
An Empirical Verification of Software Artifacts
Using Software Metrics

 Raed Shatnawi and Ahmad Alzu’bi

Abstract—In model-driven development, design
understandability is very important to maintain software
systems. Software developers use the design models in their
endeavor to understand and maintain the final product.
Typically, software developers expect consistency between design
and implementation artifacts of a software system. However,
software systems may deviate from design. Software verification
is an important phase to prevent this deviation and to ensure that
developers are building the product right. There are few research
studies that were conducted to assess the correspondence of a
software implementation to its design. In this paper, we validate
the use of a hierarchal quality model to verify the correspondence
between design and implementation artifacts. We have conducted
this study on an open-source system that is built using C++. The
model has shown that we can discover the differences between
the design and implementation. We found that hierarchal models
could be used to find differences at the low-level design
properties and to find similarities at the architecture-level design
properties.

Index Terms— object-oriented metrics, software quality,
QMOOD.

I. INTRODUCTION

Software verification is very important to ensure that
software consistency is maintained among consecutive
software artifacts. Software verification has effect on both the
process and product quality. However software verification is
a time-consuming activity especially if worked only at later
stages. In a matured software development process, a planned
design (represented in models) is one way to ensure that the
implementation matches the design. The correspondence
between design and implementation artifacts is an indication
of the stability of the system. However, few business
requirements are stable [1] and change unexpectedly. The
changes vary depending on many factors such as when those
changes occur, the number of affected components, and the

nature of changes. Changes that force the developers to redo
major changes of the software are very costly, especially in the
implementation phase which requires more time, rework, and
review [2]. In addition, a lack of correspondence between
early software activities has a ripple effect on later process
activities such as testing and maintenance. The lack of
correspondence can occur for many reasons such as
implementation mismatch (e.g. by mistake or by purpose),
change of requirements, and the necessity to remove bugs [3].
In the Object-oriented (OO) paradigm, software systems are
composed of classes, methods, and attributes. These
components appear in both artifacts of the design and
implementation. The properties of these components are
measurable in both the design and implementation The OO
paradigm can be characterized using many properties such as
inheritance, polymorphism, and encapsulation. Assessing
quality by measuring internal properties offers an objective
and an independent view of the quality [4]. Therefore, we can
use these measurements to verify the quality of both design
and implementation artifacts, i.e., verify the conformance
between both artifacts. The aim of this research is to validate
a hierarchal quality model to verify the conformance between
OO design models, class diagrams in this research, and the
software implementation. The quality model uses metrics to
measure the internal properties to characterize both the design
and implementation. The model is validated empirically on an
open-source system—Turaya.Crypt—that is developed in
C++. The proposed model can be used to investigate the
differences between the design and implementation artifacts.
In addition, the model helps software designers to draw a link
between design and implementation phases to verify their
expectations. A paired t-test is conducted at several levels
(classes and subsystems) to provide an evidence of the
correspondence. This helps developers or testers conducting a
quantitative analysis to explore the conformance or the lack of
correspondence between design and implementation.

The rest of the paper is organized as follows: in Section 2,
we discuss the related work. In Section 3, the verification
methodology and the experiment model are illustrated. In
Section 4, research hypotheses are stated. In Section 5, the
verification model is applied on an OO software system. The
conclusions and future trends are discussed in Section 6.

II. RELATED WORK

An implementation is said to conform to its design if
everything that was designed is implemented [3]. Few
approaches have been proposed to verify or assess the
correspondence between a software design and its

Manuscript received December 06, 2010; revised February 09,
2011.

Dr. R. Shatnawi is an assistant professor in the Software
Engineering Department, Jordan University of Science and
Technology, Irbid, Jordan 22110, (phone: 011962777562690,
e-mail: raedamin@just.edu.jo.)

