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Abstract—Resource allocation problems are an important
domain of distributed cooperative problem solving. Such prob-
lems have a dedicated representation of resource allocation
and need appropriate solvers that can be applied to them.
As an approach to handling these problems, formalizations of
distributed constraint optimization problems (DCOPs) can be
applied. We propose a distributed cooperative model motivated
by power supply networks that contain distributed power
sources. The model is represented as a DCOP. The optimal
solution of the problem represents the appropriate assignment
of amounts of the resource that are consumed or supplied in
each node of the network. A conventional algorithm is modified
to apply to the problem. Behaviors of the proposed model and
the solver are experimentally evaluated.

Index Terms—multiagent, distributed problem solving, coop-
eration, smart grid, resource allocation.

I. I NTRODUCTION

Resource allocation problems are an important domain
of distributed cooperative problem solving. The problems
have dedicated representation of resource allocation and need
appropriate solvers that can be applied to them.

As an approach to handling these problems, formalizations
of distributed constraint optimization problems (DCOPs) can
be applied. DCOPs [1], [2], [3], [4] have been studied
as a basic framework of cooperative problem solving in
multiagent systems. With DCOPs, the states of agents and the
relationships between agents are formalized into a constraint
optimization problem that is solved by distributed search
algorithms. These studies focus on the optimization problems
and the distributed search algorithms that are essentially
contained in cooperative protocols of the multiagent systems.

Several cooperative problems including distributed re-
source scheduling and sensor networks are represented as
DCOPs [4], [5]. The representation of DCOPs can be ex-
tended to meet a particular problem. In that case, a solver
also has to be modified for the problem.

Similarly, several problems in the power supply network
of a smart grid system can be considered as distributed
resource allocation problems. In [6], a dedicated represen-
tation of DCOP and a solver for a problem of power supply
restoration [7] have been proposed. On the other hand, the
optimization of consumption and supplement of power on
a network that contains distributed power sources is an
important problem.

We propose a distributed cooperative model that is mo-
tivated by power supply networks that contain distributed
power sources. The model is represented as a DCOP. The
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optimal solution of the problem represents the appropriate
assignment of amounts of the resource that are consumed
or supplied in each node of the network. A conventional
algorithm is modified to be applied to the problem. Behaviors
of the proposed model and the solver are experimentally
evaluated.

The rest of our paper is organized as follows. In Section II,
we address a resource allocation problem in a power supply
network and define an example problem. The problem is
formalized as a DCOP in Section III. Then, a solver is
applied to the DCOP in Section IV. The model and solver
are experimentally evaluated in Section V and discussed in
Section VI. In Section VII, we conclude our study.

II. RESOURCE ALLOCATION PROBLEM IN A POWER

SUPPLY NETWORK

In this work, we consider an example problem motivated
by power supply networks. As shown in Figure 1(a), a power
distribution network can be modeled as a simple network that
consists of power sources, sinks, and power lines.

For the network, several feeder trees that are rooted at
the power sources are selected to supply power resources to
sinks (Figure 1(b)). Our main focus is how to determine the
amount of imported/exported resource in each node of the
network. Therefore, it is assumed that a feeder tree has been
built using other methods.

The network consists of the following elements.

• Nodes: consumers of the resource that have the option
of supplying its resource to other nodes.

• Source node: a special power source that provides the
resource to other nodes.

• Links: paths that transfer some of the resource.

There is one source node in the feeder tree. Basically, the
resource is provided from the source node to other nodes.
Additionally, several nodes have a certain amount of the
resource that can be shared through the links. Therefore,
the amounts of resource coming from each node have to
be determined.

When a node exports an amount of its resource, the node
obtains an amount of utility. On the other hand, when the
node imports an amount of resource, the node incurs a cost.
Moreover, additional incentive that affects utility and cost
can be considered.

