example of the character recognition is demonstrated in

Fig. 3. The unknown character is shown in Fig. 3(a), and the
reconstructed appearances using the Eigen-feature models of
‘2’, ‘3’, and ‘7’ are displayed in Figs. 3(b)-(d), respectively.
It is observed that using the corresponding Eigen-feature
model to reconstruct the character appearance can lead to the
smallest distortion. After all the characters are recognized,
we can obtain the recognition result of the entire container
code.

On the other hand, to increase the recognition rate of the
proposed system, we further incorporate the information of
container code generation rule into the recognition process
based on the standard of ISO 6346 [12]. The generation rule
provides the information that a character is supposed to be
matched to either numeric or English characters, as shown in
Table I. For example, the first three characters of the
container code represent the owner id in English. Hence, only
English characters are taken as feasible solutions for their
recognition. Consequently, the mis-recognition between the
numeric and English characters with similar appearance, e.g.,
‘1’ and ‘I’, can be easily avoided.

V. RESULTS AND DISCUSSION

The following experiments consisted of three parts
including segmentation accuracy, recognition accuracy and
computational performance evaluations. The validation work
included 94 container images and was performed on a

(a) (b) (c) (d)

Fig. 3. Example of the character recognition: (a) the unknown character;
(b)-(d) the reconstructed appearances using three different Eigen-feature
models.

TABLE I

CODE GENERATION RULE FOR THE PROPOSED RECOGNITION ALGORITHM
1st Row
Code characters Specific meaning Character type
The first three characters Owner id English character
The fourth character Category identifier English character
The last one character Check digit Numeric character
The other characters Serial number Numeric character
2nd Row
Code characters Specific meaning Character type
The first two characters Size code Numeric character
The second character Type code English character
The last character Type code Numeric character

desktop PC with 3.0GHz Intel Core 2 Duo E8400 processor,
windows XP Professional, and 2GB memory.

A. Segmentation Accuracy Evaluation

To evaluate the segmentation accuracy, the proposed
method was applied to the 94 validation images. A successful
segmentation in an image has to satisfy that every character
(totally 15 characters in a container code) is included in the
segmentation result. The success rate in these segmentations
was 88.3 % (83/94), indicating a satisfactory accuracy of the
proposed segmentation method.

B. Recognition Accuracy Evaluation

In this experiment, the recognition accuracy with respect
to individual character and entire code was validated. At first,
we counted the number of total occurrences of each character
in the 83 successfully segmented images. For each individual
character, its recognition success rate (RSR) was given by the
proportion of the number of correct recognitions to the total
occurrences, as listed in Table II. The average RSR of all the
characters was 98.22 %. Moreover, it was observed that the
RSRs of two characters, ‘B’ and ‘N’, were much lower than
the others’. This may be because their sample sizes are very
small. If more testing images are included, the RSRs are
supposed to increase.

Moreover, we also validated the recognition accuracy with
respect to the entire container code. We calculated the
number of images, in which the code with 15 characters was
correctly recognized. 73 successful recognitions were
obtained among these 83 images, that is, 87.95 % recognition
rate. If more data can be included in the future experiments,
the recognition rate is expected to be further improved.

C. Computational Performance Evaluation

In this experiment the computational performance of the
proposed system was also evaluated. For each of the 83
images, we measured the computational time in code
segmentation and recognition, and obtained an average
computational time less than 1 second. Overall, the proposed
system can achieve the segmentation and recognition of
container code efficiently.

VI. CONCLUSION

In this paper we have proposed a computer vision system
for automated container code recognition. We employed the
locally thresholding method and character geometry features
to automatically segment the container code from the given
image. In the segmentation process we further designed an
intensity-based strategy to compensate the error of locally
thresholding segmentation. In addition, the Eigen-feature
models were utilized in the code recognition process for
accommodating image noises and deformation in character
appearances. And, the generation rule of container code was
taken into account to avoid mis-recognitions between
English and numeric characters with similar appearance. The
experimental results showed that our proposed method can
automatically achieve code recognition with a high average
RSR. In the future research, more container images will be
included to fine-tune the models in this system for improving
the recognition rate. Moreover, the recognition of markers in
container image (e.g., triangular or rectangular signs) will
also be conducted for constructing a more complete
examination system.

