

Abstract- 2-D convolution in image processing and Full Search
Block Motion (FSBM) estimation used in a H.264 video
encoder, are highly data intensive and computationally
intensive algorithms. Such algorithms require high memory
access bandwidth due to repeated memory access. They are
represented as nested do loop algorithms to enable systolic
mapping. Mapping is used to facilitate the extraction of
parallelism along with efficient data reuse. To enable the
above, the dependence vector formulation and extraction of
dependencies between iterations have been used. To implement
the former the searching of scheduling vector t and Processor
Matrix P is performed to form the mapping transformation
matrix M. The focus of our work is the extraction of the
dependence vectors from the application algorithm, followed
by the search of the mapping matrix M, where a novel method
of finding t vector has been used. This saves the search time as
compared to the widely used exhaustive search methods. The
resultant M matrix is used to arrive at the various design trade
– offs. The method is applied to 2-D filtering algorithm and
(FSBM) which act as good test cases for nested loop
algorithms. The architecture is simulated and synthesized
using Mentor Graphics tools and targeted to Virtex FPGA.

Index Terms— Systolic Mapping, Dependence Vectors, Data
Reuse, Iteration Space, Mapping Matrix, Nested loop
algorithm, Systolic Array, FSBM, 2-D Filtering.

I. INTRODUCTION

Deeply nested loop algorithms are computationally intensive
algorithms and exhibit repeated set of patterns of operations,
with high data reuse. They are suitably represented in
Uniform Recurrence Equation (URE) form. They become
good candidates for massive parallel implementation. [1]-
[4] & [6]. Maximum use of input ports ensuring maximum
data reuse and optimal designs to maximize throughput are
the criteria aimed at in evolving the designs.

A. Mapping

Any function which allocates a processor and a time slot for
each iteration can be used as mapping function. The proper
choice of the mapping matrix M (1) is an important step.

Manuscript received May 17, 2010; revised October 15, 2010.

1Assistant Professor, Departmant of ECE, Amrita School of Engineering,
Amrita Vishwa Vidyapeetham, Coimbatore -641 105, India,
balasrikanth2003@yahoo.com

Here M is the projecting matrix that maps the iteration space
to a processor at a particular time [5]. The dependency
between the two iterations I1 and I2 can be represented by
the difference between them. I1 and I2 are vectors of equal
dimensions which is equal to the order n of the n-D nested
loop algorithm.

 M= 







t

P
 (1)

The various constraints such as design, causality, and
mapping constraints are discussed in the literature. Heuristic
search methodology is used to arrive at an optimum design
[5]. Development of architectures from parallel algorithms
using cut-set systolisation process is analyzed [10]. The
derivation of feasible mapping is done by identifying formal
criteria to be satisfied by both the original sequential
algorithm and the proposed transformation function [11].
The problem of optimally mapping uniform DAGs to
systolic arrays using retiming and an affine timing function
is developed [7], [8] & [9]. Parametric VLSI architectures
and Systolic architectures for FSBM have been implemented
[12], [13].

 The FSBM algorithm is a six level nested do loop
algorithm. The salient features of the work presented here
are a) Formulation of a 4-Dimensional (4-D) algorithm for
FSBM as shown in listing1. b) The 4-D algorithm is used to
illustrate the formation of the dependence vectors in a
reduced index space - 4-D index in section II. c) The
extraction of dependence vectors and d) reduction of search
space for the scheduling vector t by forming a set of
dependency constraints e) the above features are
implemented for a 4-D nested loop edge detection algorithm
and 6-D nested loop FSBM algorithms. The organization of
the paper is as follows: Section III presents the search
method adopted for the edge detection algorithm, and the
mapping results and section IV presents the methodology
and mapping results for FSBM algorithm.

II. DEPENDENCE VECTORS

A. Formulation of Dependence vectors for Full Search
Block Motion (FSBM) Algorithm

We consider the conventional six level nested do loop
algorithm for FSBM estimation [1]. The formulation of the
dependence vector set is brought out through the reduced 4-
D FSBM algorithm which forms a reduced 4-D index space.