Each link transfers an amount of resource between two
nodes. There are limitations on the maximum amount of
resource. When an amount of the resource is transferred, a
part of the resource is consumed in the link. In the following,
we describe the details of the problem.
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A. Modeling of Nodes

To represent the requirements of nodei, we use the
following parameters:

• P ch
i : Hard requirement for consumption of resource.

• P cs
i : Soft requirement for consumption of resource.

• P g
i : Maximum amount of resource that can be supplied.

P ch
i and P cs

i represent requirements of resource.P ch
i is

a hard requirement that must be satisfied. It models the
baseline of the consumption. We prefer not to use dedicated
constraints to represent the hard requirement. Instead, the
constraints are implicitly contained in other expressions. In
contrast toP ch

i , requirementP cs
i may not be satisfied. It

models selectable consumption of resource. To represent an
incentive to consumeP cs

i , we define a negative cost (i.e.
utility) value.

P g
i represents the amount ofi’s resource. The resource can

partially be consumed by itself, supplied to other nodes via
links, or abandoned. As an incentive to supply the resource,
a utility is defined.

Amounts of resource that are consumed and supplied by
i are represented using variables as follows.

• pc
i : Amount of consumption.

• pgi
i : Amount of supplement to itself.

• pli
i : Amount of supplement from other nodes.

• plo
i : Amount of supplement to other nodes.

• pgw
i : Amount of resource unused.

Each value takes a positive value.pc
i representsi’s consump-

tion. Its domain is defined as[P ch
i , P ch

i + P cs
i ]. As shown

above,P ch
i always has to be consumed because it is a hard

requirement. Additionally, we assumeP cs
i can be divided.

pgi
i representsi’s supplement to itself. Clearly,pgi

i takes a
value from [0, min(P g

i , P ch
i + P cs

i )]. There are no costs or
utilities for pgi

i because the resource is supplied by itself.
pli

i and plo
i represent amounts of imported or exported

resource. To represent purchase of the resource, a cost is
defined for pli

i . Similarly, a utility is defined forplo
i to

represent selling.
pgw

i represents wasted resource. The wasted resource can
be caused by limitations in transferring the resource.

Those variables have several dependencies.pli
i andplo

i are
constrained not to take a nonzero value at the same time:

¬(pli
i > 0 ∧ plo

i > 0) (1)

That means that each node chooses importing or exporting.
pc

i is equal to total supply fori. That is represented as:

pc
i = pgi

i + pli
i (2)

Summation of supplies and the wasted resource is equal to
the maximum amount of resource:

pgi
i + plo

i + pgw
i = P g

i (3)

As described above, there are no costs forpgi
i . Therefore,

own resourceP g
i is supplied for the requirementpc

i as much
as possible.

By these dependencies, values of the variables are catego-
rized based onP g

i andpc
i :

• P g
i > pc

i : pc
i = pgi

i , pli
i = 0, plo

i + pgw
i = P g

i − pc
i

• P g
i < pc

i : pc
i = P g

i + pli
i , plo

i = 0, pgw
i = 0

• P g
i = pc

i : pli
i = 0, plo

i = 0, pgw
i = 0

The third case can be generalized with other cases. In the
optimization method, we indirectly determine the supplemen-
t/consumption of the resource through potential values of the
resource.

B. Source node

The source node supplies or acquires the resource. We
assume that the source node has a sufficiently large capacity
for resource. The amount of the resource supplied or acquires
is defined by the following parameters.

• P s⊥, P s⊤: minimum and maximum amounts of re-
source.

P s⊥ can take a negative value. In that case, the source node
can absorb the resource.

C. Modeling of transferring resource

The transferring of resource is represented as a simple
model motivated by power supply lines. In the model, we
use the following parameters and variables,

• pi: an amount of the resource coming from nodei.
• vi: the potential to transfer the resource.
• V ⊥

i , V ⊤
i : the minimum and maximum values ofvi.

• Gi,j : a parameter that defines an amount of resource
transferred through the link between nodei and j.

