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Abstract—Effectively visualizing the feature structures is a
challenging work due to the occlusion and clutter constraints
in the 3D flow visualization, especially for the texture-based
approaches. This paper proposes a multi-resolution texture-
based method for visualizing 3D flows based on a fuzzy
flow feature extraction method. Existing algorithms always
concretely use topology separatrix to partition a flow field into
regions of different behaviors. However, flow feature region
usually doesn’t have distinct discrepancy and couldn’t be clearly
defined. Therefore, guided by the fuzzy theory, we present a
fuzzy feature extraction approach which treats the flow features
as fuzzy sets and establishes some fuzzy rules to extract them.
In the rendering stage, we apply multi-resolution technology
to the sparse texture-based method, which are widely used
for the advantage of continuous and global representation of
flow movements. Based on the fuzzy membership field for flow
features, we present a multi-resolution algorithm to prefilter
the input noise. The resulted sparse textures could distribute
reasonably according to feature structures. Experiments on
synthetic and real engineering dataset demonstrate that our
approach can depress the occlusion and clutter effectively.

Index Terms—vector field, sparse texture, flow feature, fuzzy
theory.

I. INTRODUCTION

TExture-based techniques become an effective choice
for visualizing vector field. The resulting texture is a

powerful way to convey essential patterns of the vector field,
while avoiding the tedious task of seeding individual stream-
lines to capture all the structures of interest. Texture-based
approaches can be loosely classified into two categories: line
integral convolution (LIC) [1] and texture advection [2]. The
LIC method adopts a noise texture as input, and then the
noise is convolved in the direction of the flow using filter
kernels. In texture advection, the basic idea is advecting the
texel in the direction of the flow to generate the final visual
pattern.

In two-dimensional vector fields, the texture-based meth-
ods are capable of offering a clear representation since it
can create a continuous visual representation to illustrate the
global behavior of the flow. For three-dimensional vector
fields, however, it can be challenging to find a good visual
representation of the flow due to the loss of information
when the three-dimensional data is projected onto a two-
dimensional image plane. And the occlusion and clutter-
ing problem encountered when extending the previous ap-
proaches to three-dimension make the clear representation
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of vector fields impossible. Especially for dense texture-
based techniques, representations of 3D flows make the inner
feature structures become more occlusive.

Perception can be improved by highlighting important fea-
tures in the flow fields. Feature-based approach is developed
to extract some special structures, or some specific patterns of
interest, from the flow datasets. There are various features,
such as vortices, shock waves, or separatrices, in the flow
field. Each of them has specific physical properties, which
can be used to extract the desired feature. However, the
explicit or clear feature extraction is a harsh and hard term,
since there always is no distinct discrepancy among different
feature structures in flow fields. Furthermore, some important
structures such as vortex or turbulence are so complicatedly
mingled that they can’t explicitly expressed by concreted
feature primitives.Worsely, these features don’t have accurate
definitions at all up to now.

This paper presents a novel texture-based method for visu-
alizing 3D flow fields which utilize feature-based and texture-
based approaches. To obtain the various feature structures in
the flow field, we present a feature extracted algorithm based
on fuzzy theory. The main advantage of this algorithm is it’s
capability of extracting different flow features in a uniform
way. As for rendering stage, we proposed a multi-resolution
texture method based on the feature structures extracted to
relieve the occlusion and cluttering phenomena, some of our
experiment results are showed in Figure 1. The key contri-
butions of this paper are: (1) a flexible fuzzy feature region
extraction method. By expressing feature regions as a fuzzy
membership field, we could define more kinds of feature
structures with arbitrary topology shape in a uniform way. To
a new feature structure, it is easy to add new fuzzy measure
rules into the current algorithm without changing its basic
structure. (2) a multi-resolution rendering technique. Based
on the fuzzy feature measurement extracted, we generate a
multi-resolution input noise for LIC convolution to obtain a
dense representation of feature structures in the flow, while
rendering the background flow movement in a sparse manner.

