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Abstract—In model-driven development, design 
understandability is very important to maintain software 
systems. Software developers use the design models in their 
endeavor to understand and maintain the final product. 
Typically, software developers expect consistency between design 
and implementation artifacts of a software system. However, 
software systems may deviate from design. Software verification 
is an important phase to prevent this deviation and to ensure that 
developers are building the product right. There are few research 
studies that were conducted to assess the correspondence of a 
software implementation to its design. In this paper, we validate 
the use of a hierarchal quality model to verify the correspondence 
between design and implementation artifacts. We have conducted 
this study on an open-source system that is built using C++. The 
model has shown that we can discover the differences between 
the design and implementation. We found that hierarchal models 
could be used to find differences at the low-level design 
properties and to find similarities at the architecture-level design 
properties.  

 
Index Terms— object-oriented metrics, software quality, 
QMOOD. 

 

I. INTRODUCTION 

Software verification is very important to ensure that 
software consistency is maintained among consecutive 
software artifacts. Software verification has effect on both the 
process and product quality. However software verification is 
a time-consuming activity especially if worked only at later 
stages. In a matured software development process, a planned 
design (represented in models) is one way to ensure that the 
implementation matches the design. The correspondence 
between design and implementation artifacts is an indication 
of the stability of the system. However, few business 
requirements are stable [1] and change unexpectedly. The 
changes vary depending on many factors such as when those 
changes occur,  the number of  affected components, and the  

 

nature of changes. Changes that force the developers to redo 
major changes of the software are very costly, especially in the 
implementation phase which requires more time, rework, and 
review [2]. In addition, a lack of correspondence between 
early software activities has a ripple effect on later process 
activities such as testing and maintenance. The lack of 
correspondence can occur for many reasons such as 
implementation mismatch (e.g. by mistake or by purpose), 
change of requirements, and the necessity to remove bugs [3].  
In the Object-oriented (OO) paradigm, software systems are 
composed of classes, methods, and attributes. These 
components appear in both artifacts of the design and 
implementation. The properties of these components are 
measurable in both the design and implementation The OO 
paradigm can be characterized using many properties such as 
inheritance, polymorphism, and encapsulation. Assessing 
quality by measuring internal properties offers an objective 
and an independent view of the quality [4]. Therefore, we can 
use these measurements to verify the quality of both design 
and implementation artifacts, i.e., verify the conformance 
between both artifacts.  The aim of this research is to validate 
a hierarchal quality model to verify the conformance between 
OO design models, class diagrams in this research, and the 
software implementation. The quality model uses metrics to 
measure the internal properties to characterize both the design 
and implementation. The model is validated empirically on an 
open-source system—Turaya.Crypt—that is developed in 
C++. The proposed model can be used to investigate the 
differences between the design and implementation artifacts. 
In addition, the model helps software designers to draw a link 
between design and implementation phases to verify their 
expectations. A paired t-test is conducted at several levels 
(classes and subsystems) to provide an evidence of the 
correspondence. This helps developers or testers conducting a 
quantitative analysis to explore the conformance or the lack of 
correspondence between design and implementation.   

The rest of the paper is organized as follows: in Section 2, 
we discuss the related work. In Section 3, the verification 
methodology and the experiment model are illustrated. In 
Section 4, research hypotheses are stated. In Section 5, the 
verification model is applied on an OO software system. The 
conclusions and future trends are discussed in Section 6. 

