

Abstract— Object Oriented (OO) features such as

inheritance, polymorphism, and dynamic binding provide not

only efficient development of software for even complex system,

but also new challenges for software testing. Recently, more

and more researchers have realized that UML models can be a

source for software testing. We propose POLYmorphism State

SEquence TEst Model (POLYSSETEM) generated from Class,

Sequence, and State Chart diagrams for testing state-based

polymorphic methods between objects for OO testing.

Index Terms— OO Testing, Polymorphic Interaction Graph,

UML, Software Test Modeling

I. INTRODUCTION

BJECT Oriented (OO) Design provides three main

features to improve the quality of software

development-i.e., inheritance, polymorphism, and dynamic

binding. However, on the other hand, these features make

traditional software testing difficult to adapt to OO based

software testing. To resolve the challenges, several

approaches have recently been proposed, and one of them is

that test cases are generated from UML diagrams, such as a

Sequence Diagram, a State Chart Diagram, and an Activity

Diagram, and so on. It is obvious that the generation of test

cases at an early stage of the software development process,

especially design phase, makes coding and testing executed

in parallel as well as early detection of a fault. Debasish

Kundu et al. [1] proposed an approach for system testing

with prioritized test cases generated from a Sequence

Diagram. Shaukat Ali et al. [5] proposed a state-based

technique that combines Collaboration and State Chart

Manuscript received December 07, 2010; revised January 08, 2011.

Ching-Seh Wu is an Assistant Professor in the Department of Computer

Science and Engineering at Oakland University, Rochester, MI 48039,

USA. His current research interests include Software Engineering,

Software Testing, Web Service, and distributed computing. (e-mail:

cwu@oakland.edu).

Wei-Chun Chang is an Assistant Professor in the Department of

Computer Science and Engineering at Oakland University, Rochester, MI

48039, USA. His current research interests include Software Engineering,

Web Service, and Evolution Computing. (e-mail: chang234@oakland.edu).

Sangsig Kim is a doctoral student in the Department of Computer

Science and Engineering at Oakland University, Rochester, MI 48039,

USA. He is currently working on his research in the area of Software

Software Modeling. (e-mail: skim2345@oakland.edu).

Chi-Hsin Huang is a doctoral student in the Department of Computer

Science and Engineering at Oakland University, Rochester, MI 48039,

USA. He is working on dissertation research in the area of Software

Testing and Web Service. (e-mail: chung2@oakland.edu).

Diagrams to automatically generate test cases. Monalisa

Sarma and Rajib Mall [4] proposed a methodology to

generate test cases from Use Case and Sequence diagrams.

Huo Yan Chen et al. [3] proposed approaches to transform

UML Interaction Diagrams into contract specification for

OO testing. However, none of approaches deal with

polymorphic information during OO testing.

A Sequence Diagram which describes interactions

between objects does not include polymorphic information,

and the information is described by a Class Diagram.

Therefore, both Class Diagram and Sequence Diagram need

to be combined to be transformed into a polymorphic graph

for polymorphic integration testing. Zhou Hang et al. [2]

proposed a polymorphism graph, which is called

Polymorphism Extend Class tuple Object Method Acyclic

Graph (PECOMAG) generated from Class and Sequence

Diagrams. Similarly, Zeng et al. [7] proposed Polymorphic

Class of Interprocedural Restricted Control Flow Graph

(PCIRCFG) for polymorphic testing created from Class and

Collaboration Diagrams. However, these two approaches

only focus on polymorphic testing, not including object

states. There is no approach published so far from the

research to deal with state-based polymorphic OO testing.

This paper proposes an integration approach to resolve

challenges problems for the state-based polymorphic OO

integrated testing from Class, Sequence, and State Chart

diagrams.

The rest of the paper is organized as follows. Section 2

describes the proposed approach of State-based Polymorphic

Interaction Graph. An example for the proposed approach is

illustrated in section 3. Section 4 concludes the contributions

of this paper.

II. STATE-BASED POLYMORPHIC INTERACTION GRAPH

A. Overall Process for OO Testing

In this paper, we propose a general technique to test the

interaction among classes as described in Figure 1. At first,

we check consistency between two different UML diagrams.

Then we try to combine UML diagrams to generate Graph

which is an intermediate testing model. The Graph then is

used to generate Test Paths based on coverage criteria. The

testing objective is implemented by generating a graph-

based testing model and by covering all paths in the model.