The remainder of this paper is organized as follows.
Related work is discussed in section 2. A detailed explanation
of our feature extraction method is provided in section 3. In
section 4, we present the multi-resolution noise generation
process. Next we will show the experiment results of our
method in section 5. Finally, we conclude by pointing out
interesting avenues of future work in section 6.

II. RELATED WORK

There exist a large number of different 3D flow feature
visualization techniques, which can be distinguished accord-
ing to their properties w.r.t a number of categories. We would
briefly review most related work and the relevant techniques



Fig. 1. The integrated Lorenz attractor. Left: The important attractor region are occlusioned with the context when adopting dense texture-based
method.Middle: The sparse texture method can resolve the occlusion problem, yet some information about the two spiral attractor structures is also lost.
Right: The occlusion and clutter problems are solved by our multi-resolution approach completely, the Lorenz attractor is effectively visualized in an
efficient way.

employed in our system, since there is a large literature on
this subject. For more detailed discussion on these topics, we
refer to related surveys [3]–[5].

Feature-based approach is developed to extract some
special structures in flow fields by extracting physically
meaningful patterns from the data sets. A popular method
used is topological analysis, which first introduced to the
3D visualization community by Helman and Hesselink [6].
Recently, [7] introduced an approach to visualize higher
order critical points of 3D vector fields. [8] examined a high-
dimensional, massive flow data set around an airfoil using
a topology-based vortex analysis. [9] extracted singularities
and separatrices to decompose the flow field into topological
regions. To some special feature structures, such as vortex,
a local criterion proposed by Jeong and Hussain [10]. [11]
introduced a system which can analyze the vortex structures
contained in the turbulent flows by means of a novel vortex
core line detection method. [12] extend the method by a
local statistical complexity approach to automatically detect
distinctive structures in time-dependent multi-fields. [13]
proposed a novel vortex core line extraction method based on
the vortex region criterion in order to improve the detection
of vortex features for 3D flow visualization. [14] introduced
a new criterion to characterize hierarchical two-dimensional
vortex regions induced by swirling motion, they defined
vortex regions as closed loops that intersect the flow field
at a constant angle and presented a parameter free algorithm
for the identification of these regions.

Texture-based methods also are an important way to visu-
alize vector field. The advantage of this kind of approaches
is that they can represent global behavior of the flow in
continuous visual representation. A more detailed discussion
on these topics can refer to related surveys [15]. Early tech-
niques include spot noise [16] and Line Integral Convolution
(LIC) technique [1]. Some related approaches adopt tex-
ture advection [2] technology, including Lagrangian-Eulerian
Advection (LEA) [17] and Image-Based Flow Visualization
(IBFV) [18] approaches.

Recent advances in texture-based visualization extend the
above-mentioned techniques into 3D vector fields. Shen et
al. presented an interactive texture-based algorithm for visu-
alizing three-dimensional vector fields, which allowing the
user to compute three dimensional flow textures interactively

and to modify the appearance of the visualization on the fly
[19]. Bachthaler et al. introduced an orthogonal vector field
visualization method based on 2D manifolds [20]. Weiskopf
et al. proposed an interactive technique for the dense texture-
based visualization of unsteady 3D flow, taking into account
issues of computational efficiency and visual perception.
A primary challenge for dense texture-based methods is
occlusion and cluttering problem, due to the dense rendering
objects will be occluded by others. Some previous works are
capable of producing a global but sparse representation of
steady 3D vector fields to reduce the occlusion phenomena
[19], [21]. Falk et al. presented a largely output-sensitive
visualization method for 3D line integral convolution, which
also adopting sparse streaks to avoid the same perceptual
issues [24].

In contrast to previous concrete illustrations of flow fea-
ture, we utilize fuzzy theory to express the holistic/rough
overview over the dataset and our method do not require a
clear classification into interesting or not. Relevant regions
can be identified subsequently as a subset of the rough
partition with different flow behavior. Some features in 3D
flows are very complex and our knowledge about them is
incomplete, so their regions can’t be defined clearly. We
believe that fuzzy theory can overcome this shortcoming
for it’s capability of describing objects without complete
knowledge. Based on the feature structures extracted, multi-
resolution ideas can be adopted to avoid the occlusion and
cluttering for 3D texture-based approaches.