Ahmad Alzu’bi finished his master thesis from the
Computer Science Department, Jordan University of Science
and Technology, Irbid, Jordan 22110, (e-mail:
agalzoubi06@cit.just.edu.jo)

implementation. Techniques were developed to assess the
conformance based upon different measures and models. In
[3], authors developed quantitative techniques for the
assessment of correspondence between UML diagrams and
implementation. For the assessment of correspondence, they
used a metamodel which is inspired upon the UML
metamodel. For both design and implementation they
instantiate such a metamodel. The instantiation of the design
metamodel is a subset of the UML model. The same holds for
the implementation meta model. It is a subset of the actual
implementation where they left out all implementation details.
The correspondence between a design class and an
implementation class has expressed in terms of a similarity
value . They considered matching based on classifier names,
matching based on metric profiles and matching using
package information (i.e. structural properties of classifiers).
Deniss et al [3] used the software reflexion model to visualize
the differences between design and implementation using
implementation relations as inputs. In another study, Antoniol
et al. [5] have compared different traceability recovery
methods, based on different class properties. This technique
complements their previous works described in [6,7], which
was focused on the traceability procedure itself. The design is
modeled using OMT notations and the procedure accepts C++
source code. Both design and code are represented using a
custom OO design description language, the Abstract Object
Language (AOL). The process recovers an “as-is” design from
the code in AOL, compares the recovered design with the
actual AOL design, and helps the user to deal with
inconsistencies by providing a similarity measure for the
matched classes and pointing out the unmatched ones.
Antoniol’s et al. works [5]-[7] recovered design-code
traceability links by computing the similarity between each
pair of properties in design and code. They have used a
maximum likelihood classifier [5], to get an optimal threshold
value for the similarity measure. In another related model, a
software reflexion model [8] technique was developed. The
engineer defines a high-level model of interest, extracts a
source model (such as a call graph or event interactions) from
the source code, and defines a mapping between the two
models. A software reflexion model is then computed to
determine where the engineer's high-level model does or does
not agree with the source model. If the relationship occurs in
both the design and the implementation, then it is called a
convergence. If the relationship occurs in the design but is
absent in the implementation, then it is called an absence. If
the relationship occurs in the implementation but not in the
design, then it is called a divergence. All these studies about
the correspondence between software design and
implementation are different from our work in the conducted
strategy for design and its implementation traceability. Our
model uses a validated quality model (QMOOD) that assess
the evolution of a software product form design to
implementation. QMOOD can be used to measure both the
design and implementation. QMOOD measures the
components of a software system for eight OO properties.
Therefore, it verifies software quality for the OO paradigm.

III. THE VERIFICATION FRAMEWORK

This research introduces a new model for the verification of
the correspondence between design and implementation using
software metrics. The measurements of both artifacts are
derived from a hierarchal quality model [9] that was proposed
and validated on commercial software systems to assess
software evolution [10]. The intent of our verification
technique is completely different from the intent of the
QMOOD quality model. While the QMOOD model aims to
assess high-level design quality attributes in OO designs, our
research aims to verify the correspondence between software
design and implementation using OO metrics. QMOOD uses
eight OO metrics to measure design and implementation
properties. The properties are: inheritance, encapsulation,
polymorphism, abstraction, coupling, messaging, composition,
and complexity. Appendix I shows the definitions of these
properties and their measurements. The QMOOD is validated
on an OO system—Turaya.Crypt (Secure Linux Hard-Disk
Encryption) which consists of 75 classes. The system is based
on the microkernel-based EMSCB [11] security kernel in
Linux systems. This system consists of five subsystems which
are listed in Table 1. Both The UML diagrams for the design
phase and the source code files are available on EMSCB
online repository1. Multiple tools were used to collect the
metrics data to achieve higher accuracy. Two tools were used
to collect metrics from the source code: Resource Standard
Metrics (RSM)2 and Understand 2.03. Metrics from UML
diagrams were collected by hand.

TABLE 1

Turaya.Crypt subsystems

Subsystem Name #Classes

HddEncServer 21

LibUtils 25

Server GUI 19

Launcher 5

LinuxStub 5

Total 75

IV.RESEARCH HYPOTHESES

To verify the significance of the correspondence between
software design and implementation, a set of hypotheses are
stated for the internal properties. We conduct the verification
at two levels (classes and subsystemes). Therefore, we want to
validate the following hypotheses for both levels. The Null
hypotheses (H01 to H08) of the internal properties:
 H01c to H08c: There is no significant difference in a

quality property between design and implementation at the
class level.

1 http://svn.emscb.org/svn/emscb/trunk/apps/hddenc/.
2 http://msquaredtechnologies.com.
3 http://www.scitools.com/prodcts/understand.

 H01s to H08s: There is no significant difference in a
quality property between design and implementation at the
subsystem level.