Dependence Vectors and Fast Search of Systolic
Mapping for Computationally Intensive Image

Processing Algorithms
Bala Tripura Sundari B1

B. Dependence vectors for a reduced index space - 4-D
FSBM

Consider the current frame pixels –(c frame) of size 8X8
pixels in figure 1. This frame is divided into sub frames or
blocks of size NXN. (N = 4). The blocks are scanned row
wise. The sequence of blocks is numbered as follows: h is
the maximum number of blocks in a row and v is the
maximum number of blocks in a column. The sequence
number for the blocks is indicated by a new variable hv,
reducing the two variables h and v to hv. If the current frame
pixel is 36 presently, then its corresponding search frame
pixels are shown by the enclosed dotted rectangle of pixels
for p =N/2 = 2. Hence the size of the search frame becomes
(2*p+1)2 =25 pixels. The search frame data are represented
as the s pixels . The search variables m and n indicate the
all possible search directions as in the FSBM estimation
algorithm –listing 2 . They act as the search direction
variables in the 6-D index space. The search variables m, n
are the additional variables which indicate the search pixel
directions for the current frame pixel c33 as shown in the
figure 2. Here m, n vary from 1 to 5 when p= 2. These
search variables m and n are reduced to a single variable
called the comparison number 1 to 25 as shown in the fig. 2.

C. Dependence Graph for formulation of Dependence
vectors (Dvy)

When p = 2, the number of search frame data required for
comparison for one current frame pixel is (2*p+1)2 = 25.
The dependence vector is formulated manually from the
Dependence Graph (DG) representation in figure 2. The
numbers on the nodes represent the comparison numbers of
the search frame that are to be compared for a single current
frame pixel. The pixels within a block are scanned column
wise. So the next current frame pixel is c34.

For hv = 1: Nh*Nv,
 MV (hv) = 0;
 Dmin(hv) = ∞;
 For p = 1: (2p+1)2, mad (p) = 0;
 For i = 1: N, For j = 1: N,

mad (p) = mad (P) + |x (hvN
2 + i, hvN

2 + j
) – y (hvN

2 + i+p, hvN
2 + j+p)|;

 End j, End i
If (Dmin(hv) > mad (p))
 Dmin(hv) = mad(p)
 MV (hv) = p;

endif
 End p,End hv

Listing 1 4-level FSBM architecture

From the fig. 2 and fig. 3 the dependence vector for s data
propagation is calculated as follows: when data flows from
the 13th to the 8th comparison. Dv for s-frame data is termed
as Dvs1.
Dvs1 = hv, pnew, i, j = (0,13,3,3) – (0, 8,3,4).
 = 0, 2*p+1,0,1.
Dvs2 = 1, 2*p+1, N-1, 0 between adjacent blocks.

D. Dependence Graph (DG) for c data propagation (Dvc)

Dvc1 = hv ,pnew,i,j: 0,1,3,3 to 0,2,3,3 = 0,1,0,0;

Fig. 1 c- frame data c36 (shown encircled), and the corresponding search
frame pixels –shown within the dotted frame.

Fig. 2 Dependence graph for c frame pixel 33 & 34, search Frame pixel s55
–shows search frame data propagation and data reuse.

Fig. 3 DG to determine s frame data dependence for C35

From the above Dependence graph, we know that c is to be
propagated to all nodes of the DG and hence the Dv for c is
given as shown in the Dv equation for FSBM and Dvc2 is
given as follows:

Dvc2 = 0,0,3,3 to 0,5,3,3 = 0,(2*p+1),0,0.