II. RELATED WORK 

An implementation is said to conform to its design if 
everything that was designed is implemented [3]. Few 
approaches have been proposed to verify or assess the 
correspondence between a software design and its 
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implementation. Techniques were developed to assess the 
conformance based upon different measures and models. In 
[3], authors developed quantitative techniques for the 
assessment of correspondence between UML diagrams and 
implementation. For the assessment of correspondence, they 
used a metamodel which is inspired upon the UML 
metamodel. For both design and implementation they 
instantiate such a metamodel. The instantiation of the design 
metamodel is a subset of the UML model. The same holds for 
the implementation meta model. It is a subset of the actual 
implementation where they left out all implementation details. 
The correspondence between a design class and an 
implementation class has expressed in terms of a similarity 
value . They considered matching based on classifier names, 
matching based on metric profiles and matching using 
package information (i.e. structural properties of classifiers). 
Deniss et al [3] used the software reflexion model to visualize 
the differences between design and implementation using 
implementation relations as inputs. In another study, Antoniol 
et al. [5] have compared different traceability recovery 
methods, based on different class properties. This technique 
complements their previous works described in [6,7], which 
was focused on the traceability procedure itself. The design is 
modeled using OMT notations and the procedure accepts C++ 
source code. Both design and code are represented using a 
custom OO design description language, the Abstract Object 
Language (AOL). The process recovers an “as-is” design from 
the code in AOL, compares the recovered design with the 
actual AOL design, and helps the user to deal with 
inconsistencies by providing a similarity measure for the 
matched classes and pointing out the unmatched ones. 
Antoniol’s et al. works [5]-[7] recovered design-code 
traceability links by computing the similarity between each 
pair of properties in design and code. They have used a 
maximum likelihood classifier [5], to get an optimal threshold 
value for the similarity measure. In another related model, a 
software reflexion model [8] technique was developed. The 
engineer defines a high-level model of interest, extracts a 
source model (such as a call graph or event interactions) from 
the source code, and defines a mapping between the two 
models. A software reflexion model is then computed to 
determine where the engineer's high-level model does or does 
not agree with the source model. If the relationship occurs in 
both the design and the implementation, then it is called a 
convergence. If the relationship occurs in the design but is 
absent in the implementation, then it is called an absence. If 
the relationship occurs in the implementation but not in the 
design, then it is called a divergence. All these studies about 
the correspondence between software design and 
implementation are different from our work in the conducted 
strategy for design and its implementation traceability. Our 
model uses a validated quality model (QMOOD) that assess 
the evolution of a software product form design to 
implementation. QMOOD can be used to measure both the 
design and implementation. QMOOD measures the 
components of a software system for eight OO properties. 
Therefore, it verifies software quality for the OO paradigm.  

III. THE VERIFICATION FRAMEWORK 

This research introduces a new model for the verification of 
the correspondence between design and implementation using 
software metrics. The measurements of both artifacts are 
derived from a hierarchal quality model [9] that was proposed 
and validated on commercial software systems to assess 
software evolution [10]. The intent of our verification 
technique is completely different from the intent of the 
QMOOD quality model. While the QMOOD model aims to 
assess high-level design quality attributes in OO designs, our 
research aims to verify the correspondence between software 
design and implementation using OO metrics. QMOOD uses 
eight OO metrics to measure design and implementation 
properties. The properties are: inheritance, encapsulation, 
polymorphism, abstraction, coupling, messaging, composition, 
and complexity. Appendix I shows the definitions of these 
properties and their measurements. The QMOOD is validated 
on an OO system—Turaya.Crypt (Secure Linux Hard-Disk 
Encryption) which consists of 75 classes. The system is based 
on the microkernel-based EMSCB [11] security kernel in 
Linux systems. This system consists of five subsystems which 
are listed in Table 1. Both The UML diagrams for the design 
phase and the source code files are available on EMSCB 
online repository1. Multiple tools were used to collect the 
metrics data to achieve higher accuracy. Two tools were used 
to collect metrics from the source code: Resource Standard 
Metrics (RSM)2 and Understand 2.03. Metrics from UML 
diagrams were collected by hand. 

 
TABLE 1  

Turaya.Crypt subsystems 

Subsystem Name #Classes 

HddEncServer 21 

LibUtils 25 

Server GUI 19 

Launcher 5 

LinuxStub 5 

Total  75 

 

IV.RESEARCH HYPOTHESES 

To verify the significance of the correspondence between 
software design and implementation, a set of hypotheses are 
stated for the internal properties. We conduct the verification 
at two levels (classes and subsystemes). Therefore, we want to 
validate the following hypotheses for both levels. The Null 
hypotheses (H01 to H08) of the internal properties: 
 H01c to H08c: There is no significant difference in a 

quality property between design and implementation at the 
class level. 

                                                 
1 http://svn.emscb.org/svn/emscb/trunk/apps/hddenc/. 
2 http://msquaredtechnologies.com. 
3 http://www.scitools.com/prodcts/understand. 



 H01s to H08s: There is no significant difference in a 
quality property between design and implementation at the 
subsystem level. 

For each null hypothesis, the letter (c) stands for class level 
and the letter (s) stands for subsystem level. To accept or 
reject these hypotheses, we use the paired t-test at the 95% 
confidence level [13, 14]. The significant value in this test 
decides whether the hypothesis is rejected or not. If the 
significance value of the samples (design and code) is larger 
than or equal to 0.05 then there is no significant difference, 
and the null hypothesis cannot be rejected, i.e., there is no 
significant difference in a quality property between design and 
implementation. Otherwise, the null hypothesis is rejected. 

V. VERIFICATION ANALYSIS 

In this section, our verification technique is applied on 
Turaya.Crypt system (EMSCB 2006). The collected metrics 
are described statistically. These metrics are verified using the 
paired t-test at two levels: all classes (for design and code) in 
the system, and all classes of each subsystem. 

A. DESCRIPTIVE STATISTICS 

For Turaya.Crypt system, the mean, standard deviation, 
maximum, and minimum values for the system classes are 
calculated. Table 2 lists these values for all metrics. These 
descriptive values help us to observe the differences between 
the properties of design and implementation. For example, 
MFA shows no mean differences between design and 
implementation. Although we can use the mean to compare 
the effect of implementation, we cannot draw conclusions 
without conducting a statistical test which we discuss 
thoroughly in next sections. From Table 2, we notice that the 
DAM’s mean is smaller for implementation which is an 
indication of encapsulation violations. NOP’s mean is also 
smaller for implementation which is a sign of flexibility 
reduction in the code. ANA and DCC mean values indicate an 
increase in the inheritance and coupling during 
implementation. CIS and NOM mean values increase for 
implementation which indicate that classes’ complexity 
increase as well. 

 
TABLE 2  

Descriptive statistics for all classes of Turaya.Crypt system 

Metric 
Mean Stdev.  

Des. Imp. Des. Imp. 
MFA 0.06 0.06 0.19 0.19
DAM 0.58 0.49 0.44 0.41
NOP 0.20 0.15 0.55 0.75
ANA 0.15 0.24 0.36 0.49
DCC 1.60 2.75 1.46 3.71
CIS 5.85 6.73 5.67 7.14
MOA 1.48 1.43 1.49 1.44
NOM  6.40 8.33 6.11 7.73

 

B. PROPERTIES OF CLASSES 

In this section, we discuss the paired t-test results for the 
internal properties at the class level which are summarized in 
Table 3. From Table 3, the decisions for the null hypotheses 
H01c, H02c, and H06c are accepted, i.e. there is no significant 
difference in these properties in design and implementation. 
While H03c, H04c, H05c, H07c, and H08c hypotheses are 
rejected, i.e. there is a significant difference in these properties 
in design and implementation. These differences are design 
violations that hinder software maintainability. We notice that 
low-level changes are more common in implementation and 
therefore there were significant differences on the properties 
such as encapsulation, abstraction, coupling, messaging and 
complexity. Whereas no significant design violations on 
higher-level design elements such as inheritance, 
polymorphism and composition. 