For each null hypothesis, the letter (c) stands for class level
and the letter (s) stands for subsystem level. To accept or
reject these hypotheses, we use the paired t-test at the 95%
confidence level [13, 14]. The significant value in this test
decides whether the hypothesis is rejected or not. If the
significance value of the samples (design and code) is larger
than or equal to 0.05 then there is no significant difference,
and the null hypothesis cannot be rejected, i.e., there is no
significant difference in a quality property between design and
implementation. Otherwise, the null hypothesis is rejected.

V. VERIFICATION ANALYSIS

In this section, our verification technique is applied on
Turaya.Crypt system (EMSCB 2006). The collected metrics
are described statistically. These metrics are verified using the
paired t-test at two levels: all classes (for design and code) in
the system, and all classes of each subsystem.

A. DESCRIPTIVE STATISTICS

For Turaya.Crypt system, the mean, standard deviation,
maximum, and minimum values for the system classes are
calculated. Table 2 lists these values for all metrics. These
descriptive values help us to observe the differences between
the properties of design and implementation. For example,
MFA shows no mean differences between design and
implementation. Although we can use the mean to compare
the effect of implementation, we cannot draw conclusions
without conducting a statistical test which we discuss
thoroughly in next sections. From Table 2, we notice that the
DAM’s mean is smaller for implementation which is an
indication of encapsulation violations. NOP’s mean is also
smaller for implementation which is a sign of flexibility
reduction in the code. ANA and DCC mean values indicate an
increase in the inheritance and coupling during
implementation. CIS and NOM mean values increase for
implementation which indicate that classes’ complexity
increase as well.

TABLE 2

Descriptive statistics for all classes of Turaya.Crypt system

Metric
Mean Stdev.

Des. Imp. Des. Imp.
MFA 0.06 0.06 0.19 0.19
DAM 0.58 0.49 0.44 0.41
NOP 0.20 0.15 0.55 0.75
ANA 0.15 0.24 0.36 0.49
DCC 1.60 2.75 1.46 3.71
CIS 5.85 6.73 5.67 7.14
MOA 1.48 1.43 1.49 1.44
NOM 6.40 8.33 6.11 7.73

B. PROPERTIES OF CLASSES

In this section, we discuss the paired t-test results for the
internal properties at the class level which are summarized in
Table 3. From Table 3, the decisions for the null hypotheses
H01c, H02c, and H06c are accepted, i.e. there is no significant
difference in these properties in design and implementation.
While H03c, H04c, H05c, H07c, and H08c hypotheses are
rejected, i.e. there is a significant difference in these properties
in design and implementation. These differences are design
violations that hinder software maintainability. We notice that
low-level changes are more common in implementation and
therefore there were significant differences on the properties
such as encapsulation, abstraction, coupling, messaging and
complexity. Whereas no significant design violations on
higher-level design elements such as inheritance,
polymorphism and composition.

C. PROPERTIES OF SUBSYSTEMS

The results in the previous section stand for all classes (i.e.,
75 classes). In this section, the calculations are repeated for
the class pairs at the subsystems level. We have conducted the
paired t-test for each subsystem that has enough number of
classes. Table 4 shows the results of the paired t-test on the
server subsystem. Inheritance and polymorphism properties
(i.e. pairs 1 and 2 respectively) do not appear in Table 4. In
this test, if the standard error of the difference is zero for a
particular property, the statistics cannot be computed. If the
hypothesis is accepted, it is indicated by () symbol.
Otherwise, the hypothesis is rejected (i.e. sig<0.05). As
shown in Table 5, the HddEnc Server subsystem have the
lowest degree of correspondence for their internal properties
in design and code. Four properties have significant
differences. Fig. 1 shows that the Server subsystem is the core
of the Turaya.Crypt system, which explains the reason why
this subsystem has the most inconsistencies. The Server
subsystem complexity is larger than others. This verification
explores where the software programmer or developer have a
difficulty in transforming the design artifacts into source code.

D. DISCUSSION

We can use the QMOOD to specify which parts (i.e.
subsystems and classes) of the software system have
differences and their effects on the software structure and
quality needs. The tester or developer has many quantitative
indicators to conduct the correspondence verification. In this
study, we found some properties that have an explicit evidence
of the correspondence, but others have a lack of
correspondence. Inheritance, polymorphism and composition
have the highest correspondence level. The differences and
their possible effects on software properties are caused by
micro changes during implementation. These changes can be
summarized as follows:

Changes on complexity: software designers may not have
a complete conception of how to achieve the functionality of
the class or the object. New additional methods (i.e. larger
NOM) are introduced in the implementation but missed in the
design. One reason for adding methods is the change of

software needs during implementation, but this change is not
reflected to design models [5]. For Turaya.Crypt, there are 145
additional methods in the implementation (i.e. 66 public, 68
private, and 11 protected). The classes in the implementation
tend to be more complex than those in the design.