III. FUZZY MEASUREMENT OF 3D FLOW FEATURE

In this section, we would introduce the mathematical
description for 3D flow features guided by fuzzy theory.
Following the brief review of topology analysis of 3D flows
(Section 3.1), the related definitions and rules are addressed
in Sections 3.2, and how to calculate the fuzzy membership
degree will be discussed in Sections 3.3.

A. Representation of 3D Flow Based on Fuzzy Theory

After the classification of critical points in 3D flows,
we re-define the related concepts, generally used in feature
visualization, guided by the fuzzy theory.



Definition1 Flow Field: The flow field can be regarded as
a triple 𝑈(Φ,Υ,Π) , including basic properties Φ , derived
properties Υ and associated properties Π.

The basic properties including position and velocity, which
is the primary attributes of the flow fields. The derived
properties, such as gradients and vortices, are derived from
the basic properties. The associated properties are temper-
ature, pressure and some other physical properties which
are closely related with the basic properties. Based on the
definition above, we introduce the flow feature and other
related concepts here from the perspective of fuzzy theory.

Definition2 Flow Feature: The flow feature in the flow
field 𝑈(Φ,Υ,Π) is a fuzzy subset 𝐹 𝑖, which has one special
attribute i in the 3D flow X, it can be regarded as a ordered
pair:

𝐹 𝑖 = {𝑥, 𝜇𝑖
𝐹 (𝑈(𝑥))}, 𝑥 ∈ 𝑋;

𝜇𝑖
𝐹 (𝑈(𝑥)) = 𝜇𝑖

𝐹 (Φ(𝑥),Υ(𝑥),Π(𝑥)) ∈ [0, 1]

The mapping 𝜇𝑖
𝐹 (𝑥) is membership function, which mapping

a ∀𝑥 ∈ X to a certain value in the range [0, 1], named as
membership degree of x for feature subset 𝐹 𝑖 . When one
position have greater value x, it means that the possibility of
this point subjecting to a feature region is larger.

Definition3 Feature Region: If 𝐹 𝑖 is a flow feature of
property i, then the feature region of 𝐹 𝑖 is a crisp set
containing all points meeting 𝜇𝑖

𝐹 (𝑥) > 0.5 in the universe of
domain X, which corresponds to the support set of 𝐹 𝑖 and
denoted by 𝑆𝑢𝑝𝑝𝐹 𝑖 or 𝐹 𝑖+

0 , that is:

𝐹 𝑖
1 = 𝐾𝑒𝑟𝐹 𝑖 = {𝑥∣𝜇𝑖

𝐹 (𝑥) = 1}
The advantage of definition by using fuzzy subset is able

to qualitatively describe flow feature. For instance, though we
don’t understand vortex feature clearly, but we know that if
a position has greater 𝜆2 value, then it has greater possibility
fell into the vortex region.

B. Fuzzy Rules of Feature Region Measurement

After the redefinitions of flow feature and some related
concepts based on fuzzy theory, the question remaining is
how to judge a point in flow field is whether in a special
feature region or not. Based on the definitions introduced in
section 3.2, we build relevant fuzzy rules from three levels,
including basic properties, derived properties and associated
properties, to divide the whole field into feature regions and
the context.
Φ Rule: If 𝐶𝑖

0 represents a critical point set, and 𝐶𝑖
0 ⊆ 𝑋

, we then have

∀𝑥 ∈ 𝐶𝑖
0 7→ 𝜇𝑖

𝐹 (𝑥) = 1

By Φ rule, we get the cores of flow features including
sinks, sources and saddles, as described in section 3.1.
Certainly, there are other methods to get cores for some
special features, such as minimum 𝜆2 approach for vortex.
But we want to represent general topology feature in this
paper, so we just introduced this rule.

In a flow field, the physical property such as heat will
propagate along streamlines. So the feature region in flow
field should reflect this directional property. To describe this
property, we introduce the concept of streamline distance
firstly.