C. PROPERTIES OF SUBSYSTEMS 

The results in the previous section stand for all classes (i.e., 
75 classes). In this section, the calculations are repeated for 
the class pairs at the subsystems level. We have conducted the 
paired t-test for each subsystem that has enough number of 
classes. Table 4 shows the results of the paired t-test on the 
server subsystem. Inheritance and polymorphism properties 
(i.e. pairs 1 and 2 respectively) do not appear in Table 4. In 
this test, if the standard error of the difference is zero for a 
particular property, the statistics cannot be computed. If the 
hypothesis is accepted, it is indicated by () symbol. 
Otherwise, the hypothesis is rejected (i.e. sig<0.05).  As 
shown in Table 5, the HddEnc Server subsystem have the 
lowest degree of correspondence for their internal properties 
in design and code. Four properties have significant 
differences. Fig. 1 shows that the Server subsystem is the core 
of the Turaya.Crypt system, which explains the reason why 
this subsystem has the most inconsistencies.  The Server 
subsystem complexity is larger than others. This verification 
explores where the software programmer or developer have a 
difficulty in transforming the design artifacts into source code. 

D. DISCUSSION 

We can use the QMOOD to specify which parts (i.e. 
subsystems and classes) of the software system have 
differences and their effects on the software structure and 
quality needs. The tester or developer has many quantitative 
indicators to conduct the correspondence verification. In this 
study, we found some properties that have an explicit evidence 
of the correspondence, but others have a lack of 
correspondence. Inheritance, polymorphism and composition 
have the highest correspondence level. The differences and 
their possible effects on software properties are caused by 
micro changes during implementation. These changes can be 
summarized as follows: 

Changes on complexity: software designers may not have 
a complete conception of how to achieve the functionality of 
the class or the object. New additional methods (i.e. larger 
NOM) are introduced in the implementation but missed in the 
design. One reason for adding methods is the change of 



software needs during implementation, but this change is not 
reflected to design models [5]. For Turaya.Crypt, there are 145 
additional methods in the implementation (i.e. 66 public, 68 
private, and 11 protected). The classes in the implementation 
tend to be more complex than those in the design. 

 
TABLE 3 

Paired t-test’s results of all internal properties 

 
 TABLE 4  

The results of paired t-test applied on properties of server subsystem 

 
 

TABLE 5 
Results of paired t-test for subsystems 

Property All 
HddEnc 
Server 

GUI LibUtils 

Inheritance     

Polymorphism     

Encapsulation     

Abstraction     

Coupling     

Composition     

Messaging     

Complexity     

 
Changes on Coupling: adding public methods increases 

the accessibility for other classes to those methods. If public 
methods are used by another software component, this causes 
an additional dependencies between software components and 
decreases system understandability. 

Changes on encapsulation: introducing new private and 
protected attributes (i.e. larger DAM values) in 

                                                 
4 The results of inheritance property (Pair 1) do not appear in the Table 3 
because the standard error of mean equals zero. The statistics cannot be 
computed.  

implementation (78 public, 87 private, and 3 protected 
attributes) have less impact on the correspondence than public 
methods. This is because the private attributes are accessible 
only by other members in the class, and the protected 
attributes are accessed locally. Encapsulation and information 
hiding are considered to be a convenient programming tactic 
in OO software. The lack of encapsulation violates the 
security of classes and unexpected side effects may happen, 
which increases the possibility of software defects. 

Changes on abstraction: introducing new subclasses 
during software implementation adds more specializations and 
does not leave the room for flexibility of change. If an 
inheritance hierarchy is long then the complexity of software 
increases and software becomes harder to understand and 
maintain.  

Changes on messaging: introducing additional public 
methods (66 methods) causes more message passing (i.e. 
larger CIS) between classes. The impact of large messaging in 
implementation affects the coupling between classes and their 
complexity. It also has an adverse impact on software 
understandability. 

 

 
Fig. 1. The architecture of the secured Linux hard-disk encryption system 

VI.CONCLUSIONS AND FUTURE WORK 

A quantitative verification model for the correspondence 
between OO design and its implementation has been 
developed. The verification is based on using an OO metrics 
to measure the classes in design and implementation phases. It 
helps in the verification and validation processes, which saves 
time, effort, and rework. The technique uses internal 
properties of software (e.g. encapsulation, inheritance, and 
coupling) that are measured quantitatively using metrics. The 
software developer verifies the differences between metrics to 
estimate their magnitude on the software development. 
Software designs provide vital information about the 
developer’s view of software’s responsibilities, structure, and 
the collaboration among components. This eases the process 

Property Pairs in design vs. code 
Mean  
Diff. 