E. Dependence Vector for MAD data accumulation &
propagation (DvMAD)

The Dependence Vector for Dv (MAD) is given as

 Dv (MAD) = [0 0 0 1; 0 0 1 –(N-1)]

F. Dependence Graph for DvDmin data propagation (DvDmin)
The Dependence vector for Dmin shown above arises out of
the fact that Dmin has to be propagated to the next sub-frame
and is gives as Dv(Dmin) = [1 0 0 0]. All the above
dependence vectors are combined to form the dependence
vector matrix as shown below. The last row gives the
variables. The above method explains the formulation of the
dependence vector set which is an important step in the
mapping process

DVFSBM=

min2,121

0

0

0

1

3

1

0

1

2

0

0

12

0

1

)1(1010

10100

0012121

00100

Dy

N

h

x

p

MADMADyyx

N

N

pp









III. FINDING DEPENDENCIES IN A NESTED LOOP ALGORITHM USING AN
AUTOMATED METHOD

The nested loop algorithm is read to form the index space.
The variables used in algorithm are added to the variables
list. We consider (2) as the main loop expression Written in
post operator form as in (3).
 c(i , j) c(i , j) a(i , k) b(k , j) * + = (2)
The procedure adopted is given below:

 Select the first element from the iteration space which
represents the first iteration. Substitute the variables in the
body of the loop by the iteration value considered. For the
iteration (1, 1, 1).
 c(1 , 1) c(1 , 1) a(1 , 1) b(1 , 1) * + = (3)

 Add the operand which is at the extreme left in the post-
operand form of the loop body to the set of variables being
updated along with the remaining variables to the set of
variables being used. Now U={c (1, 1)} and C= {c (1, 1), a
(1, 1), b (1, 1)} for the iteration (1, 1, 1).

 Check for any common variable that is being used in the
current iteration (I2)and the previous iteration (I1).If any
common variable is found, it means that this current
iteration depends on the previous iteration. It also
determines the dependencies for the computational variables
similar to the previous case.

 Add this vector to the dependency vector set D.
 Select the next iteration and continue till the end. The

 methodology and the results of the dependencies, search
 results of t and P matrix, and the design trade-off of the
 hardware is discussed in the following sections.

A. Mapping of the edge-detection algorithm

The 2-D convolution and many morphological operations
require data reuse and regular iterative computation. We
assume that this 4-level algorithm is targeted to an
architecture that is two dimensional (Dim=2). The size of
the t vector is 1 4 and that of P matrix is 2 4. Hence the M
matrix has a dimension of (Dim+1, n) = (3, 4). There are 12
elements in each possible M matrix. If each value in M has 6
possible values during searching then a total of 612 M
matrices have to be checked for the constraints and the
objectives.

The search space is significantly reduced as compared to
heuristic search methods already used, by first directly
finding the Scheduling vector t that satisfies the causality
constraints arising out of the dependencies. Then search for
processor-Allocation matrix P which satisfies the mapping
constraint. The listing 2 shows the 4 level edge detection
algorithm. The algorithm finds the edges in an image of
size (m  n) = (5  5) and the mask size of 33. The index
space for this algorithm is (i, j, k, l) and the iteration space I
is given by:

 I= {(I, j, k, l): 0<= I <15, 0<= j <15, 0<= j< 2, 0<= l <2}.

TABLE I DVMAD FOR 1 MACROBLOCK

MAD elements

hv

pnew

ij

03-25,04-26, 05-27,06-28 0 0 03,04,05,06

13-35,14-36, 15-37,16-38 0 0 13,14,15,16

23-45,24-46, 25-47,26-48 0 0 23,24,25,26

33-55,34-56, 35-57,36-58 0 0 33,34,35,36

The following is the listing of the edge-detection algorithm.
For(i=0;i<m;i++)
For(j=0;j<n;j++)
{
O[i,j]=0;
For(k=0;k<3;k++)
For(l=0;l<3;l++)
O[i,j]=O[I,j]+I[i+k,k+l]*w[k,l];
}

Listing 2 Edge-Detection Algorithm

The dependencies found in this algorithm due to both
computational and propagation constraints are listed below.

