
Uenew : A Cross-Browsing Communication
System Based on Peer-to-Peer Networks

Ryohei Banno, Haruhiko Sato, Satoshi Oyama, Masahito Kurihara

Abstract—In this paper, we propose a communication system
that enables users to share experiences of web browsing in
real-time. This system groups web users of each web page
dynamically and enables them to share comments in each group.
In general, high performance servers are required to manage a
huge number of groups. In contrast, the proposed system does
not need any server to realize large-scale communication system
because it uses the Peer-to-Peer technologies. To realize the
proposed system, we use Scribe, which is one of the algorithms
for application layer multicast. We extended Scribe so that it
could treat archives of multicast group. We implemented the
extended algorithm as APIs in Java, and evaluated them by
some emulation experiments.

Index Terms—peer-to-peer network, overlay network, struc-
tured overlay, application leyer multicast, distributed hash table

I. I NTRODUCTION

In the real world, we can converse and share experiences
with those who are at the same scene by chance. In the web-
world, however web users who are visiting the same web
page cannot communicate with each other freely. Some web
pages have communication systems such as BBS (Bulletin
board system), but there are many web pages which have no
such systems.

In this paper, we propose a communication system that
enables web users to share experiences of web browsing
with those who are visiting the same web page. The name of
the system is ”Uenew”, which originates from the wordue-
newsarof Ainu language and meansenjoy speaking together.
Uenew imports a concept ofcoming across to somebodylike
the real world into the web world.

Uenew groups web users of each web page dynamically
and enables them to share comments. For realizing this sys-
tem, there are two problems. First, in general, for managing
a huge number of groups of web pages, we require high
performance servers which need high cost to prepare and
maintain. Second, too much access to the server can lead
the crash of whole system because the server is the single
point of failure. In fact, many existing web services have
such problems.

To avoid those problems, we designed Uenew to use peer-
to-peer technologies, instead of depending on the server.
Peer-to-peer network has no single point of failure, and need
no cost to prepare servers.

There are three nice points in Uenew.

1) Users can communicate in real-time in each group.
Uenew enables users to see what the people at the

Manuscript received December 28, 2010; revised February 7, 2011.
The authors are with Graduate School of Information Science

and Technology, Hokkaido University, 060-6814, Japan. (e-mail:
r banno@complex.eng.hokudai.ac.jp, haru@complex.eng.hokudai.ac.jp,
oyama@ist.hokudai.ac.jp, kurihara@ist.hokudai.ac.jp).

same page are buzzing, by push-based information
distribution.

2) Comments are stored in each group.
Users can share comments on a page which has sparse
visitors. That is, users not at the same time, but at the
same page, can communicate with each other.

3) Uenew is constructed on Peer-to-Peer network.
There are no specific servers.

Uenew uses the middleware Overlay Weaver [1] to con-
struct peer-to-peer network. However we can not realize the
second point above, archiving comments, by using original
Overlay Weaver. So we extended the Overlay Weaver and
implemented as APIs, and evaluated the APIs by some
emulation experiments.

II. EXISTING SERVICES

There are some services which make much of real-time
communication like Uenew. A typical service of them is
Twitter [2]. However Twitter differs from Uenew at the point
of that Twitter provides users with communities based on
relations between human and human. Uenew can create new
human relations, because it provides users with communities
based on relations between human and web pages.

The other feature of Uenew is that users can share the
annotated data on web pages. There are some services
which have this feature, such as social bookmarking services,
Google SideWiki [3] and so on. These services are based on
client-server architecture, and they have the problems above-
mentioned in section I.

In addition, these services realize the sharing of data with
pull-based information distribution. So they can not provides
real-time communication like Uenew.

III. E LEMENTAL TECHNOLOGY

A. Distributed Hash Table

Distributed hash table (DHT) [4], [5], is a class of peer-
to-peer system that constructs a hashtable with plural nodes.

In a DHT, nodes and data are assigned with unique ID.
Each node covers a range based on the order of nodes and
data in the numerical ID space.

Pastry [6] is a typical DHT using plaxton’s algorithm
[7]. Each node and key is assigned with 128-bit ID, and
the ID is thought as a sequence of digits with base2b. In
lookup procedure, the length of common prefix between the
sequences of target ID and local node’s ID is extended one
digit at a time. These mechanism enables Pastry to provide
short latency and small routing table.