TABLE 3

Paired t-test’s results of all internal properties

 TABLE 4

The results of paired t-test applied on properties of server subsystem

TABLE 5
Results of paired t-test for subsystems

Property All
HddEnc
Server

GUI LibUtils

Inheritance    

Polymorphism    

Encapsulation 

Abstraction  

Coupling 

Composition    

Messaging 

Complexity 

Changes on Coupling: adding public methods increases

the accessibility for other classes to those methods. If public
methods are used by another software component, this causes
an additional dependencies between software components and
decreases system understandability.

Changes on encapsulation: introducing new private and
protected attributes (i.e. larger DAM values) in

4 The results of inheritance property (Pair 1) do not appear in the Table 3
because the standard error of mean equals zero. The statistics cannot be
computed.

implementation (78 public, 87 private, and 3 protected
attributes) have less impact on the correspondence than public
methods. This is because the private attributes are accessible
only by other members in the class, and the protected
attributes are accessed locally. Encapsulation and information
hiding are considered to be a convenient programming tactic
in OO software. The lack of encapsulation violates the
security of classes and unexpected side effects may happen,
which increases the possibility of software defects.

Changes on abstraction: introducing new subclasses
during software implementation adds more specializations and
does not leave the room for flexibility of change. If an
inheritance hierarchy is long then the complexity of software
increases and software becomes harder to understand and
maintain.

Changes on messaging: introducing additional public
methods (66 methods) causes more message passing (i.e.
larger CIS) between classes. The impact of large messaging in
implementation affects the coupling between classes and their
complexity. It also has an adverse impact on software
understandability.

Fig. 1. The architecture of the secured Linux hard-disk encryption system

VI.CONCLUSIONS AND FUTURE WORK

A quantitative verification model for the correspondence
between OO design and its implementation has been
developed. The verification is based on using an OO metrics
to measure the classes in design and implementation phases. It
helps in the verification and validation processes, which saves
time, effort, and rework. The technique uses internal
properties of software (e.g. encapsulation, inheritance, and
coupling) that are measured quantitatively using metrics. The
software developer verifies the differences between metrics to
estimate their magnitude on the software development.
Software designs provide vital information about the
developer’s view of software’s responsibilities, structure, and
the collaboration among components. This eases the process

Property Pairs in design vs. code
Mean
Diff.

Sig.

Pair 14 Inheritance - -

Pair 2 Polymorphism -0.066 0.13

Pair 3 Encapsulation 0.095 0.016

Pair 4 Abstraction -0.09 0.019

Pair 5 Coupling -1.13 0.003

Pair 6 Composition 0.053 0.103

Pair 7 Messaging -0.88 0.018

Pair 8 Complexity -1.93 0.000

OO Property
Design vs. Code

Mean
Diff.

Sig.

Pair 3 Encapsulation 0.324 0.000

Pair 4 Abstraction -0.190 0.042

Pair 5 Coupling -2.809 0.020

Pair 6 Composition 0.190 0.104

Pair 7 Messaging -1.619 0.002

Pair 8 Complexity -0.666 0.314

of specifying where differences occur, which classes deviate
from design, and which subsystems or packages or milestones
have more deviation. From our analysis, the core components
of the system tend to have higher probability of differences in
source code from its design. Their roles in the software
increase their tendency to the change; they maybe edited
frequently in implementation but not in design. The developed
verification model is extendible; many metrics and tests can be
applied based on the verification intent. However,
improvements can be done to enhance this model. First, the
verification model does not verify the cohesiveness of
software components. Since the design models of the case
study does not include details such as parameters of methods
and the interconnections among methods and attributes. This
requires more empirical analysis on designs that offer the
ability to collect cohesion metrics form the design models.
Second, the verification model has been applied on one case
study because there is a limitation to access full software
designs without a discloser agreement with the software
authors. We plan to conduct similar studies on more case
studies.

REFERENCES
[1] I. Sommerville, Software Engineering. 8th ed. Addison Wesley, 2006.
[2] R. Pressman, Software Engineering: A Practitioner's Approach. 6th

ed. Professional computing series: McGraw-Hill. pp. 461–497, 2005
[3] J. Dennis, F. Christian and R. Michel, "Quantitative Techniques for

the Assessment of Correspondence between UML Designs and

Implementations," Proceedings of the 9th QAOOSE workshop, co-
located with ECOOP 2005.