• V dif⊤
i,j : a parameter that defines the maximum amount

of resource transferred through the link between nodei
and j.

pi represents the amount of resource coming from nodei.
When pi represents a consumption of the resource, it takes
a negative value. Using variables of nodei, the value ofpi

is defined as:
pi = plo

i − pli
i (4)

vi represents the potential to transfer the resource. The
value ofvi must not exceedV ⊥

i andV ⊤
i . The current coming

from nodei is represented aspi/vi.
Gi,j defines an amount of resource transferred through the

link between nodei and j. The current moving fromj to i
is represented asGi,j · (vj − vi). Summation of all coming
currents is zero.

V dif⊤
i,j defines the maximum amount of resource trans-

ferred through the link between nodesi andj. |vj −vi| must
not exceedV dif⊤

i,j .

D. Costs and utilities

When an amount of resource are imported or exported,
cost and utility are calculated. They are used to evaluate the
assignment of the resource. Parameters for the cost and the
utility are as follows.



• winp
i : cost value for a unit amount of the resource

imported to nodei.
• wexp

i : utility value for a unit amount of the resource
exported from nodei.

• wutl
i : utility value for a unit amount of the resource

consumed for a part ofP cs
i of nodei.

Those parameters are multiplied to an amount of relative
resource. Then, the cost and utility values are combined.

III. F ORMALIZATION AS DCOP

To determine the amount of the supply/consumption of
the resource, we formalize the problem as a distributed
constraint optimization problem (DCOP). In the following,
the definition of DCOP and a formalization of the resource
sharing problem are shown.

A. Distributed constraint optimization problem

Here is the fundamental definition of distributed constraint
optimization problems. A problem is defined by setA of
agents, setX of variables, setD of domains of variables,
setC of binary constraints, and setF of binary functions.

Agent i has its own variablexi that takes a value from
discrete finite domainDi. The value ofxi is controlled by
agenti. Constraintci,j represents the relationship betweenxi

andxj . The cost of assignment{(xi, di), (xj , dj)} is defined
by binary functionfi,j(di, dj). The goal is to find global
optimal solutionA that minimizes the global cost function:∑

fi,j∈F, {(xi,di),(xj ,dj)}⊆A fi,j(di, dj).
Agent i knows the constraints and the cost functions that

are related toxi. The search process to find the optimal
solution is represented as a distributed algorithm based
on message communication between agents. In the above
descriptions, binary cost functions are used. They can be
generalized to n-ary functions including unary functions.

B. Formalization of problem

We optimize each valuevi of potential, which is mapped
into variablexi in DCOP. The supply/consumption of the
resource is indirectly determined throughvi. While the value
of vi is continuous, we assume it takes a value from discrete
values. Therefore, the solution represents approximate val-
ues. Following parameters are used to define the relationship
betweenvi andxi.

• vunit
i : unit quantity of the value ofvi.

• x⊥
i , x⊤

i : minimum and maximum value ofxi.

Using the above parameters,vi is represented as follows:

vi = 1 + vunit
i · xi (5)

where value 1 is the standard value ofvi. xi takes an integer
value from[x⊥

i , x⊤
i ]. x⊥

i , x⊤
i are determined considering the

permissible range ofvi. To improve accuracy of solution,
vunit

i should take as small a value as possible. On the other
hand, the small value ofvunit

i needs a large number of
discrete values ofxi.