Rendezvous Point

Forwarder (non-participant)

Forwarder (participant)

Fig. 1. Multicast tree of Scribe

Fig. 2. Components of runtime in Overlay Weaver(Figure 2 from Shudo
et al. [1])

B. Application Layer Multicast

Application layer multicast (ALM) is a technology to
realize the multicast communication on application layer.

Scribe [8] is one of an algorithms of ALM and uses the
Pastry network. On Pastry network, there exists a specific
node for each ID. So, the routes from some nodes to an ID
constitute a tree structure like Figure 1. The allows of solid
line in this figure indicate the routes.

In Scribe, each multicast group has an unique ID and
creates its tree. The root node of the tree is called rendezvous
point, and the other nodes of the tree are called forwarder.

A node which wants to join a group does lookup with an
ID of the group, and is connected to a tree related to the
ID. A multicast message is sent to the rendezvous point and
transferred toward the children. In Figure 1, the allows of
dotted line are the multicast routes.

Because Scribe uses the relationship among nodes on
Pastry network, there are two types of forwarders, that is,
some forwarders are participating in the group while the
others are not. Non-participant nodes only transfer the data
from parent node to children.

C. Overlay Weaver

Overlay Weaver [1] is a middleware to construct overlay
network. It is based on key-based routing [9] and imple-
mented in Java. Overlay Weaver supports various DHT
algorithms such as Chord [4], Kademlia [5], and Pastry [6].

Overlay Weaver is composed of three layers, namely rout-
ing layer at the bottom, higher-level services at the middle,
and applications at the top. In higher-level services, DHT
and Mcast are implemented. Mcast is an implementation of
ALM based on Scribe.

Sender of a multicast message

Fig. 3. Difference of multicast routes between Mcast and Scribe

New node

（requester）

Fig. 4. The way to acquire archives in SAM

IV. A CQUIRING ARCHIVES IN SCRIBE

Uenew constructs multicast tree for each URL of web
page. Because the original article of Scribe [8] did not refer
to the way to treat archives of each group, there is no
implementation of Scribe which enables nodes to acquire
archives.

Therefore, we extended the Overlay Weaver so that it
can provide the function of acquiring archives. We propose
two method, Simple Archivable Mcast (SAM) and Advanced
Archivable Mcast (AAM).

A. Proposed methods

1) Original ALM of Overlay Weaver:Mcast, which is
implemented as higher-level service of Overlay Weaver,
provides the function of ALM based on Scribe.

The multicast routes of Mcast are differ from those shown
in the original article of Scribe. In Figure 3, the allows of
solid line are of Mcast while those of dotted line are of
Scribe. In Mcast, a message is transferred not one-way from
a rendezvous point but bi-directional from a source node.

2) Simple Archivable Mcast:The most simple way to ex-
tend the Mcast so that it can manage archives is to multicast
a query of acquiring archives. Nodes which participated in
a group must store archives of the group, and a node which
want to participate in the group gets archives from existing
patricipant. We call this method Simple Archivable Mcast
(SAM).

A query of acquiring archives is transferred as the allows
of solid line in Figure 4. The allows of dotted line indicate



New node

（requester）

Fig. 5. The way to acquire archives in AAM

Sender of a multicast message

Fig. 6. The way to multicast in AAM

responses to the query. A node which requested archives
acquires them from a node which responded first.

The implementation of SAM is relatively easy, but there
is a problem of that archives are lost when all participant
nodes of the group left.

3) Advanced Archivable Mcast:To avoid the problem of
SAM, archives of each group must be stored in somewhere.
We propose a new method called Advanced Archivable
Mcast (AAM), which is a hybrid of DHT and ALM.

To accumulate/acquire archives, AAM uses DHT network
which is constructed as a base of Scribe. Archives of each
group is accumulated in the rendezvous point.

The original Overlay Weaver does not suppose that Mcast
is used together with DHT. So we constructed a new higher-
level service which integrated the functions of DHT and
Mcast. Typical procedures of AAM are following:

• Participation in a group

– Do normal procedure of participation of Mcast．
– Get archives from rendezvous point by the mecha-

nism of DHT.

• Multicast

– Put archive to rendezvous point.
– Rendezvous point transfers the data toward chil-

dren．
A query of acquiring archives is transferred to rendezvous

point along the allows of solid line in Figure 5, and ren-
dezvous point sends archives to the requester (allows of
dotted line in the figure). In AAM, archives of a group are
available when there is no participant of the group.