The proposed technique can be applied during the

Generating State-based Polymorphic Interaction

Graph from UML Diagrams for Object Oriented

Testing

Ching-Seh Wu, Wei-Chun Chang, Sangsig Kim and Chi-Hsin Huang

O

integration test phase, right after the completion of class

testing. It consists of the following four steps:

Graph Generation:

Before constructing the graph, a consistency among UML

diagrams (ex. Sequence diagram and State charts) has to be

checked. If the two UML diagrams are inconsistent, the

generated graph will contain some problems which may lead

to generation of incorrect test paths. Tools such as IBM

Rational Rose can be used for checking the consistency.

After checking consistency between UML diagrams, the

graph can be constructed from UML diagrams.

Test paths Generation:

The test paths are generated from the Graph based on

several alternative coverage criteria (ex. Single-Path, All-

Transition, n-Path, All-Path coverage [8]).

Test Execution:

 All selected test paths execute with test data and object

state invariants. Test data are generated manually and object

states are determined using state invariants. Object states

will be recorded in Execution Log through test executor.

Result Evaluation:

 Result evaluator compares the object states in the

execution log with the expected object states.

Fig. 1. Overall process for OO testing.

B. POLYSSETEM Generation

Of four steps in the overall process, the graph generation

step which is related to the rectangle box in Figure 1 is only

focused in the paper. Generating the graph, which is called

POLYmorphism State SEquence TEst Model

(POLYSSETEM), for state-based polymorphic OO testing

consists of three steps: State Sequence TEst Model

(SSETEM) generation, Polymorphism Extend Class tuple

Object Method Acyclic Graph (PECOMDAG) generation,

and POLYSSETEM generation. The SSETEM generation is

based on Shaukat’s approach. Shaukat Ali et al. [5]

proposed how to generate a graph called State Collaboration

TEst Model (SCOTEM) from collaboration and State Chart

diagrams. A sequence diagram can be used instead of a

Collaboration Diagram, since the Collaboration Diagram

basically describes the same information as the Sequence

Diagram. However, there is no way to describe polymorphic

information in the SSETEM. This is the reason why the

SSETEM needs to be combined with the PECOMDAG

proposed by Zhou Hang et al. [2]. The polymorphic

information is describes in the PECOMDAG.

Finally, for the POLYSSETEM generation, definitions

used in PECOMDAG approach are extended. Figure 2

shows how to generate POLYSSETEM, and the following

subsections deals with each generation in detail.

Fig. 2. POLYSSETEM generation.

.
1) SSETEM Generation

Shaukat Ali et al. [5] describe the way to create SCOTEM

from State Chart and Collaboration Diagrams. Here, the way

how to construct SSETEM is only described. Detailed

information can be referenced in [5]. To construct the

SSETEM model for newProblem(), starting from the

sequence diagram. In the SSETEM, one or more vertices are

created for each class in the Sequence Diagram. A class in

Sequence Diagram consists of multiple vertices in SSETEM.

And a class also represents various states in which class can

receive the incoming messages. Vertices act as placeholders

for objects and have labels form X@S for classes. The X is

the class name and S is the state identifier as represented in

the state chart. For example, the label StopWatch@Running

shows as an instance of the StopWatch class and the state is

Running at this vertex. For non-modal classes, vertex labels

form X@X. For example, the label

ProblemGenerator@ProblemGenerator would be written for

the ProblemGenerator vertex. The null vertex in Figure 3 is

a dummy vertex that models an external message. The

message edges present as a solid line and are labeled with

the message sequence numbers as in the sequence diagram.

The transition edges present as a dotted lines and are labeled

with a condition.

Some of test model through SSETEM generation is

captured in Figure 3. The Coordinator object invokes

updatePerformance method defined in

PerformanceRequlator class if a size of the value returned

from ProblemGenerator object is not zero (1.2). However,

given that PerformanceRegulator class is defined as an

inheritance relationship and the updatePerformance method

is defined as polymorphic method by a child class, such

polymorphic information between parent and child classes

cannot be described in the SSETEM. Prior to dealing with

the problem, several definitions used in the PECOMDAG

generation need to be observed.

 Fig. 3. SSETEM from SSETEM generation.

2) PECOMDAG Generation

Zhou Hang et al. [2] proposed how to create PECOMDAG

from Class and Sequence diagram to describe polymorphic

interaction testing. All definitions specified in the paper are

a kind of summary which is important to understand the

extended definition in POLYSSETEM.