TABLE II
RECOGNITION SUCCESS RATE (RSR) OF INDIVIDUAL CHARACTER

Character Number of
occurrences

Number of correct
recognitions

RSR

0 71 69 97.18 %
1 164 162 98.78 %
2 176 176 100 %
3 68 68 100 %
4 114 113 99.12 %
5 89 89 100 %
6 56 56 100 %
7 63 63 100 %
8 58 56 96.55 %
9 59 59 100 %
A 10 10 100 %
B 4 3 75 %
C 24 24 100 %
D 2 2 100 %
E 2 2 100 %
F 9 9 100 %
G 103 102 99.3 %
H 12 12 100 %
I 11 11 100 %
J 0 0 None
K 10 10 100 %
L 35 35 100 %
M 27 26 96.3 %
N 5 4 80 %
O 39 39 100 %
P 4 4 100 %
Q 0 0 None
R 9 9 100 %
S 23 23 100 %
T 15 15 100 %
U 94 93 98.94 %
V 0 0 None
W 2 2 100 %
X 3 3 100 %
Y 9 9 100 %
Z 7 7 100 %
Average RSR 98.22 %

REFERENCES
[1] Otsu, N., “A threshold selection method from gray-level histograms,”

IEEE Trans. Systems, Man and Cybernetics, vol. 9, no. 1, pp. 62–66,
Jan. 1979.

[2] Gonzalez, R.C., and Woods, R.E., Digital Image Processing. 3rd ed,
Pearson Ed. New Jersey, USA, 2010, pp. 760–785.

[3] Pradhan, S.S., and Nanda, P.K., “Adaptive thresholding based image
segmentation with uneven 11 lighting condition,” IEEE Region 10
Colloquium and the third ICIIS 2008, pp. 1–6.

[4] Zhang, J., Yan, C.H., Chui, C.K., and Ong, S.H., “Fast segmentation of
bone in CT images using 3D adaptive thresholding,” Computers in
Biology and Medicine, 40, 2010, pp. 231–236.

[5] Peng, J.Y., and Hsu, C.N., “Adaptive local thresholding for
fluorescence cell micrographs,” Technical Rep. No. TR-IIS-09-008,
Nov. 11, 2009.

[6] Sankaran, P., & Asari, V.K., “Adaptive thresholding based cell
segmentation for cell-destruction activity verification,” in 2006 IEEE
Conf. AIPR, pp. 14.

[7] Ozbay, S., and Ercelebi, E., “Automatic vehicle identification by plate
recognition,” Proceedings of World Academy of Science, Engineering
and Technology, 2005, pp. 222–225.

[8] Wakahara, T., and Odaka, K., “Adaptive normalization of handwritten
characters using global/local affine transformation,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 20, no. 12, pp.
1332-1341, Dec. 1998.

[9] Park HS, Kim SY, Lee SW, Gray-scale handwritten character
recognition based on principal features. SPIE vol. 3027, pp. 40–49,
2000.

[10] Manjunath AVN, Hemantha KG, and Noushath S., “Two-dimensional
matrix principal component analysis useful for character recognition,”
ICIA, pp. 390–393, 2006.

[11] Bradley, D., and Roth, G., “Adaptive thresholding using the integral
image,” Journal of Graphics, GPU, & Game Tools, vol. 12, no. 2, pp.
13–21, 2007.

[12] Container Handbook: Cargo loss prevention information from
German marine insurers, ch. 3.4. [Online]. Available:
http://www.containerhandbuch.de/chb_e/stra/index.html?/chb_e/stra/s
tra_03_04_00.html