Figure 6 indicates the routes of delivering a multicast
message in AAM. These resembles to those of Scribe(Figure
3).

start node.

join overlay.

participate in a group.

send/receive 

multicast message.
watch archive.

remove archive.

Fig. 7. Execution of AAM shell

Higher-level services

Applications

Routing layer

SAM

AAM

Uenew

SAM shell

AAM shell

Mcast

DHT

Mcast shell

DHT shell

Fig. 8. Additionally implemented modules to Overlay Weaver

B. Implementation as APIs

We implemented SAM and AAM in higher-level services
layer of Overlay Weaver. The APIs of the implementation
is not specific for Uenew and useful for any system which
requires the function of acquiring archives.

In addition, we implemented sample programs called SAM
shell and AAM shell in application layer of Overlay Weaver.

These command-line shell enable users to create ALM
network and operate nodes easily. Figure 8 shows all modules
we implemented to Overlay Weaver.

V. EMULATION EXPERIMENTS

We experimented proposed methods by using an emulator
attached to Overlay Weaver. It is possible to run a lot of nodes
operated by SAM shell or AAM shell on one machine with
the emulator.

In all experiments, we used UDP as transport protocol. We
tried five times in each experiment and took the average of
them except for the best one and the worst one.

A. Decision of algorithm and style of routing

Overlay Weaver provides some DHT algorithms and two
styles of routing. Users of Overlay Weaver can choose one
algorithm and one style of routing, and the choice affects the
traffic amount on overlay network.



So we experimented about the traffic to decide algorithm
and style at first. As a result, it is found that network has the
least amount of traffic when we choose Tapestry algorithm
and Recursive routing style. We used this choice in following
experiments.

B. comparison of the number of messages

To compare AAM with SAM and Mcast, we experimented
about the number of transferred messages by using following
emulation scenario.

1) Run 1000 nodes.
2) All nodes join overlay network at 10 msec-intervals.
3) All nodes participate in a group chosen from ten groups

randomly at 20 msec-intervals.
4) All nodes multicast a message to the group in which

it participated at 20 msec-intervals.
5) All nodes leave from the group at 20 msec-intervals.
6) All nodes participate in a group chosen from ten groups

randomly at 20 msec-intervals.

0

2

4

6

8

10

0 20 40 60 80

Time (second)

M
e
s
s
a
g
e
s
 /

 s
e
c
o
n
d
 /

 n
o
d
e

Mcast

SAM

AAM

Fig. 9. Comparison of the number of messages among Mcast，SAM and
AAM

In Figure 9, the horizontal axis indicates time. And the
vertical axis shows the number of messages per node per
second. The time window of the number of messages is
2000 msec. There is little difference among Mcast, SAM
and AAM during joining overlay (from 0 sec to 10 sec) and
leaving groups (from 50 sec to 70 sec). During participation
in groups (from 10 sec to 30 sec, and from 70 sec to 90
sec) and multicasting (from 30 sec to 50 sec), There is a
clear difference. Mcast is the least, and AAM is somewhat
larger than Mcast. SAM is greatly larger than the other two
methods.

TABLE I
COMPARISON OFMCAST, SAM AND AAM

Mcast SAM AAM
Acquiring archives can’t depends can

efficiency of participating good bad moderate
efficiency of multicasting good good moderate

In Uenew, we can expect that the frequency of participat-
ing/leaving groups will be very high, because it will occur
every time users move from page to page. So it is a big
advantege for Uenew that AAM is more efficient than SAM
in participating in groups.

Table I indicates the relative merit of the three methods.
In SAM, nodes can acquire archives of a group only when

there is some participant nodes in the group. AAM provides
moderate efficiency of traffic and the function of acquiring
archives which is available at anytime.

C. Evaluation about churn tolerance

In Uenew, the nodes are personal computers of web
users. Because it is difficult to predict the behavior of
users, we must consider the possibility of that nodes dis-
appear unexpectedly. The frequent occurrence of appear-
ance/disappearance of nodes is called churn.

AAM uses DHT to accumulate/acquire archives, and churn
tolerance of DHT has already studied [10]. Therefore we will
explain an experiment about churn tolerance of multicasting
in AAM.

In Scribe [8], each node which has children sends a
small message to children periodically. Nodes can know
whether parent node is still alive by the small message. This
mechanism realizes high tolerance of churn in Scribe.