A Class Tuple of a class (c) is defined as follows:

CT(c) = < class name, {<Parent CT>}, {<Attribute>},

{<newMethod>}, {<inheritMethod>}>

The Class Set of Polymorphic Methods (CSPM) is

defined as the following form:

CSPM(c, m) = { CT(ci) | c  {< Parent CT >} of ci  m 

{< newMethod >} of ci} U {CT(c)}

 In order words, CSPM(c,m) is to return a class set whose

member has polymorphic methods in an inheritance

relationship. For example, let class A be a parent class and

m() method is defined in the A class. Let class B, C, D be a

child class of the A class and each class has m() method in

the polymorphic format. Then, CSPM(A,m) is {CT(A),

CT(B), CT(C), CT(D)}.

The Object Method Directed Acyclic Graph (OMDAG)

represents the dynamic information in a sequence diagram.

The OMDAG is a tuple <V, E, s> where V is a set of

vertices, E is a set of edges, and s is the starting vertex. Each

vertex is defined as the tuple v = <o, m, {ARGS}, c>, where

o is an object, m is a method, ARGS is a set of arguments,

and c is a class name. The tuple v can be extended as

follows, with combining a class tuple. v = <o, m, {ARGS},

CT(c1), CT(c2)> where CT(c1) is the class which object o is

its instance, and CT(c2) is the class which includes called m.

The combined tuple v is also extended as follows for

representing polymorphic information: EV = {<o, m,

{ARGS}, CT(c1), CT(c2)> | c2  CSPM(c,m)}.

 An example for the PECOMDAG generation is

illustrated. Figure 4 and Figure 5 show a Class Diagram and

a Sequence Diagram for the landedOn method, respectively.

For the example, CSPM(Square, landedOn) and vertices for

the Sequence Diagram as follow in turn.

Player

+landedOn()

Squarelocation

+landedOn()

RegularSquare

+landedOn()

GoSquare

+landedOn()

IncomeTaxSquare

Fig. 4. Class diagram for polymorphic landedOn

p:Player :Cup :Board loc:Square

takeTven

roll

tvTot=getTotal

loc = getSquare(loc,fvTot)

landedOn(p)

 Fig. 5. Sequence diagram for landedOn

CSPM(Square, landedOn) = {CT(Square),

CT(RegularSquare), CT(GoSquare),

CT(IncomeTaxSquare)}

v1 = S = <p, roll, <null>, CT(Player), CT(Cup)>

v2 = <p, getTotal, <null>, CT(Player), CT(Cup)>

v3 = <p, getSquare, <loc, fvTot>, CT(Player), CT(Board)>

v4 = <p, landedOn, <p>, CT(Player), CT(Square)>

V = {v1, v2, v3, v4}

 From above information, COMDAG for the sequence

diagram is described as Figure 6. The result of

PECOMDAG for the polymorphic information is shown in

Figure 7.

 Fig. 6. COMDAG

Fig. 7. PECOMDAG.

3) POLYSSETEM Generation

The POLYSSETEM is generated from SSETEM and

PECOMDAG. For representing state and polymorphism

information, an extended vertex needs to be defined. A

definition of the extended vertex is as the following form:

V = {<o, m, {ARGS}, {STATE}, CT(c1), CT(c2)> | c2 

CSPM(c,m)}

A definition of an edge is the same as one of PECOMAG.

E = { < vi, vj > | vj  v} U {< vj, vk > | vj  v }

Let class A, B, and C be a child class of

PerformanceRegulator, and each class has overridden

updatePerformance and three states, then POLYSSETEM

will be shown in Figure 8.

Fig. 8. POLYSSETEM for updatePerformance()

For the POLYSSETEM, each vertex is defined as follows:

v1 = S= <actor, newProblem, {operation}, {ST},

CT(ACTOR), CT(Coordinator)>

v1.1 = <Coordinator, generate, {operation}, {ST},

CT(Coordinator), CT(ProblemGenerator)>

v1.2 = <Coordinator, updatePerformance, {value},

{Novice, Intermediate, Expert}, CT(Coordinator),

CT(PerformanceRegulator)>

v1.21 = <Coordinator, updatePerformance, {value}, { s1, s2,

s3}, CT(Coordinator), CT(A)>

v1.22 = <Coordinator, updatePerformance, {value}, { s1, s2,

s3}, CT(Coordinator), CT(B)>

v1.23 = <Coordinator, updatePerformance, {value}, {s1, s2,

s3}, CT(Coordinator), CT(C)>

…

V = {v1, v1.1, v1.1.1, v1.1.2, …, v1.2, v1.21, v1.22, v1.23,

…}

A set of edges is as the following form:

E = {<v1, v1.1>, <v1.1, v1.2>, <v1.1, v1.1.1>, <v1.1,

v1.1.2>, …, <v1, v1.2>, <v1, v1.21>, <v1, v1.22>, <v1,

v1.23>, …}

Therefore, POLYSSETEM G = {V, E, null}

III. EXAMPLE

 A simple library system for verifying the approach is

illustrated as an example. A simple specification in the

library is as follows:

Books and journals The library contains books and

journals. It may have several copies of a given book. Some

of the books are for short term loans only. All other books

may be borrowed by any library member for three weeks.

