
 

 

 

Abstract- 2-D convolution in image processing and Full Search 
Block Motion (FSBM) estimation used in a H.264 video 
encoder, are highly data intensive and computationally 
intensive algorithms. Such algorithms require high memory 
access bandwidth due to repeated memory access. They are 
represented as nested do loop algorithms to enable systolic 
mapping.  Mapping is used to facilitate the extraction of 
parallelism along with efficient data reuse. To enable the 
above, the   dependence vector formulation and extraction of 
dependencies between iterations have been used. To implement 
the   former the searching of scheduling vector t and Processor 
Matrix P is performed to form the mapping transformation 
matrix M. The focus of our work is the extraction of the 
dependence vectors from the application algorithm, followed 
by the search of the mapping matrix M, where a novel method 
of finding t vector has been used. This saves the search time as 
compared to the widely used exhaustive search methods. The 
resultant M matrix is used to arrive at the various design trade 
– offs.  The method is applied to 2-D filtering algorithm and 
(FSBM) which act as good test cases for nested loop 
algorithms. The architecture is simulated and synthesized 
using Mentor Graphics tools and targeted to Virtex FPGA. 

Index Terms— Systolic Mapping, Dependence Vectors, Data 
Reuse, Iteration Space, Mapping Matrix, Nested loop 
algorithm, Systolic Array,  FSBM, 2-D Filtering. 

 
I. INTRODUCTION 

Deeply nested loop algorithms are computationally intensive 
algorithms and exhibit repeated set of patterns of operations, 
with high data reuse. They are suitably represented in 
Uniform Recurrence Equation (URE) form. They become 
good candidates for massive parallel implementation. [1]- 
[4] & [6]. Maximum use of input ports ensuring maximum 
data reuse and optimal designs to maximize throughput are 
the criteria aimed at in evolving the designs. 

A. Mapping 

Any function which allocates a processor and a time slot for 
each iteration can be used as mapping function. The proper 
choice of the mapping matrix M (1) is an important step.  
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Here M is the projecting matrix that maps the iteration space 
to a processor at a particular time [5]. The dependency 
between the two iterations I1 and I2 can be represented by 
the difference between them. I1 and I2 are   vectors of equal 
dimensions which is equal to the order n of the n-D nested 
loop algorithm. 

 M= 







t

P
                                                      (1)                            

The various   constraints such as design, causality, and 
mapping constraints are discussed in the literature. Heuristic 
search methodology is used to arrive at an optimum design 
[5]. Development of architectures from parallel algorithms 
using cut-set systolisation process is analyzed [10]. The 
derivation of feasible mapping is done by identifying formal 
criteria to be satisfied by both the original sequential 
algorithm and the proposed transformation function [11].  
The problem of optimally mapping uniform DAGs to 
systolic arrays using retiming and an affine timing function 
is developed [7], [8] & [9]. Parametric VLSI architectures 
and Systolic architectures for FSBM have been implemented 
[12], [13]. 

 The FSBM algorithm is a six level nested do loop 
algorithm. The salient features of the work presented here 
are a) Formulation of a 4-Dimensional (4-D) algorithm for 
FSBM as shown in listing1. b)  The 4-D algorithm is used to 
illustrate the formation of the dependence vectors in a 
reduced index space - 4-D index in section II. c) The 
extraction of dependence vectors and d) reduction of search 
space for the scheduling vector t by forming a set of 
dependency constraints e) the above features are 
implemented for a 4-D nested loop edge detection algorithm 
and 6-D nested loop FSBM algorithms. The organization of 
the paper is as follows: Section III presents the search 
method adopted for the edge detection algorithm, and the 
mapping results and section IV presents the methodology 
and mapping results for FSBM algorithm. 

 

II. DEPENDENCE VECTORS 
 

A. Formulation of Dependence vectors for Full Search 
Block Motion (FSBM) Algorithm 

We consider the conventional six level nested do loop 
algorithm for FSBM estimation [1]. The formulation of the 
dependence vector set is brought out through the reduced 4-
D FSBM algorithm which forms a reduced 4-D index space. 
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B.  Dependence vectors for a reduced index space - 4-D 
FSBM 

Consider the current frame pixels –(c frame) of size  8X8 
pixels in figure 1. This frame is divided into sub frames or 
blocks of size NXN. (N = 4). The blocks are scanned row 
wise. The sequence of blocks is numbered as follows: h is 
the maximum number of blocks in a row and v is the 
maximum number of blocks in a column. The sequence 
number for the blocks is indicated by a new variable hv, 
reducing the two variables h and v to hv. If the current frame 
pixel is 36 presently, then its corresponding search frame 
pixels are shown by the enclosed dotted rectangle of pixels 
for p =N/2 = 2. Hence the size of the search frame becomes 
(2*p+1)2 =25 pixels.  The search frame data are represented 
as the s pixels . The search variables  m and n indicate the 
all possible search directions as in the FSBM estimation 
algorithm –listing 2 . They act as the search direction 
variables in the 6-D index space. The search variables m, n 
are the additional variables which indicate the search pixel 
directions for the current frame pixel c33 as shown in the 
figure 2. Here m, n vary from 1 to 5 when p= 2.  These 
search variables m and n are  reduced to a single variable 
called the comparison number 1 to 25 as shown in the fig. 2.  

C. Dependence Graph for formulation of Dependence 
vectors (Dvy) 

When p = 2, the number of search frame data required for 
comparison for one current frame pixel is (2*p+1)2 = 25. 
The dependence vector is formulated manually from the 
Dependence Graph (DG) representation in figure 2. The 
numbers on the nodes represent the comparison numbers of 
the search frame that are to be compared for a single current 
frame pixel. The pixels within a block are scanned column 
wise.  So the next current frame pixel is c34. 

For hv = 1: Nh*Nv, 
   MV (hv) = 0; 
   Dmin(hv) = ∞; 
   For p = 1: (2p+1)2, mad (p) = 0; 
 For i = 1: N, For j = 1: N, 

mad (p) = mad (P) + |x (hvN
2 + i, hvN

2 + j 
) – y (hvN

2 + i+p, hvN
2 + j+p)|; 

 End j, End i  
If (Dmin(hv) > mad (p)) 
 Dmin(hv) = mad(p) 
 MV (hv) = p; 
  
endif 
    End p,End hv 

 
Listing 1   4-level FSBM architecture 

 
 
 
 

From the fig. 2 and  fig. 3 the dependence vector for s data 
propagation is calculated as follows: when data flows from 
the 13th to the 8th comparison. Dv for s-frame data is termed 
as  Dvs1. 
Dvs1 = hv, pnew, i, j = (0,13,3,3) – (0, 8,3,4). 
   = 0, 2*p+1,0,1.   
Dvs2 = 1, 2*p+1, N-1, 0 between adjacent blocks. 
 
D. Dependence Graph (DG) for c data propagation (Dvc) 
 
Dvc1 = hv ,pnew,i,j: 0,1,3,3 to 0,2,3,3 = 0,1,0,0;  
 
 

 

Fig. 1  c- frame data c36 (shown encircled), and the corresponding search 
frame pixels –shown within the dotted frame. 

 

 

Fig. 2 Dependence graph for c frame pixel 33 & 34, search Frame pixel s55 
–shows search frame data propagation and data reuse. 



 

 

   
 

Fig. 3 DG to determine s frame data dependence for C35 
 

From the above Dependence graph, we know that c is to be 
propagated to all nodes of the DG and hence the Dv for c is 
given as shown in the Dv equation for FSBM and  Dvc2 is 
given as follows: 

Dvc2 = 0,0,3,3 to 0,5,3,3 = 0,(2*p+1),0,0.   

E. Dependence Vector for MAD data accumulation & 
propagation (DvMAD) 

 

The Dependence Vector for Dv (MAD) is given as  

 Dv (MAD) = [0 0 0 1; 0 0 1 –(N-1)] 

 

F. Dependence Graph for DvDmin  data propagation (DvDmin) 
The Dependence vector for Dmin   shown above arises out of 
the fact that Dmin has to be propagated to the next sub-frame 
and is gives  as Dv(Dmin) = [1 0 0 0]. All the above 
dependence vectors are combined to form the dependence 
vector matrix as shown below. The last row gives the 
variables. The above method explains the formulation of the 
dependence vector set which is an important step in the 
mapping process  
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III. FINDING DEPENDENCIES IN A NESTED LOOP ALGORITHM USING AN 
AUTOMATED METHOD 

 
The nested loop algorithm is read to form the index space. 
The variables used in algorithm are added to the variables 
list. We consider (2) as the main loop expression Written in  
post operator form as in (3).  
 c(i , j)  c(i , j)  a(i , k)  b(k , j) * + =               (2)  
The procedure adopted is given below: 

 Select the first element from the iteration space which 
represents the first iteration. Substitute the variables in the 
body of the loop by the iteration value considered. For the 
iteration (1, 1, 1). 
 c(1 , 1)  c(1 , 1)  a(1 , 1)  b(1 , 1) * + =          (3) 

 Add the operand which is at the extreme left in the post-
operand form of the loop body to the set of variables being 
updated along with the remaining variables to the set of 
variables being used. Now U={c (1, 1)} and C= {c (1, 1), a 
(1, 1), b (1, 1)} for the iteration (1, 1, 1). 

 Check for any common variable that is being used in the 
current iteration (I2)and the previous iteration (I1).If any 
common variable is found, it means that this current 
iteration depends on the previous iteration. It also 
determines the dependencies for the computational variables 
similar to the previous case.  

 Add this vector to the dependency vector set D.  
   Select the next iteration and continue till the end. The 

 methodology and the results of the dependencies, search 
 results of t and P matrix, and the design trade-off of the 
 hardware is discussed in the  following sections. 

 
A. Mapping of the edge-detection algorithm 

The 2-D convolution and many morphological operations 
require data reuse and regular iterative computation. We 
assume that this 4-level algorithm is targeted to an 
architecture that is two dimensional (Dim=2).  The size of 
the t vector is 1 4 and that of P matrix is 2 4. Hence the M 
matrix has a dimension of (Dim+1, n) = (3, 4). There are 12 
elements in each possible M matrix. If each value in M has 6 
possible values during searching then a total of 612 M 
matrices have to be checked for the constraints and the 
objectives. 

The search space is significantly reduced as compared to 
heuristic search methods already used, by first directly 
finding the Scheduling vector t that satisfies the causality 
constraints arising out of the dependencies. Then search for 
processor-Allocation matrix P which satisfies the mapping 
constraint. The listing 2 shows the 4 level edge detection 
algorithm. The algorithm   finds the edges in an image of 
size (m  n) = (5  5) and the mask size of 33. The index 
space for this algorithm is (i, j, k, l) and the iteration space I 
is given by: 

 I= {(I, j, k, l): 0<= I <15, 0<= j <15, 0<= j< 2, 0<= l <2}. 

TABLE I  DVMAD FOR 1 MACROBLOCK 
 

 
MAD elements 

 

 
hv 

 
pnew 

 
ij 

03-25,04-26, 05-27,06-28 0 0 03,04,05,06 

13-35,14-36, 15-37,16-38 0 0 13,14,15,16 

23-45,24-46, 25-47,26-48 0 0 23,24,25,26 

33-55,34-56, 35-57,36-58 0 0 33,34,35,36 



 

 

The following is the listing of the edge-detection algorithm. 
For(i=0;i<m;i++) 
For(j=0;j<n;j++) 
{ 
O[i,j]=0; 
For(k=0;k<3;k++) 
For(l=0;l<3;l++) 
O[i,j]=O[I,j]+I[i+k,k+l]*w[k,l]; 
} 

Listing  2 Edge-Detection Algorithm  

The dependencies found in this algorithm due to both 
computational and propagation constraints are listed below.  

TABLE II  DEPENDENCE VECTORS EXTRACTED 
AUTOMATICALLY BY THE SEARCH ALGORITHM FOR 

THE EDGE-DETECTION ALGORITHM 
 

Dependence 
(D) 

Variable  
Type of the dependence & 
Propagation delay 
assumed  

(0,0,0,1) O  Computational(3) 

(0,0,1,-2) O  Computational(3) 

(0,1,0,0) W Propagation(1) 

(1,-4,0,0) W Propagation(1) 

(0,1,0,-1) I(0,1)  Propagation(1) 

(1,0,-1,0) I(1,0)  Propagation(1) 

(1,-1,-1,1) I(1,1)  Propagation(1) 

(1,-2,-1,2) I(1,2)  Propagation(1) 

 

In table II the delays shown in the brackets are assumed 
depending on data dependencies and computational delays. 

B. Finding t vector 

 The t-vector should satisfy the causality constraint which is 
given by the expression tDv

T > [dd]. Here D is the 
dependence vectors set and dd is a vector which represents 
the delays (given in table II) associated with computational 
variables and propagation variables. This helps us to use the 
actual computational and propagation delays associated with 
the hardware.  The size of t matrix is (1×n).  Let t = (a b c 
d). Now substituting each dependence vector in the causality 
constraint we get the following inequalities.  

TABLE III  INEQUALITIES FOR FINDING T MATRIX 

 
d>3 b-d>1 
c-2d>3 a-c>1 
b>1 a-b-c + d>1 
a-4b>1 a-2b-c+2d>1 

 
Solving these inequalities for a general solution, using 
MATLAB we obtain the scheduling matrix t directly. The 
first solution for the above inequalities is given by:  

t= (a b c d) = (8 2 7 2). 
An m file is used to solve the inequalities in the table III 
using pseudo –inverse method. So here we are directly 
finding the solution for t matrix without searching for it 
which reduces the search from 612 matrices to 68 matrices so 
we can skip 64 matrices. This reduces the search time as 
compared to the heuristic search methods. 
 
 C.  Searching for P-Matrix  
 
After finding t matrix we have to search for the P matrix 
which satisfies the mapping constraint as explained in [11]. 
For the edge detection algorithm, the P matrix is a (2×4) 
matrix. One of the valid P matrices is given by: 

P=  










0010

0010

 

Thus one of the valid M matrix is given by               

 M= 




















0010

0010

2728

 

 

This reduces the search time, when compared to both t and P 
matrices being searched together. The search time 
comparisons are summarized in the table 12 in terms of 
complexity. 
    
D.  Mapping of Index space and Dependence vectors 
 
The mapping results for the above M matrix are given 
below. The First iteration space maps to the processor-time 
space and the dependence vectors map to Edge-delay space 
as shown in table IV. 

TABLE IV RESULTS OF MAPPING OF THE 
DEPENDENCE VECTOR SET 

 
Variable 

 
Edge Delay 

(0,0,0,1)     <O> (0,0) 2 
(0,0,1,-2)   <O> (0,0) 3 
(0,1,0,0)    <W> (-1,-1) 2 
(1,-4,0,0)   <W> (4,4) 0 
(0,1,0,-1)   <I> (-1,-1) 0 
(1,0,-1,0)   <I> (0,0) 1 
(1,-1,-1,1)   <I> (1,1) 1 
(1,-2,-1,2)   <I> (2,2) 1 

 

 

Fig. 4 Architecture obtained using the mapping  for the edge detection 
algorithm 

 



 

 

 

E.  Mapping Results  
 
 The cost function is defined as (5) which can be used as a 
filter for selecting architecture according to the target 
hardware mapping technology limitations. 

Cost = aprocessors + bcycles + cI/O ports   (4) 
Here a, b, c are the scalar coefficients which represents the 
weights for the corresponding costs to minimize the overall 
cost function. 

F.  Mapping for different image and window sizes 
 
 

TABLE V MAPPING RESULTS FOR EDGE DETECTION 

 
 a=1,b=9, 

c=1 
a=9,b=1, 
c=1 

a=1,b=1, 
c=9 

Processors 9 5 7 
Cycles 53 59 55 
IO ports 7 5 5 

 
 

 
TABLE VIA  CASE 1. MAPPING RESULTS:  INCREASING IMAGE 

SIZE WITH NO CONSTRAINT OF CONSTANT PROCESSORS 
 

 
Image size 

 

 
Window 

size 

 
Processors 

 
Cycles 

5×5 3 5 53 
6×6 3 9 55 
8×8 3 14 56 

 
 
 

TABLE VIC CASE 3. MAPPING RESULTS INCREASING 
IMAGE  SIZE WITH CONSTANT CYCLES 

 
Image size 

 
Window 

size 

 
Processors 

 
Cycles 

5×5 3 5 53 
6×6 3 9 55 
8×8 3 14 56 

 
 
 

TABLE   VID  CASE 4. CHANGE IN MAPPING RESULTS 
WITH INCREASING WINDOW SIZE AND CONSTANT 

IMAGE SIZE WITH CONSTRAINT OF CONSTANT 
PROCESSORS 

 
 
Image size 

 
Window size 

 
Processors 

 
Cycles 

5×5 3 5 53 
6×6 3 5 61 
8×8 3 6 72 

 
 
 
 
 
 
 

 
 
 
 

TABLE VIE   CASE4. CHANGING IN MAPPING RESULTS 
WITH   INCREASING IMAGE SIZE WITH THE CONSTRAINT  

OF CONSTANT PROCESSORS 
 
 
Image size 

 
Window 
size 

 
Processors 

 
Cycles 

5×5 3 5 53 
6×6 3 9 55 
8×8 3 14 56 

 
 

We consider the edge-detection algorithm for higher image 
sizes, the number of iterations increases which leads to 
increase in the number of processors or increase in the 
number of cycles.  
 
G. Performance 

If the input image considered is of 5×5 and the window size 
is 3×3 then a total number of 225 iterations are required 
when done sequentially with one processor to implement the 
algorithm. The systolic array design performs the required 
computation on the given image size in 53 cycles (Table V). 
This is verified by the architecture simulated in Modelsim 
5.8 (Mentor Graphics tool) and the memory read operations 
are reduced from 225 to 101 due to Propagation of the input 
image data between the processor. 
 

IV. MAPPING OF FULL SEARCH MOTION 
ESTIMATION ALGORITHM 

The Full Search Motion Estimation algorithm considered is 
a 6- level algorithm [4] for finding the motion vectors 
between two successive frames in a video is shown in listing 
[2]. 
 For h=0 to (Nv-1) 
For v=0 to (Nh-1) 
{{ 
Dmn (h,v)=∞ 
For m=0 to (2*p) 
{For n=0 to (2*p) 
{MAD (m,n)=0 
for i=0 to (N-1) 
{ 
for j=0 to (N-1) 
{MAD(m,n)=MAD(m,n)+x(h*N+i,v*N+j)-y(h*N+i+m-
p,v*N+j+n-p) 
}}    
If (Dmn(h,v)>MAD(m,n)) 
Dmn(h,v)=MAD(m,n) 
MV (h,v)=(m-p,n-p) 
}}}}  
Listing [3] 6-level FSBM Algorithm  

If we let (a b c d e f) to be the required t Matrix, then the 
system of constraints obtained from the causality constraints 
for the  dependence vectors are listed in the table VII. The 
propagation and computation time for Dmin is considered as 



 

 

5 and that for MAD data to be 4. The propagation time for c 
data and s data are assumed to be 1 as in the table VII. 

 
 
 

TABLE VII   INEQUALITIES FOR FINDING S 
MATRIX 

d >5 d-f>1 
c-4d>5 c-2d-e+2f>1 
f>4 d+2e-f>1 
e-3f>4 d-f>1 
c-e>4 c-2d+e-2f>1 
b-3e-3f>4 c-d-e+f>1 
d>1 c+d-e+f>1 
d-4e>1 c-4d-e+4f>1 

 
 
 
 

TABLE VIII   DEPENDENCE VECTORS  FOR 
FSMB ALGORITHM 

 
Variable 

 
Dependence 

 
Type 
(C  
or P) 

 
D-
elements 
=Dvt 

Dmin 0 0 0  1 0 0 C 0 
Dmin 0 0 1 -4 0 0 C 5 

MAD 0 0 0 0 0  1 C 0 
MAD 0 0 0  0 1-3 C 0 
MAD 0 1 0 0 -3-3 C 0 
MAD 1-1 0 0 -3 -3 C 4 
X(0,0) 0 0 0 1  0 0 P 0 
X(0,0) 0 0 0 1 -4 0 P 0 
X(1,2) 0 0 1 0 1 0 P 2 
X(2,1) 01 0 0 -3 -3 P 0 
Y(0,0) 0 0 0 1 0 -1 P 0 
Y(0,0) 00 1 -2 -1 2 P 2 
Y(0,1) 0 0 0 1 2 -1 P 0 
Y(0,1) 0 0 0 1 0 -1 P 0 
Y(0,1) 00 1 -3 -1 3 P 2 
Y(1,0) 0 0 0 1 0 -1 P 0 
Y(1,0) 00 1 -2 -1 2 P 2 
Y(2,3) 0 0 0 1 0 -1 P 0 
Y(2,3) 00 1 -2 1 -2 P 2 
Y(2,3) 0 0 0 1 0 -1 P 0 
Y(2,4) 00 1 -1 -1 1 P 2 
Y(1,0) 0 0 0 1 0 -1 P 0 

 
 
 
One of the solutions for these in-equalities is given by t = (a 
b c d e f) = (2, 0, 2, 0, 0, and 0) and the P 
matrix can be searched to get the M matrix which maps onto 
16 processors and 196 cycles, which is given below. 
 
 
  

 M= 

















010000

100000

000202

 

 

 

 

A   Architecture 

 

Fig. 6  Propagation of MAD data  

 

Fig. 7 Propagation   of c frame   data  

 
 
Fig. 8  Propagation of s frame data with 2 Delays (not labeled in the 
diagram)  

The mapping results for different cost functions are given in 
table IX as per expression (4). 

TABLE IX MAPPING RESULTS FOR FSBM ALGORITHM 
 

 a=1,b=9,c=1 a=9,b=1,c=1 a=1,b=1,c=9 
Processors 25 16 16 
Cycles 124 196 177 
IO ports 7 9 4 

 
B.  Hardware Implementation 

The architecture is implemented in FPGA- virtex-5 
using verilog HDL. The Device utilization for the edge 
detection algorithm and the motion estimation algorithm is  



 

 

 

given in table X. The synthesis results of synthesis tool 
Xilinx ISE are given in the table XB and XC. 

 

TABLE XA COMPARISON BETWEEN THE DEVICE 
UTILIZATIONS FOR EDGE-DETECTION( 5X5 IMAGE, 3X3 

WINDOW SIZE AND FSMB ALGORITHMS: N=4, P=2 
 

Algorithm 
 

LUT * 
utilization 

 

 
FF util 
ization 

 
IOB 

Edge-
detection 

131 71 55(24%) 

FSBM 172 88 48(21%) 
 

 

TABLE XB DEVICE UTILIZATION OF THE CONTROL UNIT 
FOR THE MAPPED ALGORITHMS 

 
Algorithm 

 
LUT 

utilization 

 
FF 

utilization 

 
IOB 

Edge-
detection 

96 60 94(42%) 

FSBM 132 54 66(29%) 
 
 
 
 

TABLE XC DEVICE UTILIZATION OF THE PROCESSOR 
ARRAY FOR THE MAPPED ALGORITHMS 

 
 

Algorithm 
 

LUT 
utilization 

 
FF 

utilization 

 
IOB 

Edge-
detection 

153 98 41(18%) 

FSBM 205 110 62(28%) 
 

 

Total Device utilization of the mapped Nested loop 
algorithms targeted to FPGA virtex5 family. 

* LUT=Look Up Table, **FF=Flip Flop, ***IOB=Input 
Output Blocks. 
 
 
C.  Complexity 

   The complexity is calculated and presented in table XI, 
which shows the speed up of the search process to arrive at 
the Mapping matrix M. 

 

 

 

 

 

 

 

TABLE XI COMPLEXITY CALCULATIONS FOR VARYING 
VALUES OF N 

 
n

 
Npn-1-number 

of possible 
values of 
elements 

of t, P 

 
Other  
value

s 

 
Total 

possible 
# 

 
Number 

of 
Possibl

e## 
 

 
Our 

Metho
d 

2 2p1 =2; 
2p2 =1 

0,1,-
1 

6 23 ;66 0,1,-
1,ui,uj 
= 5, 

possibl
e 

values; 
56; ** 
=54 

3 3p2=3;3p3 =1 0,1,-
1 

7 n3 
;33 

element
s 

=79 

0,1,-
1,ui,uj,
uk=6 

possibl
e 

values; 
69;66 

4 4p3=4,4p2=6,4
p1 =4 

0,-
1,1 

17 n3=12 
; 

17 12 

712 
values; 

; ** 
78 

6 6p5=6,6p2=15,6
p3=15,6p2=90 

0,-
1,1 

App= 
100 

n3=18
; 

10018 

918  ;  
** 
912 

# values; ##matrices 

**=3 rows in M matrix 
** further reduced to   

n ‐ n level nested loop algorithm  
V. CONCLUSION AND FUTURE WORK 

The formulation and extraction of dependence vectors is an 
important step leading to efficient parallelization by 
mapping.  The extraction of dependencies, for both 
propagation and computational variables between different 
intermediate iterations of the algorithm are extracted from 
the algorithm. This has been tested on two benchmarks on a 
suitable iteration space. The scheduling vector t is searched 
by using the dependency constraint and the causality 
constraint. The execution time for search using our method 
is far below the heuristic search methods adopted. This has 
reduced the overall search time to arrive at suitable mapping 
matrix M. The mapping results are verified for edge-
detection and FSBM algorithms by simulating the 
architecture using Mentor Graphics Tool.  Modelsim 5.8 and 
the synthesis results for targeting the design on to a virtex- 5 
FPGA is presented.  

ACKNOWLEDGMENT 

  The Author thanks the management of Amrita 
School of Engineering, Amrita Vishwa Vidyapeetham, 
Coimbatore, Tamil Nadu, India, for the facilities provided to 
carry out this work in the VLSI Lab. 

 



 

 

 

REFERENCES 

[1] Dongming Peng and Lu M, “On Exploring  Inter-Iteration Parallelism 
Within Rate-Balanced Multirate Multidimensional DSP Algorithms”, 
IEEE Transaction On Very Large Scale Integration (VLSI) Systems, 
Vol. 13, No. 1,2005,  pp. 106-125. 

[2]   Keshab Parhi K, “VLSI Signal      Processing”, John Wiley, 1991. 
[3]  Khalili A.J.AI, “Synthesis of Systolic Arrays from Single Assignment 

Algorithm”, IEEE Transactions on Signal Processing, 1995. 
[4]  Kung S.Y, “VLSI array processors”, IEEE  ASSP Magazine, Vol.2, 

No.3, 1985, pp. 4-22. 
[5] Komarek T. and Pirsch P, “Array architectures for block matching 

algorithms”, IEEE Trans. Circuit Systems, vol. 36, 1989, pp. 1301–
1308. 

[6] Lee P. and Kedem Z. M. “Synthesizing linear array algorithms from 
nested for loop algorithms”, IEEE Transactions in Computers, vol. 37, 
1998,  pp. 1578–1598. 

 [7] Nelson Luiz Passos and Edwin Hsing-Mean Sha, “Achieving Full  
Parallelism Using Multidimensional Retiming”, IEEE Transactions on 
Parallel and Distributed Systems, Vol. 7, No. 11, 1996,  pp. 1150-1163. 

 [8] Naresh Maheshwari and Sachin Sapatnekar, “Efficient Retiming of 
Large Circuits”, IEEE Transaction On Very Large Scale Integration 
(VLSI) Systems, Vol. 6, No. 1, 1998, pp. 74-83. 

 [9] Patrice Quinton. A, Djamegni C.T, Sanjay  Rajopadhye, Tayou Risset, 
Tchuente M, “A Reindexing based Approach towards mapping affine  
schedules  onto parallel embedded systems”, Journal of parallel and 
distributed computing, 2009, pp. 1‐11. 

[10] Prasanna Kumar V.K.and chen Tsai Yu, “On synthesizing optimal 
family of linear systolic arrays for matrix multiplication”, IEEE 
Transactions on Computers, Vol. 40, No. 6, 1991, pp. 770-774. 

[11]  Surin Kittitornkun and Hen Hu Y,  “Mapping Deep Nested Do-Loop 
DSP Algorithms to Large Scale FPGA Array Structures”, IEEE 
Transactions on Very Large Scale Integration (VLSI) Systems,  Vol. 
11, No. 2, 2003, pp. 208-217. 

[12] Vos L. D. and Stegherr M, “Parameterizable VLSI architectures for the 
full-search block-matching algorithm”, IEEE Transactions Circuit 
Systems, vol.36, 1989,  pp. 1309–1316. 

[13] Yeo H.and Hu Y. H, “A novel modular systolic array architecture for 
full-search block matching motion estimation”, IEEE Transactions on 
Circuit Systems Video Technology, vol. 5, 1995, pp. 407–416. 

 
 

 

 

 

 

 

 

 

 