Similar mechanism is implemented in Overlay Weaver,
which is called GroupRefresher. Each node participating in
a group sends a participating query periodically, so the tree
of the group is automatically repaired when some nodes
disappear.

To see whether AAM has enough tolerance compared
to Mcast, we experimented by using following emulation
scenario.

1) Run 1000 nodes.
2) All nodes join overlay network at 10 msec-intervals.
3) All nodes participate in a group chosen from 100

groups randomly at 20 msec-intervals.
4) All nodes multicast a message to the group in which

it participated at 200 msec-intervals.

Churn occurs while nodes are multicasting.

0

0.2

0.4

0.6

0.8

1

4 20 36 ∞

Refresh interval（second）

マ
ル
チ

キ
ャ

ス
ト

成
功
率

（
p
e
rc
e
n
t）

Mcast

AAM

S
u
c
c
e
s
s
 r
a
te
 o
f 
m
u
lt
ic
a
s
t

Fig. 10. Comparison of success rate of multicasting between Mcast and
AAM

In Figure 10, the horizontal axis indicates interval related
to the GroupRefresher. The vertical axis shows the success
rate of multicasting. The success rate is the ratio of total
frequency of receiving multicasted message of all nodes to
the total frequency when there occurred no churn. It is found
from Figure 10 that AAM keeps just about the same success
rate with Mcast.

VI. I MPLEMENTATION OF UENEW

When a web user is visiting a web page, there is an
unique character string called URL. We use the URL as ID
of multicast group and implemented Uenew using APIs of



Fig. 11. A screenshot of Uenew

AAM. Uenew get an URL from web browser automatically
and dynamically, and participates or creates a group.

For the present, Internet Explorer, Sleipnir and Google
Chrome are available for Uenew.

Figure 11 is a screenshot of Uenew. Uenew has two tabs,
main tab and setting tab. At the top of main tab, there is an
area of URL. Normally the URL in this area is automatically
changed, but users also can input an URL manually in this
area and create a group related the string.

VII. C ONCLUSIONS

In this paper, we described the way to realize commu-
nication between web users by peer-to-peer network. By
using Uenew, it is possible to rendezvous with someone at
particular web page or stroll with friends on web space.
Uenew requires no server, and never stores something in
existing servers which stores web pages. Uenew creates a
community for each web page, but the administrator of the
web page does not need to do something.

In addition, we proposed new methods to acquire archives
of multicast group and implemented them as APIs. The APIs
are useful for any system which requires the function of
acquiring archives. The APIs and Uenew are available at
http://kussharo.complex.eng.hokudai.ac.jp/∼r banno/.

One of the future work of this study is to create commu-
nities for each web site, not web page.

REFERENCES

[1] K. Shudo, Y. Tanaka, and S. Sekiguchi, “Overlay weaver: An overlay
construction toolkit,”Computer Communications, vol. 31, no. 2, pp.
402 – 412, 2008.

[2] Twitter, “Twitter,” http://twitter.com/.
[3] Google Inc., “Google sidewiki,” http://www.google.com/sidewiki/.
[4] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,

“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” SIGCOMM Comput. Commun. Rev., vol. 31, pp. 149–160, 2001.

[5] P. Maymounkov, “Kademlia : A peer-to-peer information system based
on the xor metric,”Proc. 1st International Workshop on Peer-to-Peer
Systems (IPTPS’02), 2002.

[6] A. Rowstron, “Pastry : Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems,”Lecture Notes in Com-
puter Science, vol. 2218, pp. 329–350, 2001.

[7] C. G. Plaxton, “Accessing nearby copies of replicated objects in a
distributed environment,”Theor. Comput. Syst., vol. 32, no. 3, pp.
241–280, 1999.

[8] M. Castro, “Scribe : A large-scale and decentralized application-
level multicast infrastructure,”IEEE Journal on Selected Areas in
Communications, vol. 20, no. 8, pp. 1489–1499, 2002.

[9] F. Dabek, “Towards a common api for structured peer-to-peer over-
lays,” Proc. 2nd International Workshop on Peer-to-Peer Systems
(IPTPS’03), 2003.

[10] K. Shudo, “Churn resilience improvement techniques in an algorithm-
neutral dht,” Jounal of Information Processing Society of Japan,
Computing System, vol. 49, no. 2, pp. 1–9, 2008.