Definition6 Streamline Distance: For any two points
in the vector field, the streamline distance is defined as
following:

𝐿 =

{ ∫ 𝐵

𝐴
𝑓(𝑥)𝑑𝑥 iff existing a streamline f cross A, B

∞ otherwise

The streamline distance represents the space between two
positions along the streamline. Based on this concept, we
build the first derived property rule:
Υ.1Rule: For any point x, y in the vector field, if x is

closer to one critical point c than y in streamline distance,
then x has greater degree of membership of c:

∀𝑥, 𝑦 ∈ 𝑈, 𝑐 ∈ 𝐶𝑖, 𝐿(𝑥, 𝑐) < 𝐿(𝑦, 𝑐) 7→ 𝜇𝑖
𝐹 (𝑈(𝑥)) >

𝜇𝑖
𝐹 (𝑈(𝑦))

To sources and sinks, the above rule is able to reflect their
feature region effectively, as shown in figure 3. However, sad-
dles are composed by one pair of hyperbolic surfaces. If we
only use streamline distance, it should be unsatisfactory for
extracting the feature region in the hyperbolic sector and the
elliptic sector, since there is no streamline which come from
the critical point in these parts. At the same time, there are
some structures like close orbits, their streamline distances
from any critical point are infinite, so we can’t compute its
membership degree by streamline distance. Therefore, we
introduce the following rule based on Euler distance to solve
this problem:
Υ.2Rule: For any point x in vector field, if its Euler dis-

tance from one critical point c is smaller, then its membership
degree subjecting to c is greater:

∀𝑥, 𝑦 ∈ 𝑋, 𝑐 ∈ 𝐶𝑖, 𝐷(𝑥, 𝑐) < 𝐷(𝑦, 𝑐) 7→ 𝜇𝑖
𝐹 (𝑈(𝑥)) >

𝜇𝑖
𝐹 (𝑈(𝑦))

As for vortex, which can seem as special sink type in
some aspects, we establish a measurement rule based on 𝜆2

method [12], [13], [25].
Υ.3Rule: For any point x with less negative 𝜆2 value

than point y in the vector filed, then its membership degree
subjecting to one vortex c is greater:

∀𝑥, 𝑦 ∈ 𝑋,𝜆2(𝑥) < 𝜆2(𝑦) 7→ 𝜇𝑖
𝐹 (𝑈(𝑥)) > 𝜇𝑖

𝐹 (𝑈(𝑦))

In addition, there exit other attribute fields such as tem-
perature, pressure and etc. Therefore, we build the following
rule between the cyclone and the low pressure center for
typhoon dataset.
Π.1Rule: If we have corresponding pressure field, then

the point x which have a smaller pressure value than y will
have a greater membership degree to one sink point:

∀𝑥, 𝑦 ∈ 𝑋,𝑃 (𝑥) < 𝑃 (𝑦) 7→ 𝜇𝑖
𝐹 (𝑈(𝑥)) > 𝜇𝑖

𝐹 (𝑈(𝑦))

There may be some other rules for depicting flow features.
The advantage of our method is its flexibility for adding new
rule without changing its basic framework. To our tested
datasets, these rules are enough for extracting the user-
interested feature regions.

C. Fuzzy membership calculation

Based on the established rules, we propose a fuzzy k-
means-like method to cluster feature regions. Firstly, we
build a characteristic vector for each sample point in the
3D flow fields according to the relevant rules.



Assuming there are c points in the flow field X, and the
current sample point is 𝑥𝑘.The essence of the Υ.1 rule is to
judge whether the current sample point 𝑥𝑘 and the critical
points are in the same streamline, so we build the following
c-dimensional character vector for the Υ.1 rule:

𝑉Υ.1(𝑥𝑘) = (𝑟𝑘1, 𝑟𝑘2, . . . , 𝑟𝑘𝑐),

where 𝑟𝑘𝑗(1≤𝑗≤𝑐) =

{
0 iff 𝐿(𝑥𝑘, 𝑐𝑗 = ∞)
1 otherwise Where 𝑐𝑗 is

the j-th critical point. For example, if 𝑥𝑘 is at the streamline
which starts from 𝑐𝑗 and ends at 𝑐𝑙, then we have 𝑉Υ.1(𝑥𝑘) =
(0, 0, . . . , 𝑟𝑘𝑗 = 1, 0, . . . , 𝑟𝑘𝑙 = 1, . . . , 0).