Members of the library can normally borrow up to six items

at a time, but members of staff may borrow up to 12 items at

one time. Only members of staff may borrow journals.

Borrowing The system must keep track of when books and

journals are borrowed and returned, enforcing the rules

described above.

From the specification, class diagrams and sequence

diagram for library, and state chart diagram for book are

described in Figure 9, 10, and 11, respectively.

Book

CopyLibraryMember

MemberOfStaff Journal

1

1..*

is a copy of

1 0..*borrows/returns

1 0..*borrows/returns

 Fig. 9. Class diagrams for library.

theLibraryMember:LibraryMember theCopy:Copy theBook:Book

aMember : BookBorrowerborrow(theCopy)

1: okToBorrow

2: borrow

2.1: borrowed

 Fig. 10. Sequence diagram for borrow

not borrowable borrowable

returned()

Borrowed()[last copy]

returned()

Borrowed()

[not last copy]

 Fig. 11. State chart diagram for class book.

First, SSETEM is generated from Sequence and State

Chart diagrams and is shown in Figure 12.

Fig. 12. SSETEM for library.

Secondly, CSPM (LibraryMember,borrow) =

{CT(LibraryMember), CT(MemberOfStaff}, since

LibraryMember and MemberOfStaff classes are an

inheritance relationship from the class diagram and sequence

diagram. Figure 13 shows PECOMDAG.

Fig. 13. PECOMDAG for library.

v1=<theLibraryMember, okToBorrow, <null>,

CT(LibraryMember), CT(LibraryMember)>

v2=<theLibraryMember, borrow, <null>,

CT(LibraryMember), CT(Copy)>

v2.1=<theCopy, borrowed, <null>, CT(Copy), CT(Book)>

Finally, POLYSSETEM is created by combining

SSETEM with PECOMDAG and is represented in Figure

14.

Fig. 14. POLYSSETEM

IV. CONCLUSION

In this paper, our approach focuses on creating a graph

from UML diagrams for state-based polymorphic testing; in

other words, our main contribution is to generate

POLYSSETEM from Class, Sequence, and State Chart

diagrams for OO integration testing, representing states of

objects and polymorphic information on the test model. For

verifying our approach, the simple library example is

illustrated.

There are several works in the future: defining metrics for

testing, creating test cases from POLYSSETEM, and doing

more case studies for a verification of the graph generation.

REFERENCES

[1]. Debasish Kundu, Monalisa Sarma, Debasis Samanta, and Rajib

Mall, System testing for object-oriented systems with test case

prioritization, Software Testing, Verification, and Reliability, Indian

Institute of Technology, 2009

[2]. Hang Zhou, Zhi-qiu Huang, Li Wang, and Liang Chen, Automated

Metrics for Industrial Applications Software Polymorphic

Interactions, 2008.

[3]. Huo Yan Chen, Chuang Li, and T. H. Tse, Transformation of UML

Interaction Diagrams into Contract Specifications for Object

Oriented Testing, 2007.

[4]. Monalisa Sarma and Rajib Mall, Automatic Test Case Generation

from UML Models, International Conference on Information

Technology, Indian Institute of Technology, 2007.

[5]. Shaukat Ali, Lionel C. Briand, Muhammad Jaffar-ur Reman, Hajra

Asghar, Muhammad Zohaib Z. Iqbal, Amaer Naddem, A state-based

approach to integration testing based on UML models, Information

and Software Technology, 2007.

[6]. Siros Supavita and Taratip Suwannasart, Testing Polymorphic

Interactions in UML Sequence Diagrams, ChulalongKorn University,

Thailand 10330, 2005.

[7]. Yi Zeng, Lian-Ping Chen, Yan-Xin Chai, Xin Zhou, UML-based

Approach to Generate Polymorphic Testing Sequence and its

Implementation, World Congress on Software Engineering,

Chongqing University, Chongqing 400030, 2009.

[8]. