

Abstract—Service Oriented Architecture has offered an

opportunity to quickly develop new business applications from
the existing services developed independently. Given that many
services provide the same functionality and differ in quality of
service (QoS), e.g., cost and execution time, a critical challenge
in service composition is to dynamically identify the appropriate
services to meet the user’s QoS requirements and preferences. In
order to tackle this challenge, we have proposed an architecture
for QoS-based service composition where negotiation is
incorporated to help service consumers exchange offers and
counter offers with providers and to enable dynamic agreements
on QoS attributes. A proof-of-concept prototype ServNegotiator
has been implemented to demonstrate the effectiveness of the
proposed negotiation approach.

Keywords: QoS, Service Oriented Architecture, Service
Composition, Negotiation

I. INTRODUCTION

The software industries have witnessed an increasing use of
Service-Oriented Architecture (SOA) recently [1]. In an SOA
environment, software components are packaged as
independent services and can be accessed without the
knowledge of the implementation platform. A
service-oriented architecture does not depend on any specific
technology and can be implemented using many
interoperability standards, e.g., the Web Services Standard
SOAP, WSDL, and UDDI [2].

As an emerging framework for distributed applications,
Service-Oriented Architecture (SOA) allows integration of
component services developed independently into complex
business processes and applications, which are referred to as
composite services. With the growing number of services
offered by different service providers, many services offer the
same functionality and differ in quality of service (QoS), such
as price, response time, reliability, and reputation. Given that
different service consumers may have different QoS
requirements and preferences, it has become an important
challenge to ensure the QoS requirements in forming new
value-added applications through service composition.

The existing works in service composition mainly focus on
the methods for selecting services with regards to the QoS
requirements [3, 4]. Given a service composition request that
includes a set of tasks and a list of functionally equivalent
service candidates for each task, the service selection methods

Jing Zhao is with Dept. Information Systems, City University of Hong

Kong, Hong Kong, China, zhaojingwhut@126.com.
Sherry X. Sun is with Dept. Information Systems, City University of

Hong Kong, Hong Kong, China, sherry.sun@cityu.edu.hk.

attempt to find one service candidate for each task to optimize
the QoS of the composite service. Essentially, the selection is
made based on the QoS properties of each service pre-defined
by service providers. It is difficult for a service provider to
offer the service with the QoS properties customized to
different requests from consumers. In order to tackle this
challenge, negotiation can be added to service composition to
help service consumers and providers to exchange offers and
counter offers and to enable dynamic agreements on some
QoS criteria at runtime, thus providing a flexible way for
service composition.

The purpose of this paper is to utilize negotiation to create
composite services that meet the QoS requirements specified
by a service consumer. The remainder of this paper is
organized as follows. Section 2 discusses the basic concepts
for service composition. In Section 3, we propose the
architecture of a negotiation based system for service
composition (ServNegotiator). In Section 4, we report a
proof-of-concept prototype to demonstrate our negotiation
based approach. Finally in Section 5, we conclude this paper
and point out the future work.

II. BASIC CONCEPTS FOR SERVICE COMPOSITION

In this section, we first define relevant concepts and then
formulate the problem of service composition.

A. Composition Model

A composite service requested by a consumer includes a set
of tasks {S1, …, Sn}. Each task corresponds to a service class
which is a collection of functionally equivalent service
candidates differing in QoS. The task needs to be
accomplished by one candidate from the service class. Tasks
can be executed sequentially, in parallel, conditionally, or in
loops [5].

B. QoS Model

A service candidate si which belongs to the class Si has m
QoS attributes [qi,1,…qi,k, ...,qi,m], where qi,k is the k-th QoS
attribute of service candidate si. The value for the k-th QoS
attribute for a composite service, i.e., qcs,k, can be determined
by aggregating the corresponding attribute of each component
service through aggregation functions such as summation,
product, or maximum [6]. For each QoS attribute k (k=1, ...,
m), the consumer has a requirement specified as a global
constraint ck for the aggregated value for the composite
service. For negative attributes (the lower the better, such as
price and response time), qcs,k<=ck should be satisfied while
qcs,k>=ck should be satisfied for positive attributes (the higher
the better, such as availability).

ServNegotiator: A Negotiation Based System for
Service Composition

Jing Zhao, Sherry X. Sun

C. Utility Function

In order to evaluate a given service, a utility function is
used to map all the QoS attributes into a single value.
Following the existing works [4], a Simple Additive
Weighting (SAW) [7] technique is applied to define the utility
function. There are two steps in applying SAW.

First, we need to normalize the values of the QoS attributes
to the same scale in order to avoid inaccurate evaluation due
to different measurement metrics used for different QoS
attributes. In the normalization phase, positive and negative
attributes are scaled in different ways as follows,

max
, ,

max min
, ,

()k i
i k i k

i k i k

q q
V s

q q

−
=

−
, for negative attributes. (1)

min
, ,

max min
, ,

()k i
i k i k

i k i k

q q
V s

q q

−
=

−
, for positive attributes. (2)

where max
,i kq and min

,i kq are the maximum and minimum values

of the k-th attribute for service class Si and Vk(si) is the scaling
value of the k-th attribute for the selected candidate si, and si

∈Si.
Second, a weight is assigned to each QoS attribute and the

utility of service candidate si is the weighted summation given
by

1

() () *k i k

m

k

U s V s w
=

=∑ . (3)

where wk∈[0,1], denoting the weight for attribute k and
satisfying that

1

1k

m

k

w
=

=∑ . (4)

D. Problem Statement

 For a composite service CS with n component services
{ S1, …, Sn} and with m global QoS constraints {c1, …, cm},
the goal of negotiation based service composition is to apply
negotiation to obtain a composite service that meets the global
constraints and achieves the optimal utility for the service
consumer.

III. ARCHITECTURE DESIGN OF NEGOTIATION BASED

SERVICE COMPOSITION SYSTEM

In this section, we propose an architecture for the
negotiation based service composition system, i.e.,
ServNegotiator. Figure 1 is the architecture of our system,
which includes Composite Service Specification Editor,
Composite Service Specification Parser, Service Selection
Manager, Negotiation Agent, and Service Negotiation
Manager.

Composite Service Specification Editor is a GUI editor
from which the service consumer can define a composite
service consisting of several component services. After the
composite service is defined by the service consumer, it will
be transformed into XML documents and sent to the
Composite Service Specification Parser, an XML parser
capable of analyzing the XML document describing the
composite service. When the analysis is done, a number of
component services and the executing relations of these
services are derived. The parsing results of the composite
service and the global QoS constraints specified by the

service consumer are then sent to the Service Selection
Manager. The Service Selection Manager first searches for
service providers for each component service from the
Component Service Repository, a repository where service
providers register their services. Then it chooses a service
provider for each component service for the system to
negotiate with.

Service Negotiation Manager manages the negotiation

process to satisfy the global constraints for the composite
service. The process of negotiation based approach is
depicted in Figure 2.

First, the negotiation ranges for each service class are set

and this function is accomplished by the Negotiation Range
Determining Module. All the QoS attributes of an offer sent to
a service provider should fall into the range between the value
most acceptable and the value least acceptable to the service
consumer. The negotiation ranges are set for each service
class and for each QoS attribute so that a negotiation agent
can negotiate with the provider within those ranges. The most
acceptable values are considered to be the best QoS values
available on the service market. The least acceptable values
for a negotiation agent are the reservation values. Since the
negotiation between each negotiation agent and each provider
is taken independently and concurrently, the negotiation
ranges (particularly the reservation value for each QoS
attribute) for each service class should be identified based on
the principle that the offers falling into the ranges from each
service class together can guarantee the global constraint for
the composite service. Within the scope of this paper, we
focus on the sequential composition structure. In such a
sequential structure, the global constraints can be
decomposed to help determine the negotiation ranges [8, 9].

Once Negotiation Range Determining Module determines

Figure 1. The architecture of the ServNegotiator

Figure 2. The process of negotiation based service composition

the negotiation ranges, each negotiation agent negotiates with
the corresponding service provider within this range. A
negotiation process between a negotiation agent and a
provider consists of an alternate succession of offers and
counter offers. This continues until an offer is accepted or the
negotiation is terminated by the negotiation agent or the
provider (because the time deadline expires). The negotiation
algorithm for the negotiation agent to negotiate with a
provider can be identified as follows,

Step 0: Set the negotiation round counter r←0.
Step 1: Evaluate the service provider’s offer using a utility

function.
Step 2: Stop Criteria. If the stop criteria are true, the

negotiation agent stops this negotiation and notifies the
service provider; otherwise, go to step 3.

Step 3: Search for a new offer. If the utility of the generated
offer is larger than that of the received one, then go to step 4;
otherwise, go to step 2.

Step 4: The negotiation agent sends the new generated offer
as a counter offer to the provider. r←r+1. Go to step 1.

The stop criteria in step 2 include the following situations:
(1) The negotiation agent accepts the service provider’s offer
if the negotiation agent is unable to find any new offer that
yields a better utility; or (2) The negotiation agent withdraws
from the negotiation if service provider’s offers are infeasible
for a certain number of successive negotiation rounds
predefined. In order to prepare a counter offer in step 3, a
negotiation agent uses a concession or trade-off based
approach [10, 11] to generate offers.

When all the negotiation processes between each
negotiation agent and each provider are completed,
Negotiation Verifying Module verifies whether the current
negotiation outcome satisfies the global constraints for the
composite service. If the negotiations for all service classes
are successful, a feasible solution is generated. If the
negotiations for some service classes are successful while for
others are unsuccessful, Negotiation Coordinate Module is
invoked to adjust the negotiation ranges for service classes
where negotiation fails. For service classes where
negotiations are successful, if for a QoS attribute, the agreed
value is better than the reservation value, then the distance
between the agreed value and the reservation value is
considered as the saving which can be used to relax the
reservation values in service classes where acceptable offers
have not been identified. Once the negotiation ranges for
those service classes are readjusted, the negotiation agents
will continue negotiating with the corresponding service
providers. The relaxation of reservation values makes it more
likely to identify acceptable offers. The process of
negotiation, verifying, and adjustment are repeated until a
feasible solution is found or a maximum iteration round is
reached.

The adjustment can help relax the reservation values for
service classes where agreements are not achieved. Through
the adjustment, the negotiation agents can collaborate to
obtain a composite service.

Negotiation Knowledge Base stores the negotiation
strategies, such as time dependent tactics and protocols for
each negotiation agent to negotiate with a service provider.
The negotiation records are stored in the Negotiation

Information Log for the Negotiation Learning Module to
learn from the negotiation experiences to enhance the
outcome.

IV. PROOF-OF-CONCEPT IMPLEMENTATION

In this section, we report a proof-of-concept prototype to
demonstrate the effectiveness of negotiation in the service
composition. The Composite Service Specification Editor,
Composite Service Specification Parser, and the service
discovery function in the Service Selection Manager in Fig. 1
are implemented following [12, 13]. Each module in the
Service Negotiation Manager and the negotiation agents
along with the service providers are implemented as
autonomous agents using the JADE Agent Framework (JADE)
[14]. Those autonomous agents are packaged as Web services
using Java Web-services Development Package (JWSDP)
[15], which supports key Web Services standards, such as
SOAP, WSDL, and UDDI. The Agent Communication
Language (ACL) is wrapped by SOAP in the prototype for
agents’ communication. The communications between those
modules are implemented using SOAP with Attachments API
for Java (SAAJ).

In such context, SerNegotiator assigns two negotiation
agents, the transcoding negotiation agent and the merging
negotiation agent, to negotiate with the transcoding service
provider and the merging service provider, respectively.
Figure 3 shows the offers generated in the negotiation process
for the transcoding service. From this figure, we can see that
both sides concedes gradually and the transcoding provider
accepts the offer proposed by the transcoding negotiation
agent and the agreed offer is (3.6, 125).

Figure 4 shows the negotiation for the merging service.

With the initial negotiating range (2.0-3.0, 80-170), the
merging negotiation agent cannot reach an agreement with the
merging provider because the offers proposed by the provider
are outside the feasible negotiation ranges of the negotiation
agent. Since the negotiation process is not yet successful for
the merging service, the reservation values for the merging
service need to be adjusted. The agreed QoS for the
transcoding service is (3.6, 125) and there is still a distance
between the agreed QoS and the reservation values (3.8, 140).
The distance can be considered as a saving and used to relax
the reservation values from (3.0, 170) to (3.2, 185) for the
merging service. Given the adjusted reservation values, the

Figure 3. The negotiation for the transcoding service

merging negotiation agent accepts the last offer (3.1, 181)
sent by the provider.

From this experiment, we can see that the proposed
negotiation approach can facilitate the negotiation agents to
reach agreements on QoS with providers dynamically to
reinforce the flexibility of the service composition.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a negotiation based
architecture for service composition which can help service
consumers and service providers reach agreement on QoS
dynamically through exchanging offers and counter offers. A
proof-of-concept prototype has been implemented based on
the proposed architecture to demonstrate our negotiation
based approach. The negotiation mechanism in this paper not
only enhances the flexibility of the dynamic service
composition but also makes the constraints for the composite
service easier to be satisfied through adding collaboration
among different negotiation processes between
ServNegotiator and different service providers offering
different component service. We are in the process of
extending our work in the following directions. First, we plan
to utilize the trade-off strategy to enhance the performance of
our negotiation approach. Second, we will extend our method
to support more complex composition model including
parallel structure, conditional structure, and loop structure
other than the sequential structure.

REFERENCES
[1] M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,

Service-oriented computing: state of the art and research challenges,
IEEE Computer, vol. 40, pp. 38–45, 2007.

[2] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S.
Weerawarana, Unraveling the Web Services web: An introduction to
SOAP, WSDL, and UDDI, IEEE Internet Computing, vol. 6, pp. 89-93,
2002.

[3] D. Ardagna, B. Pernici, Adaptive service composition in flexible
processes, IEEE Transactions on Software Engineering, vol. 33, pp.
369–384, 2007.

[4] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnamam, and H. Chang,
QoS-aware middleware for web services composition, IEEE
Transactions on Software Transactions, vol. 30, pp. 311–327, 2004.

[5] S.X. Sun, J.L. Zhao, J.F. Nunamaker, O.R. Sheng, Formulating the
Data Flow Perspective for Business Process Management, Information
Systems Research, vol. 17, pp. 374-391, 2006.

[6] J. Cardoso, J. Miller, A. Sheth, J. Arnold, Quality of service for
workflows and web service processes, Journal of Web Semantics, vol.
1, pp. 281–308, 2004.

[7] C.L. Hwang, and K. Yoon, Multiple Attributes Decision Making,
Lecture Notes in Economics and Mathematical Systems,
Springer-Verlag, 1981.

[8] M. Alrifai, T. Risse, P. Dolog, W. Nejdl, A scalable approach for
QoS-based web service selection, Lecture Notes in Computer Science,
vol. 5472, pp. 190–199, 2009.

[9] S.X. Sun, J. Zhao, H. Wang, A Negotiation Based Approach for
Service Composition, In Proceedings of 5th Design Science Research
in Information Systems and Technology (DERIST), Switzerland, 2010,
In Lecture Notes in Computer Science, vol. 6105, pp. 381-393, 2010.

[10] P. Faratin, C. Sierra, and N.R. Jennings, Negotiation decision
functions for autonomous agents, Journal of Robotics and
Autonomous Systems, vol. 24, pp. 159–182, 1998.

[11] P. Faratin, C. Sierra, and N.R. Jennings, Using similarity criteria to
make issue trade-offs in automated negotiations, Artificial Intelligence,
vol. 142, pp. 205-237, 2002.

[12] L. Zeng, B. Benatallah, A.H.H. Ngu, and P. Nguyen, “AgFlow:
Agent-Based Cross-Enterprise Workflow Management System
(Demonstration Paper),” Proc. 27th Int’l Conf. Very Large Data Bases,
2001.

[13] R. Aggarwal, K. Verma, J. Miller, W. Milnor, Constraint Driven Web
Service Composition in METEOR-S, in Proceedings of the 2004 IEEE
International Conference on Services Computing (SCC’04), 23 – 30.

[14] JADE, Java Agent DEvelopment Framework, http://jade.tilab.com/,
2010.

[15] JWSDP, Java Web-services Development Package,
http://java.sun.com/developer/technicalArticles/WebServices/WSPac
k/, 2010.

Figure 4. The negotiation for the merging service