The Υ.2 rule represents the Euler distance between the
sample point 𝑥𝑘 and the critical points, so we use the sample
point coordinate and build the character vector 𝑉Υ.2(𝑥𝑘) =
(𝑥𝑘, 𝑦𝑘, 𝑧𝑘) .

To the Υ.3 and Π.1 rules, we also build the following
character vectors 𝑉Υ.3(𝑥𝑘) = 𝜆2(𝑥𝑘) and 𝑉Π.1(𝑥𝑘) = 𝑝(𝑥𝑘).

Consequently, we get a c+5 dimensional character vector
for every sample point:

𝑉 (𝑥𝑘) = (𝑉Υ.1(𝑥𝑘), 𝑉Υ.2(𝑥𝑘), 𝑉Υ.3(𝑥𝑘), 𝑉Π.1(𝑥𝑘))

After the computation of character vectors, we normalize
the vectors to convert them into the range [0, 1]. Because
critical points are the centers of feature regions in the flow
field X, we regard them as the standard samples.

Finally, the membership degree of is computed by the
following formula (13). Similar to [22], this approach can be
proved to be the optimal in the minimum-square-sum rule.

𝜇𝑖𝑘 =

⎧⎨⎩

𝑐+1∑
𝑗=1

𝑑𝑖𝑘

𝑑𝑗𝑘
if 𝐼𝑘 = 𝜙

1− 𝐿(x𝑘,𝑐𝑖)
𝐿𝑙𝑒𝑛(x𝑘)

if 𝐼𝑘 ∕= 𝜙 , 𝑖 ∈ 𝐼𝑘 and 𝑖 ≤ 𝑐

0 if 𝐼𝑘 ∕= 𝜙 , 𝑖 ∈ 𝐼𝑘 and 𝑖 ≤ 𝑐

1−
𝑐∑

𝑖=1

𝜇𝑖𝑘 otherwise

(1)
Where 𝐼𝑘 = {𝑖∣1 ≤ 𝑖 ≤ 𝑐, 𝑑𝑖𝑘 = 0} , 𝐼𝑘 = {𝑖∣1 ≤ 𝑖 ≤
𝑐} − 𝐼𝑘, and 𝑑𝑖𝑘 = ∥𝑉 (𝑥𝑘)− 𝑉 (𝑐𝑖)∥ = (

𝑐+5∑
𝑗=0

(𝑉𝑗(𝑥𝑘) −
𝑉

′
𝑗 (𝑐𝑖))

2)1/2 is the deviation between the current point and
the related standard sample 𝑐𝑖, and 𝐿(𝑥𝑘, 𝑐𝑖) is the streamline
distance between 𝑥𝑘 and 𝑐𝑖 , 𝐿𝑙𝑒𝑛(𝑥𝑘) denotes the length of
the streamline across the 𝑥𝑘 in the flow field X.

IV. MULTI-RESOLUTION LINE INTEGRAL CONVOLUTION

Next we will introduce our noise generation method firstly,
and then present the multi-resolution controlled approach
proposed by this paper. The sparse flow textures are created
by an output-sensitive LIC algorithm, which accelerated the
line integral convolution process by skip the part where don’t
have contribution on the final rendering result.

A. Noise Generation

The original input noise for LIC algorithm is white noise,
which generates a pseudo-random number sequence. A draw-
back of this approach is the sparse noise texels generated are
not even enough to cover the vector field well-proportioned.
This is why some papers adopted low discrepancy sequence

[23], which tend to provide a more well-distributed set of
samples than pseudo-random method.