[4] G. Dormey, "A Model for Software Product Quality," In IEEE Trans.
Software Eng.,vol. 21, no. 2. pp. 146–162, 1995.

[5] G. Antoniol, B. Caprile, A. Potrich and P. Tonella, "Design-code
traceability recovery: selecting the basic linkage properties," Science
of Computer Programming, vol. 40, no. 2-3, pp. 213–234, 2001.

[6] G. Antoniol, A. Potrich, P. Tonella and R. Fiutem, "Evolving Object
Oriented Design to Improve Code Traceability," In Proc. of the
International Workshop on Program Comprehension. Pittsburgh, PA,
pp. 151–160, 1999.

[7] G. Antoniol, B. Caprile, A. Potrich and P. Tonella, “Design-code
traceability for object-oriented systems”, Annals of Software
Engineering, pp. 35–58, 2000.

[8] C. Murphy, N. David and S. Kevin, "Software reflexion models:
bridging the gap between source and high-level models," SIGSOFT
Software. Eng. Notes, vol. 20, no.4. pp.18–28, 1995.

[9] J. Bansiya and C. Davis, "A Hierarchical Model for Quality
Assessment of Object-Oriented Designs," IEEE Transactions of
Software Engineering, vol. 28, no. 1. pp. 4-17, 2002.

[10] Bansiya J., A Hierarchical Model for Quality Assessment of Object-
Oriented Designs. PhD Dissertation, Univ. of Alabama in Huntsville,
1997.

[11] EMSCB -European Multilaterally Secure Computing Base, “Turaya: Secure
Linux Hard-Disk Encryption. Milestone No1. Documentation”, available at
www.emscb.com/content/pages/turaya.downloads.htm. (last accessed 27/6/2009),
2006.

[12] R. Chidamber and F. Kemerer, "A Metrics Suite for Object Oriented
Design," IEEE Transactions on Software Engineering, vol. 20, no. 6,
pp. 476–493, 1994.

[13] Goulden C., Methods of Statistical Analysis, 2nd ed. New York:
Wiley, pp. 50–55, 1956.

[14] Pearson E. and Kendall M. (eds.), Studies in the History of Statistics
and Probability. Darien, Conn: Hafner Publishing Company., 1970.

APPENDIX I
OO metrics to measure OO design and implementation properties.

Property Metric Definition

Inheritance: Forms the (is-a) relationship, and occurred when a new
class inherits methods and attributes from an existing class.

Measure of Functional Abstraction (MFA): The ratio of the number
of methods inherited by a class to the total number of methods of
the class (Range 0 to 1).

Encapsulation: Allows hiding the attributes (data) and methods
(behavior) into the class. Hiding the definitions in OO software is
desirable to protect them from outside access.

Data Access Metric (DAM): The ratio of the number of private and
protected attributes to the total number of attributes declared in the
class. Range is 0 to 1, and high values of DAM are desired.

Polymorphism: Allows using the same name in different contexts in
the same scope.

Number Of Polymorphic Methods (NOP): This metric is a count of
the methods that can exhibit polymorphic behavior, and such
methods in C++ are marked as virtual.

Abstraction: Measures the generalization-specialization aspect in
design, in which the number of descents of a class is determined.

Average Number of Ancestors (ANA): The average number of
classes from which a class inherits information. It is determined by
class inheritance structure in design by computing the number of
classes along all paths from the root class to other classes in the
inheritance structure.

Coupling: Indicates the degree of relationship in which one class
interacts with other classes through its interfaces to achieve its
functionality properly.

Direct Class Coupling (DCC): Count the different number of
classes that a class is directly related to. It is determined through
attributes declaration and message passing in methods.

Messaging: Stands for the services that a class provides to other
classes.

Class Interface Size (CIS): The number of public methods in a
class.

Composition: Measures “part-of”, “has”, “consist-of” relationships,
which are aggregation relationships in OO design.

Measure of Aggregation (MOA): Counts the number of data
declaration whose types are user defined classes, and it is realized
by using attribute declaration.

Complexity: Depicts the difficulty of understanding and tracing
software design and its implementation.

Number of Methods (NOM): The number of all methods defined in
a class. It is equivalent to WMC [12].