When values ofxi and neighborhood variables are given,
corresponding values of potential are determined. Using

pairs of vi and vj of each neighborhoodj, coming current
excluding the current of nodei itself is computed as follows:

ci =
∑

j∈ neighborhood nodes ofi

Gi,j · (vj − vi) (6)

The amountpi of resource supplied from nodei is computed
as−vi · ci. By the condition shown in Expressions 1 and 4,
plo

i andpli
i are determined frompi. If pi is a positive value,

pi = plo
i . Otherwisepi = −pli

i . On the other hand,pi is
represented as follows:

pi = P g
i − pc

i − pgw
i = P g

i − (P ch
i + kcs

i · P cs
i ) − pgw

i (7)

wherekcs
i is a coefficient that takes a value from[0, 1]. In the

case whereP g
i ≤ pc

i , pgw
i equals zero. Otherwise,pgw

i can
take a non-zero value. We assume that each node wastes
its own resource only if it can neither be consumed nor
exported. By this assumption, Expression 7 is categorized
as the following cases:

• pi ≤ 0: pi = P g
i − (P ch

i + kcs
i · P cs

i ), pgw
i = 0

• pi > 0:

– pi < P g
i − (P ch

i + P cs
i ) : kcs

i = 1, pgw
i = P g

i −
(P ch

i + P cs
i ) − pi

– otherwise:pi = P g
i − (P ch

i + kcs
i · P cs

i ), pgw
i = 0

As a result, a value ofkcs
i · P cs

i is determined frompi.
Using cost values and utilities of the resource, a cost

function fcost
i for nodei is defined.fcost

i is represented by
a combination of cost/utility functions. The cost/utility for
importing/exporting the resource is shown as:

f inp
i (pli

i ) = winp
i · pli

i (8)

fexp
i (plo

i ) = −wexp
i · plo

i (9)

The utility for kcs
i · P cs

i is shown as follows:

futl
i (kcs

i · P cs
i ) =

−wutl
i · (⌊kcs

i · P cs
i /(P cs

i /kcsunit)⌋ · (P cs
i /kcsunit))

(10)
wherekcsunit is a parameter that defines steps of the utility.
The steps of the utility value represent units of requirements.

Two types of constraints are represented as cost functions.
The constraint for the limitation of the difference between
vi andvj is defined as follows:

fvdif
i,j (vi, vj) =

{
0 |vi − vj | ≤ V dif⊤

i,j

∞ otherwise
(11)

The constraint for the limitation of the value ofpi is
defined as follows:

fp
i (pi) =

{
0 pi satisfies the limitation
∞ otherwise

(12)

where the limitation ofpi is categorized as

• P g
i − (P ch

i + P cs
i ) > 0: 0 ≤ pi ≤ P g

i − P ch
i

• otherwise:P g
i − (P ch

i + P cs
i ) ≤ pi ≤ P g

i − P ch
i

In this work, we define fcost
i as summation of

f inp
i , fexp

i , futl
i , fvdif

i,j and fp
i . The optimal assignment is

defined as a solution that minimizes the summation of all
cost/utility functions.
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IV. SOLUTION METHOD

We apply a variation of dynamic programming to the
proposed problem. The solution method is based on the
pseudo-tree that is a graph structure on constraint networks.
To handle properties of the resource, representation and
computation of conventional methods are modified.

In the following, the pseudo-tree and conventional compu-
tation based on the pseudo-tree are shown. Then modification
of the computation, preprocessing and optimization process-
ing are shown.

A. Pseudo-tree

A pseudo-tree [3], [8], [9], which is a graph structure
that defines a partial order on variables, is based on a
spanning tree of the constraint network. A typical pseudo-
tree is generated using a depth-first traversal of a constraint
network. For example, the pseudo-tree in Figure 2 (b) is
generated from the constraint network in Figure 2 (a).

In the pseudo-tree, the edges of the original constraint
network are categorized into either tree edges or back edges.
The tree edges are the edges of the spanning tree. The other
edges are back edges. The tree edges represent the partial
order relation between the two variables. We consider the
tree edges of the pseudo-tree the edges of the corresponding
spanning tree. Also, nodes, variables, and agents may not be
strictly distinguished. The following notations are used.