 
Sig.  

Pair 14 Inheritance - - 

Pair 2 Polymorphism -0.066 0.13 

Pair 3 Encapsulation 0.095 0.016 

Pair 4 Abstraction -0.09 0.019 

Pair 5 Coupling -1.13 0.003 

Pair 6 Composition 0.053 0.103 

Pair 7 Messaging -0.88 0.018 

Pair 8 Complexity -1.93 0.000 

OO Property 
Design vs. Code 

Mean 
Diff. 

Sig.  

Pair 3 Encapsulation 0.324 0.000 

Pair 4 Abstraction -0.190 0.042 

Pair 5 Coupling -2.809 0.020 

Pair 6 Composition 0.190 0.104 

Pair 7 Messaging -1.619 0.002 

Pair 8 Complexity -0.666 0.314 



of specifying where differences occur, which classes deviate 
from design, and which subsystems or packages or milestones 
have more deviation. From our analysis, the core components 
of the system tend to have higher probability of differences in 
source code from its design. Their roles in the software 
increase their tendency to the change; they maybe edited 
frequently in implementation but not in design. The developed 
verification model is extendible; many metrics and tests can be 
applied based on the verification intent. However, 
improvements can be done to enhance this model. First, the 
verification model does not verify the cohesiveness of 
software components. Since the design models of the case 
study does not include details such as parameters of methods 
and the interconnections among methods and attributes. This 
requires more empirical analysis on designs that offer the 
ability to collect cohesion metrics form the design models. 
Second, the verification model has been applied on one case 
study because there is a limitation to access full software 
designs without a discloser agreement with the software 
authors. We plan to conduct similar studies on more case 
studies. 
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APPENDIX I  
OO metrics to measure OO design and implementation properties. 

Property Metric Definition 

Inheritance: Forms the (is-a) relationship, and occurred when a new 
class inherits methods and attributes from an existing class. 

Measure of Functional Abstraction (MFA): The ratio of the number 
of methods inherited by a class to the total number of methods of 
the class (Range 0 to 1). 

Encapsulation: Allows hiding the attributes (data) and methods 
(behavior) into the class. Hiding the definitions in OO software is 
desirable to protect them from outside access. 

Data Access Metric (DAM): The ratio of the number of private and 
protected attributes to the total number of attributes declared in the 
class. Range is 0 to 1, and high values of DAM are desired. 

Polymorphism: Allows using the same name in different contexts in 
the same scope. 

Number Of Polymorphic Methods (NOP): This metric is a count of 
the methods that can exhibit polymorphic behavior, and such 
methods in C++ are marked as virtual. 

Abstraction: Measures the generalization-specialization aspect in 
design, in which the number of descents of a class is determined. 

Average Number of Ancestors (ANA): The average number of 
classes from which a class inherits information. It is determined by 
class inheritance structure in design by computing the number of 
classes along all paths from the root class to other classes in the 
inheritance structure. 

Coupling: Indicates the degree of relationship in which one class 
interacts with other classes through its interfaces to achieve its 
functionality properly. 

Direct Class Coupling (DCC): Count the different number of 
classes that a class is directly related to. It is determined through 
attributes declaration and message passing in methods. 

Messaging: Stands for the services that a class provides to other 
classes. 

Class Interface Size (CIS): The number of public methods in a 
class. 

Composition: Measures “part-of”, “has”, “consist-of” relationships, 
which are aggregation relationships in OO design. 

Measure of Aggregation (MOA): Counts the number of data 
declaration whose types are user defined classes, and it is realized 
by using attribute declaration. 

Complexity: Depicts the difficulty of understanding and tracing 
software design and its implementation. 

Number of Methods (NOM): The number of all methods defined in 
a class. It is equivalent to WMC [12]. 

 