Low discrepancy sequence is a point sets which can
acquire the minimum order of magnitude of the estimation
error in quasi-Monte Carlo methods. The most simple low
discrepancy sequences are Hammersley sequence and the
Halton point set. But the Hammersley sequence is finite,
so the sample number N is restrained to a fixed number of
points. So we use the closely related Halton sequence here for
seed generation, it has the nice property that new seeds can
be adaptively generated [23].The common low discrepancy
sequence can be generated by radical inverse function, which
is showed as following:

Φ𝑏(𝑖) :=
∞∑
𝑗=0

𝑎𝑗(𝑖)𝑏
−𝑗−1 ⇔ 𝑖 =

∞∑
𝑗=0

𝑎𝑗(𝑖)𝑏
𝑗 (2)

Here 𝑏 is the base number, and Φ𝑏(𝑖) represents the expres-
sion of 𝑖 in base 𝑏, and the final i-th sequence number with
b can be calculated as the right part of label ⇔ . Based on
the inverse function, the Halton sequence are constructed by
𝑥𝑖 = (Φ𝑏1(𝑖), ...,Φ𝑏𝑛(𝑖)) where 𝑏1, ..., 𝑏𝑛 are the first prime
numbers.

After the construction of the Halton point sets, we use
Gaussian filter to smear out the sparse noise ball. This filter
has an advantage of an exponential fall-off property, whether
in spatial space or frequency space. Depending on the filter
kernel width, the final LIC sparse streamlines of different
thickness can be achieved.

B. Multi-resolution control

The resulting sparse noise generated by previous methods
[24] distributed evenly in the vector field. One shortcoming
of this approach is the accurate information on feature
structures or the region of user interested could be neglected
in the final rendering results. The information of some flow
region interested may be lost when the resulted noise is too
sparse, while dense noise may arouse the occlusion problem.
So it is reasonable to visualize different regions with different
degrees of accuracy on a single image.

The sparse multi-resolution noise generation process is
given in the algorithm 1, where M denotes the feature
measure value obtained in the section 3, and N is the output
sparse noise. Because we can treat the flow feature as a fuzzy
sets, so the measure value is a number in the range [0,1]. It
can be seen as the probability of one voxel in vector filed
subjected to the feature region. So the output sparse noise of
algorithm 2 guarantees the feature regions in the flow have
a more detailed representation than the unimportant areas.

C. Output-Sensitive Line Integral Convolution

In this paper, the texture-based visualizing strategy is
based on the LIC approach, and we adopted sparse tex-
ture method to avoid the perception difficulties. The LIC
evaluates the final texture value at position as following:

𝜌(r) =
𝑠0+𝐿𝑒∫
𝑠0−𝐿𝑠

𝑘(𝑠− 𝑠0)𝑁(𝜎(𝑠))𝑑𝑠

where 𝑁(𝜎(𝑠)) denotes the noise function N value at the
sample point ,𝜎(𝑠) and the 𝑘 are the filter kernel functions.
From the above formula, it can see that the original input



Algorithm 1 Multi-resolution Noise Generation
Input :𝑎,𝑀
Output :𝑁

1: while 𝑛 < 𝑁 do
2: Generate a random position 𝑃 in vector field.
3: Obtain the measure membership value 𝑀 [𝑃 ] ob-

tained in section 3.
4: Generate a random number 𝑟 in [0, 1].
5: if 𝑟 ∗𝑀 [𝑃 ] > 𝑎 then
6: Filtered by Gaussian kernel function, with P as

center position. 𝑛++.
7: else
8: Reject the position 𝑃 as seed points;
9: end if

10: end while

noise is instrumental in determining the representation of the
flow visualization.

Previous LIC approaches separated the computing process
of 3D noise 𝜌(𝑟) from the step of volume rendering integral.
This suffers from a main disadvantage is an unnecessary
evaluation of the LIC integral for points that are invisible
due to occlusion or feature extraction. To solve this problem,
we adopted the output sensitive LIC approach mentioned
in [24], which use an on-the-fly computation of the LIC
integral during volume rendering. The basic idea is that the
rendering cost should be proportional to the complexity of
the contributions to the information on the image plane and
independent of the data set size. So it adopted some culling
acceleration techniques such as early-ray termination, which
are extremely beneficial to improve the render performance
since the LIC computation is not executed for noncontribut-
ing samples.