• prnti: parent variable ofxi．
• Chldi: set of child variables ofxi．
• Nbru

i : partial set of ancestor variables ofxi. The
variables inNbru

i are related toxi by constraints.
• Nbrl

i: partial set of descendant variables ofxi. The
variables inNbrl

i are related toxi by constraints.
• PsdPrnti: partial set of ancestor variables ofxi. Let xk

denote a variable inPsdPrnti. For at least one variable
xj that is contained in the pseudo-tree rooted atxi, xk

has relationshipxk ∈ Nbru
j .

No back edge exists between different subtrees. By em-
ploying this property, search processing can be performed in
parallel.

In this work, we focus on feeder trees. Therefore, their
pseudo-trees are true trees, which is the most simple case of
the pseudo-tree. For generality, we show the computation for
feeder networks that contain cycles.

B. Computation based on the pseudo-trees

We outline cost computation using pseudo-trees [2], [3].
Below, we assume that agents have already received both
variables’ values and cost values from other agents. Agent

i’s computation is based on partial solutionsi of PsdPrnti.
si is calledcontext.

Local costδi(si ∪{(xi, d)}) for contextsi and valued of
variablexi are defined as follows.

δi(si ∪ {(xi, d)}) =
∑

(xj ,dj)∈si, j∈Nbru
i

fi,j(d, dj) (13)

Optimal costg∗(si) for contextsi and the subtree routed
at xi are recursively defined as follows.

g∗i (si) = min
d∈Di

gi(si ∪ {(xi, d)}) (14)

gi(si ∪ {(xi, d)}) = δi(si ∪ {(xi, d)}) (15)

+
∑

j∈Chldi

g∗j (sj) s.t. sj ⊆ (si ∪ {(xi, d)})

In the above, binary cost functionfi,j can be generalized
to n-ary cost functions including unary functions.

When globally optimal costg∗r (ϕ) is computed for root
variable xr, r determines the optimal assignment of its
variable. Similarly, an optimal solution for the rest of the
problem can be computed in a top-down manner.

Dynamic programming [3] computes the optimal cost
values of subtrees from leaf agents to a root agent. Then,
the optimal assignments are decided from a root agent to
leaf agents. Although there is no iterative processing, the
size of the memory and the messages are exponential to
the induced-width of the pseudo-trees because each agent
i simultaneously computesg∗(si) for all assignments of the
variables contained inPsdPrnti. Moreover, the size of the
domain of variables also increases the search space.

In this work, we focus on feeder trees. Therefore, induced-
width is not critical. On the other hand, the size of the domain
affects the size of the table ofg∗(si).

C. Modification of computation

In the conventional methods, the priorities of variables are
defined by the pseudo-tree. Based on the priorities, values
of cost functions are summed up. When cost functions are
evaluated in a nodei, only values ofPsdPrnti andxi are
considered.

In the formalization shown in III-B, values of the variables
are mapped to values of the potentials. Then values of
functions are computed. Although values of several functions
can be computed using values ofPsdPrnti andxi, functions
that consider values ofpi need values of variables inNbrl

i.
Note thatpi is computed based onci shown in Expression 6.
ci is computed using values of all neighborhood nodes ofi.

To propagate the value ofNbrl
i, another type of context

ti,sj is used. We call the contextlower-context. A set of
variables is introduced to defineti,sj

:

• ExtNbri: a set ofi’s descendant nodes that have a link
to i or i’s ancestor nodes.ExtNbri contains variables
in Chldi.

In the case of tree,ExtNbri only contains variables in
Chldi. ti,sj is defined for a subsetExtNbri,j of ExtNbri.
ExtNbri,j only contains variables in a subtree rooted ati’s
child nodej. ti,sj also depends onsj that is a context ofi’s
child nodej. Note thatExtNbrprnti ⊆ ExtNbri ∪ {xi}.
tprnti,si is computed from each set ofti,sj that relates
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with tprnti,si . In the computation, assignments of variables
in ExtNbri ∪ {xi}\ExtNbrprnti are removed. Then an
assignment ofxi is added. The table ofg∗i (si) is generalized
to (g∗i (si, ), tprnti,si).