TABLE II DEPENDENCE VECTORS EXTRACTED
AUTOMATICALLY BY THE SEARCH ALGORITHM FOR

THE EDGE-DETECTION ALGORITHM

Dependence
(D)

Variable
Type of the dependence &
Propagation delay
assumed

(0,0,0,1) O Computational(3)

(0,0,1,-2) O Computational(3)

(0,1,0,0) W Propagation(1)

(1,-4,0,0) W Propagation(1)

(0,1,0,-1) I(0,1) Propagation(1)

(1,0,-1,0) I(1,0) Propagation(1)

(1,-1,-1,1) I(1,1) Propagation(1)

(1,-2,-1,2) I(1,2) Propagation(1)

In table II the delays shown in the brackets are assumed
depending on data dependencies and computational delays.

B. Finding t vector

 The t-vector should satisfy the causality constraint which is
given by the expression tDv

T > [dd]. Here D is the
dependence vectors set and dd is a vector which represents
the delays (given in table II) associated with computational
variables and propagation variables. This helps us to use the
actual computational and propagation delays associated with
the hardware. The size of t matrix is (1×n). Let t = (a b c
d). Now substituting each dependence vector in the causality
constraint we get the following inequalities.

TABLE III INEQUALITIES FOR FINDING T MATRIX

d>3 b-d>1
c-2d>3 a-c>1
b>1 a-b-c + d>1
a-4b>1 a-2b-c+2d>1

Solving these inequalities for a general solution, using
MATLAB we obtain the scheduling matrix t directly. The
first solution for the above inequalities is given by:

t= (a b c d) = (8 2 7 2).
An m file is used to solve the inequalities in the table III
using pseudo –inverse method. So here we are directly
finding the solution for t matrix without searching for it
which reduces the search from 612 matrices to 68 matrices so
we can skip 64 matrices. This reduces the search time as
compared to the heuristic search methods.

 C. Searching for P-Matrix

After finding t matrix we have to search for the P matrix
which satisfies the mapping constraint as explained in [11].
For the edge detection algorithm, the P matrix is a (2×4)
matrix. One of the valid P matrices is given by:

P= 










0010

0010

Thus one of the valid M matrix is given by

 M=




















0010

0010

2728

This reduces the search time, when compared to both t and P
matrices being searched together. The search time
comparisons are summarized in the table 12 in terms of
complexity.

D. Mapping of Index space and Dependence vectors

The mapping results for the above M matrix are given
below. The First iteration space maps to the processor-time
space and the dependence vectors map to Edge-delay space
as shown in table IV.

TABLE IV RESULTS OF MAPPING OF THE
DEPENDENCE VECTOR SET

Variable

Edge Delay

(0,0,0,1) <O> (0,0) 2
(0,0,1,-2) <O> (0,0) 3
(0,1,0,0) <W> (-1,-1) 2
(1,-4,0,0) <W> (4,4) 0
(0,1,0,-1) <I> (-1,-1) 0
(1,0,-1,0) <I> (0,0) 1
(1,-1,-1,1) <I> (1,1) 1
(1,-2,-1,2) <I> (2,2) 1

Fig. 4 Architecture obtained using the mapping for the edge detection
algorithm

E. Mapping Results

 The cost function is defined as (5) which can be used as a
filter for selecting architecture according to the target
hardware mapping technology limitations.

Cost = aprocessors + bcycles + cI/O ports (4)
Here a, b, c are the scalar coefficients which represents the
weights for the corresponding costs to minimize the overall
cost function.