Because the distribution of input spares noise in our
method is proportional to the importance of flow feature, so
there are lots of unimportant regions which don’t influence
the final rendering result can be culled early. This can
improve the time performance of LIC computation, while
maintaining a high quality for the flow visualization.

V. RESULTS AND DISCUSSION

We tested our approach on numerical and synthetical
simulation datasets. For the numerical case, we examined
a spacecraft dataset, coming from real engineering project.
For synthetical flow data, we examined the classical Lorenz
attractor 𝑢 = (10(𝑦 − 𝑥), 28𝑥 − 𝑦 − 𝑥𝑧, 𝑥𝑦 − (8/3)𝑧).
The experiments we have implemented make full use of
GPU acceleration technologies to improve the rendering
performance.

As for the spacecraft dataset, our method also can extract
and show vortex feature regions effectively. As showed
in Figure 2(a), the texture visualizing result based on the
input noise without prifiltered by the algorithm 1, and the
vortex structures are occluded by the around sparse LIC
streaks. This problem is relieved greatly in the Figure 2(b),
which adopts the multi-resolution approach prensented in this
paper. The vortex regions are emphasized by dense texture
visualization, while the background flows are showed in a
sparse manner.

Fig. 2. Our method can depict feature regions more clearly in the overall
flows with multi-resolution method(b). While previous method [24],adopting
evenly distributed noise,can’t represent the vortex structure very well since
the occlusion problem(a).

We also used two cool/warm tone based illumination
methods [26] in our experiments. As shown in Figure 3,
the upper row uses noise droplets distribute evenly in the
vector field, while the lower row adopted our multi-resolution
prefiltering algorithm and the noise droplets density is pro-
portional to feature structure membership value. Figure 3(a)
used a scumbled cool/warm illumination model, and it can
reflect the flow direction very well in an overall manner.
However, the combination this method with the input noise
generated by algorithm 2 loses its advantage of representing
the concrete flow direction. Compared with this method
and traditional gradient-based method (see Figure 3(c)), the
exquisite model is able to reflect the direction of flow
clearly in any situation, as showed in the Figure 3(b) and
(d). Furthermore, the occlusion phenomena can be solved
very well with our multi-resolution approach, as showed in
Figure 3(c) and (d).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an interactive particle-
based method for visualizing vector fields, capable of gen-
erating a global but sparse representation of the flow. This
method regards the flow feature as fuzzy subset and estab-
lishes some rules to calculate the flow feature membership.
Once the membership field calculation is completed, the
output data are sent to graphic hardware as a texture to
identify the importance of each point in the field.

In the rendering stage, this method adopts multi-resolution
texture technologies based on the feature membership field.
The sparse texture streaks distribute proportionally to the
importance degree. In this way, the feature structures can be
illuminated by a dense texture streaks while context region in
a sparse density. We also used two illumination model based
on cool/warm lighting technology. Our illumination methods
can overcome the defect of texture-based visualization, which
unable to reflect the concrete flow direction.



Fig. 3. From left to right, rendering lorinz dataset with: (a) evenly distributed input noises and scumbled cool/warm illumination model, (b) evenly
distributed input noises and exquisite cool/warm illumination model, (c) multi-resolutional distributed input noises and the gradient-based illumination
model, (d) multi-resolutional distributed input noises and the exquisite model.

Our method have some weaknesses to improve in the
future. For instance, it is time-consuming when the flow
structures are complicated. We will continue to simplify the
calculation of membership value and explore further benefits
of having multiple graphics cards. Another problem to be
solved is the reasonable textures density control in algorithm
1. As showed in the Figure 2, the density of sparse textures
are too large so that the occlusion phenomenon is still
serious. And for some complex features, such as turbulence,
we don’t have taken into consideration now. A possible
extension is to build some new measure rules to resolve this
problem. Another possible future work is exploring multi-
dimensional transfer function and extending our approaches
to unstructured and irregularly grid-structured data.
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