Expression 13 is modified as follows. Using assignments
of the related variables, values of cost/utility functions that
are contained infcost

i are calculated.

δi(si ∪ {(xi, d)}) = fcost
i (

{(xi, d)}∪∪
(xj ,dj)∈si, j∈Nbru

i
{(xj , dj)}∪∪

(xk,dk)∈ti,sh
,h∈Chldi, k∈Nbrl

i
{(xk, dk)})

(16)

Additionally, the proposed formalization employs negative
cost (i.e. utility) values. Although several pruning methods
that based on monotonicity of the cost values have to be
modified in such case, we simply apply a solver that does
not employ the pruning.

D. Algorithm

Basically, the algorithm resembles the conventional dy-
namic programming method [3]. It computes optimal cost
values and an optimal solution in a distributed manner.
Because the distributed processing is relatively easy, we show
brief explanations of the algorithm. The processing consists
of the following phases.

• Pre-processing: a pseudo-tree is generated using a graph
traversal in a distributed manner. A basic method is
distributed depth first graph traversal. In the processing,
sets of relative variables (i.e.prnti, PsdPrnti, etc.) are
computed.

• COST propagation: Each leaf nodei computes the
table of (g∗i (si), tprnti,si). Then, i sends the table to
prnti using a COST message1. Other nodesj similarly
compute the table of(g∗j (sj), tprntj ,sj ) and propagate it
when COST messages are received from all nodes that
have variables inChldj . As a result, the root node of
the pseudo-tree computes the global optimal cost value.

• VALUE propagation: Rooti determines optimal assign-
ment of xi based on the global optimal cost. Then,i
composes the optimal assignments∗j for each nodej
that has a variable inChldi. s∗j is sent toj using a
VALUE message. The other nodek similarly computes
its optimal assignment and composes the optimal as-
signments∗l for each childl when a VALUE message
is received fromprntk. Then,k sendss∗l to l.

Paths of the messages are shown in Figure 2(c).

1In this work, we prefer to use COST instead of UTIL, which is used in
conventional works, because we focus on minimizing problems.

V. EXPERIMENTS

As the first result, we experimentally evaluated behaviors
of the proposed model. Two types of networks shown in
Figure 3 were used. The problems were generated using
the following parameters that were determined preliminary
experiments.

• n: the number of nodes including one source and
multiple sinks is 11 or 21.

• P s⊥, P s⊤: the minimum and maximum amount of the
resource are 0 and 3.

• kcsunit: the parameter that defines steps of utilities is
100.

• winp
i , wexp

i , wutl
i : the parameters of costs/utilities for

importing/exporting resource are set based on several
ratios.

• loss⊤i,j : the maximum amount of a loss of resource in
the link between nodesi and j. We estimated that this
parameter is 0.0025.

• Gi,j : the parameter for the resource that is transferred
through the link between nodesi and j is 435.

• V dif⊤
i,j : the parameter for the maximum amount of

resource that is transferred through the link between
nodesi and j is 0.0075.

• vunit
i : the unit quantity of the value ofvi is 0.0001.

• x⊥
i , x⊤

i : the minimum and maximum values ofxi are
-500 and 500.

• P ch
i , P cs

i , P g
i : the hard/soft requirement for consump-

tion of resource, and the maximum amount of resource
that can be supplied are determined as below.

While we evaluate an ideal model, we chose the scale of
several parameters based on a type of actual power supply
networks.

P ch
i , P cs

i and P g
i are determined as follows. First,

an amount of resourceP call is computed asP s⊤ −
(number of sinks) · loss⊤i,j . Then an amount of resource
P csnk is computed byP call/(number of sinks). P ch

i and
P cs

i are determined so thatP ch
i + P cs

i = P csnk. Here we
chose ratioP ch

i : P cs
i = 1 : 1. If node i have distributed

source, P g
i takes a value such thatP g

i = P ch
i + P cs

i .
Otherwise, the value ofP g

i is zero.
In the case that several sinks have distributed sources,

the distributed sources are randomly placed with uniform
distribution. The results are averaged for twenty instances in
the case of problems.