F. Mapping for different image and window sizes

TABLE V MAPPING RESULTS FOR EDGE DETECTION

 a=1,b=9,

c=1
a=9,b=1,
c=1

a=1,b=1,
c=9

Processors 9 5 7
Cycles 53 59 55
IO ports 7 5 5

TABLE VIA CASE 1. MAPPING RESULTS: INCREASING IMAGE

SIZE WITH NO CONSTRAINT OF CONSTANT PROCESSORS

Image size

Window

size

Processors

Cycles

5×5 3 5 53
6×6 3 9 55
8×8 3 14 56

TABLE VIC CASE 3. MAPPING RESULTS INCREASING
IMAGE SIZE WITH CONSTANT CYCLES

Image size

Window

size

Processors

Cycles

5×5 3 5 53
6×6 3 9 55
8×8 3 14 56

TABLE VID CASE 4. CHANGE IN MAPPING RESULTS
WITH INCREASING WINDOW SIZE AND CONSTANT

IMAGE SIZE WITH CONSTRAINT OF CONSTANT
PROCESSORS

Image size

Window size

Processors

Cycles

5×5 3 5 53
6×6 3 5 61
8×8 3 6 72

TABLE VIE CASE4. CHANGING IN MAPPING RESULTS
WITH INCREASING IMAGE SIZE WITH THE CONSTRAINT

OF CONSTANT PROCESSORS

Image size

Window
size

Processors

Cycles

5×5 3 5 53
6×6 3 9 55
8×8 3 14 56

We consider the edge-detection algorithm for higher image
sizes, the number of iterations increases which leads to
increase in the number of processors or increase in the
number of cycles.

G. Performance

If the input image considered is of 5×5 and the window size
is 3×3 then a total number of 225 iterations are required
when done sequentially with one processor to implement the
algorithm. The systolic array design performs the required
computation on the given image size in 53 cycles (Table V).
This is verified by the architecture simulated in Modelsim
5.8 (Mentor Graphics tool) and the memory read operations
are reduced from 225 to 101 due to Propagation of the input
image data between the processor.

IV. MAPPING OF FULL SEARCH MOTION
ESTIMATION ALGORITHM

The Full Search Motion Estimation algorithm considered is
a 6- level algorithm [4] for finding the motion vectors
between two successive frames in a video is shown in listing
[2].
 For h=0 to (Nv-1)
For v=0 to (Nh-1)
{{
Dmn (h,v)=∞
For m=0 to (2*p)
{For n=0 to (2*p)
{MAD (m,n)=0
for i=0 to (N-1)
{
for j=0 to (N-1)
{MAD(m,n)=MAD(m,n)+x(h*N+i,v*N+j)-y(h*N+i+m-
p,v*N+j+n-p)
}}
If (Dmn(h,v)>MAD(m,n))
Dmn(h,v)=MAD(m,n)
MV (h,v)=(m-p,n-p)
}}}}
Listing [3] 6-level FSBM Algorithm

If we let (a b c d e f) to be the required t Matrix, then the
system of constraints obtained from the causality constraints
for the dependence vectors are listed in the table VII. The
propagation and computation time for Dmin is considered as

5 and that for MAD data to be 4. The propagation time for c
data and s data are assumed to be 1 as in the table VII.

TABLE VII INEQUALITIES FOR FINDING S
MATRIX

d >5 d-f>1
c-4d>5 c-2d-e+2f>1
f>4 d+2e-f>1
e-3f>4 d-f>1
c-e>4 c-2d+e-2f>1
b-3e-3f>4 c-d-e+f>1
d>1 c+d-e+f>1
d-4e>1 c-4d-e+4f>1

TABLE VIII DEPENDENCE VECTORS FOR
FSMB ALGORITHM

Variable

Dependence

Type
(C
or P)