Figure 4 shows the results in the case of linear networks
that have no distributed sources. Only the source node that
has identifier 0 exports the resource. On the other hand,
other nodes import the resource. Therefore, potentialvi

monotonously decreases. Because we did not fix the standard
value of the potential, only difference ofvi is important.pi

represents the amount of resource coming from nodei.
In Figure 4 (a), there are no utilities to consume soft

requirements of the resource. Therefore, each sink only
intends to consume hard requirements. On the other hand, in
Figure 4 (b), the cost and the utility for the soft requirements
take same value. In such case, the result partially depends
on biases of the solver. Figure 4 (c) shows the case that the
utility exceeds the cost. Each node intends to consume the
hard and soft requirements of the resource.
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Fig. 4. n = 11, linear graph, no distributed sources

Figure 5 shows the results in the case of linear networks
that have distributed sources. In the results, sinks of iden-
tifiers 1, 2, 6, 8 and 10 have the distributed sources.pi of
these nodes takes positive value when the nodes export the
resource. In Figure 5 (a), utilities for exporting the resource is
relatively large. Therefore, all sinks that have the distributed
sources export the resource. Because of the passing of the
resource,vi does not monotonously decrease around several
sinks.

Figure 5 (b), shows the case that utilities for the exporting
and soft requirements are same value. Since the exporting of
the resource is not highly affected by the utilities, behaviors
of the sinks with the distributed sources are different.

In Figure 5 (c), the utility of the exporting of the resource
takes the most large value. Therefore, it affects the sinks
with the distributed sources. On the other hand, in the
sinks without the distributed sources, the utility of the soft
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Fig. 5. n = 11, linear graph, the ratio of the number of distributed sources
= 0.5

requirements mainly affects.
Table I shows the results ofpi in linear networks that

contain 11 nodes. The results correspond to the results shown
in Figure 4. In the result of Table I (a), the value of row ’1
: 1.5’ and column ‘source’ should be nearly the maximum
value3 of the range ofpi. Similarly, row ’1 : 1.5’ and column
‘sink, ave.’ should be the minimum value−0.2975. Row ’1
: 0’ and column ‘sink, ave.’ should be the maximum value
−0.1488. A reason of the difference of the results and the
theoretical value is the discrete value ofvi. Therefore, the
proposed model represents boundaries of feasible solutions.
As addressed in Section VI, there are several opportunities
to reduce the difference. Table I (b) shows the result in the
case that the network contains distributed sources. The results
almost correspond to the results shown in Figure 5.

Table II shows the results in tree networks that contain 11
nodes. The results resemble the case of the linear networks.
Table III shows the results in linear networks that contain 21



TABLE I
pi (n = 11, LINEAR GRAPH)

(a) no distributed source
node [range ofpi] source [0, 3] sink w/o dist. source [-0.2975, -0.1488]

winp : wutl ave. ave. min. max. max. diff.
1 : 0 1.6913 -0.1664 -0.1684 -0.1653 0.0031
1 : 1 2.1559 -0.2117 -0.2574 -0.1681 0.0893

1 : 1.5 2.9682 -0.2887 -0.2971 -0.2563 0.0408

(b) the ratio of the number of distributed source = 0.5
node [range ofpi] source [0, 3] sink w/o dist. source [-0.2975, -0.1488] sink w. dist. source [0, 0.1488]
winp : wutl : wexp ave. ave. min. max. max. diff. ave. min. max. max. diff.

1 : 1.5 : 0 0.3926 -0.2148 -0.2507 -0.1909 0.0598 0.1366 0.1364 0.1368 0.0004
1 : 1.5 : 1.5 1.2160 -0.2952 -0.2972 -0.2938 0.0033 0.0548 0.0000 0.1223 0.1223
1 : 1.5 : 2 0.8509 -0.2953 -0.2968 -0.2943 0.0024 0.1267 0.1263 0.1272 0.0010

TABLE II
pi (n = 11, TREE)

(a) no distributed source
node [range ofpi] source [0, 3] sink w/o dist. source [-0.2975, -0.1488]

winp : wutl ave. ave. min. max. max. diff.
1 : 0 1.6669 -0.1656 -0.1660 -0.1653 0.0007
1 : 1 2.4592 -0.2435 -0.2946 -0.1683 0.1263

1 : 1.5 2.9902 -0.2955 -0.2969 -0.2948 0.0021

(b) the ratio of the number of distributed source = 0.5
node [range ofpi] source [0, 3] sink w/o dist. source [-0.2975, -0.1488] sink w. dist. source [0, 0.1488]
winp : wutl : wexp ave. ave. min. max. max. diff. ave. min. max. max. diff.

1 : 1.5 : 0 0.4037 -0.2172 -0.2323 -0.1956 0.0367 0.1367 0.1366 0.1368 0.0002
1 : 1.5 : 1.5 1.3611 -0.2964 -0.2971 -0.2960 0.0011 0.0259 0.0000 0.0912 0.0912
1 : 1.5 : 2 0.8503 -0.2964 -0.2969 -0.2960 0.0009 0.1272 0.1271 0.1274 0.0003

TABLE III
pi (n = 21, LINEAR GRAPH)

(The ratio of the number of distributed source = 0.5)
node [range ofpi] source [0, 3] sink w/o dist. source [-0.1475, -0.0738] sink w. dist. source [0, 0.0738]
winp : wutl : wexp ave. ave. min. max. max. diff. ave. min. max. max. diff.

1 : 1.5 : 0 0.6587 -0.1103 -0.1338 -0.0900 0.0438 0.0452 0.0449 0.0455 0.0006
1 : 1.5 : 1.5 1.1248 -0.1346 -0.1363 -0.1335 0.0028 0.0240 0.0000 0.0452 0.0452
1 : 1.5 : 2 0.9125 -0.1349 -0.1364 -0.1341 0.0023 0.0450 0.0447 0.0455 0.0007

nodes. Although there are errors between the discrete values
and the theoretical range of values, the results resemble the
case of 11 nodes.

VI. D ISCUSSION

In this work, we defined a cooperative model motivated
by power supply networks. Although the proposed model is
different from the common formalization of power flow cal-
culation, we preferred an intuitive representation of the prob-
lem that contains the power flow. An approximate method
that employs active power values and phases of potentials
resembles the power flow calculation of the proposed model.
In related works, the power flow calculation is represented
using more simple model [6]. The necessity of the detailed
model of the power flow will be depend on purposes.

For the distributed constraint optimization problem, we
used discrete potential value of the resource. The discrete

value increases search space and decreases accuracy. Ad-
ditional methods that reduce search spaces or numerical
computation techniques that interpolate values [10] can be
considered to overcome this problem.

The proposed model minimizes total cost of the system.
As a more practical criteria, a kind of fairness among agents
can be considered.

While we applied a dynamic programming method, other
solvers based on pseudo-trees [2] can be modified for the
proposed problem. There are opportunities to reduce the
search when solvers which use pruning, optimistic search
strategy and bounded errors are applied.

VII. C ONCLUSION

We proposed a distributed cooperative model motivated
by power supply networks. The model was represented
as a distributed constraint optimization problem, and a
conventional algorithm was modified to be applied to the



problem. Behaviors of the proposed model and the solver
were experimentally evaluated.

Efficient methods that reduce search space and improve
accuracy, theoretical analysis of the model and application
to more practical problems will be included in future works.
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