D-
elements
=Dvt

Dmin 0 0 0 1 0 0 C 0
Dmin 0 0 1 -4 0 0 C 5

MAD 0 0 0 0 0 1 C 0
MAD 0 0 0 0 1-3 C 0
MAD 0 1 0 0 -3-3 C 0
MAD 1-1 0 0 -3 -3 C 4
X(0,0) 0 0 0 1 0 0 P 0
X(0,0) 0 0 0 1 -4 0 P 0
X(1,2) 0 0 1 0 1 0 P 2
X(2,1) 01 0 0 -3 -3 P 0
Y(0,0) 0 0 0 1 0 -1 P 0
Y(0,0) 00 1 -2 -1 2 P 2
Y(0,1) 0 0 0 1 2 -1 P 0
Y(0,1) 0 0 0 1 0 -1 P 0
Y(0,1) 00 1 -3 -1 3 P 2
Y(1,0) 0 0 0 1 0 -1 P 0
Y(1,0) 00 1 -2 -1 2 P 2
Y(2,3) 0 0 0 1 0 -1 P 0
Y(2,3) 00 1 -2 1 -2 P 2
Y(2,3) 0 0 0 1 0 -1 P 0
Y(2,4) 00 1 -1 -1 1 P 2
Y(1,0) 0 0 0 1 0 -1 P 0

One of the solutions for these in-equalities is given by t = (a
b c d e f) = (2, 0, 2, 0, 0, and 0) and the P
matrix can be searched to get the M matrix which maps onto
16 processors and 196 cycles, which is given below.

 M=

















010000

100000

000202

A Architecture

Fig. 6 Propagation of MAD data

Fig. 7 Propagation of c frame data

Fig. 8 Propagation of s frame data with 2 Delays (not labeled in the
diagram)

The mapping results for different cost functions are given in
table IX as per expression (4).

TABLE IX MAPPING RESULTS FOR FSBM ALGORITHM

 a=1,b=9,c=1 a=9,b=1,c=1 a=1,b=1,c=9
Processors 25 16 16
Cycles 124 196 177
IO ports 7 9 4

B. Hardware Implementation

The architecture is implemented in FPGA- virtex-5
using verilog HDL. The Device utilization for the edge
detection algorithm and the motion estimation algorithm is

given in table X. The synthesis results of synthesis tool
Xilinx ISE are given in the table XB and XC.

TABLE XA COMPARISON BETWEEN THE DEVICE
UTILIZATIONS FOR EDGE-DETECTION(5X5 IMAGE, 3X3

WINDOW SIZE AND FSMB ALGORITHMS: N=4, P=2

Algorithm

LUT *
utilization

FF util
ization

IOB

Edge-
detection

131 71 55(24%)

FSBM 172 88 48(21%)

TABLE XB DEVICE UTILIZATION OF THE CONTROL UNIT
FOR THE MAPPED ALGORITHMS

Algorithm

LUT

utilization

FF

utilization

IOB

Edge-
detection

96 60 94(42%)

FSBM 132 54 66(29%)

TABLE XC DEVICE UTILIZATION OF THE PROCESSOR
ARRAY FOR THE MAPPED ALGORITHMS

Algorithm

LUT
utilization

FF

utilization

IOB

Edge-
detection

153 98 41(18%)

FSBM 205 110 62(28%)

Total Device utilization of the mapped Nested loop
algorithms targeted to FPGA virtex5 family.

* LUT=Look Up Table, **FF=Flip Flop, ***IOB=Input
Output Blocks.

C. Complexity

 The complexity is calculated and presented in table XI,
which shows the speed up of the search process to arrive at
the Mapping matrix M.

TABLE XI COMPLEXITY CALCULATIONS FOR VARYING
VALUES OF N

n

Npn-1-number

of possible
values of
elements

of t, P

Other
value

s

Total

possible

Number

of
Possibl

e##

Our

Metho
d

2 2p1 =2;
2p2 =1

0,1,-
1

6 23 ;66 0,1,-
1,ui,uj
= 5,

possibl
e

values;
56; **
=54

3 3p2=3;3p3 =1 0,1,-
1

7 n3
;33

element
s

=79

0,1,-
1,ui,uj,
uk=6

possibl
e

values;
69;66

4 4p3=4,4p2=6,4
p1 =4

0,-
1,1

17 n3=12
;

17 12

712
values;

; **
78

6 6p5=6,6p2=15,6
p3=15,6p2=90

0,-
1,1

App=
100

n3=18
;

10018

918 ;
**
912

values; ##matrices

**=3 rows in M matrix
** further reduced to

n ‐ n level nested loop algorithm
V. CONCLUSION AND FUTURE WORK

The formulation and extraction of dependence vectors is an
important step leading to efficient parallelization by
mapping. The extraction of dependencies, for both
propagation and computational variables between different
intermediate iterations of the algorithm are extracted from
the algorithm. This has been tested on two benchmarks on a
suitable iteration space. The scheduling vector t is searched
by using the dependency constraint and the causality
constraint. The execution time for search using our method
is far below the heuristic search methods adopted. This has
reduced the overall search time to arrive at suitable mapping
matrix M. The mapping results are verified for edge-
detection and FSBM algorithms by simulating the
architecture using Mentor Graphics Tool. Modelsim 5.8 and
the synthesis results for targeting the design on to a virtex- 5
FPGA is presented.

ACKNOWLEDGMENT

 The Author thanks the management of Amrita
School of Engineering, Amrita Vishwa Vidyapeetham,
Coimbatore, Tamil Nadu, India, for the facilities provided to
carry out this work in the VLSI Lab.

REFERENCES

[1] Dongming Peng and Lu M, “On Exploring Inter-Iteration Parallelism
Within Rate-Balanced Multirate Multidimensional DSP Algorithms”,
IEEE Transaction On Very Large Scale Integration (VLSI) Systems,
Vol. 13, No. 1,2005, pp. 106-125.

[2] Keshab Parhi K, “VLSI Signal Processing”, John Wiley, 1991.
[3] Khalili A.J.AI, “Synthesis of Systolic Arrays from Single Assignment

Algorithm”, IEEE Transactions on Signal Processing, 1995.
[4] Kung S.Y, “VLSI array processors”, IEEE ASSP Magazine, Vol.2,

No.3, 1985, pp. 4-22.
[5] Komarek T. and Pirsch P, “Array architectures for block matching

algorithms”, IEEE Trans. Circuit Systems, vol. 36, 1989, pp. 1301–
1308.

[6] Lee P. and Kedem Z. M. “Synthesizing linear array algorithms from
nested for loop algorithms”, IEEE Transactions in Computers, vol. 37,
1998, pp. 1578–1598.

 [7] Nelson Luiz Passos and Edwin Hsing-Mean Sha, “Achieving Full
Parallelism Using Multidimensional Retiming”, IEEE Transactions on
Parallel and Distributed Systems, Vol. 7, No. 11, 1996, pp. 1150-1163.

 [8] Naresh Maheshwari and Sachin Sapatnekar, “Efficient Retiming of
Large Circuits”, IEEE Transaction On Very Large Scale Integration
(VLSI) Systems, Vol. 6, No. 1, 1998, pp. 74-83.

 [9] Patrice Quinton. A, Djamegni C.T, Sanjay Rajopadhye, Tayou Risset,
Tchuente M, “A Reindexing based Approach towards mapping affine
schedules onto parallel embedded systems”, Journal of parallel and
distributed computing, 2009, pp. 1‐11.

[10] Prasanna Kumar V.K.and chen Tsai Yu, “On synthesizing optimal
family of linear systolic arrays for matrix multiplication”, IEEE
Transactions on Computers, Vol. 40, No. 6, 1991, pp. 770-774.

[11] Surin Kittitornkun and Hen Hu Y, “Mapping Deep Nested Do-Loop
DSP Algorithms to Large Scale FPGA Array Structures”, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, Vol.
11, No. 2, 2003, pp. 208-217.

[12] Vos L. D. and Stegherr M, “Parameterizable VLSI architectures for the
full-search block-matching algorithm”, IEEE Transactions Circuit
Systems, vol.36, 1989, pp. 1309–1316.

[13] Yeo H.and Hu Y. H, “A novel modular systolic array architecture for
full-search block matching motion estimation”, IEEE Transactions on
Circuit Systems Video Technology, vol. 5, 1995, pp. 407–416.

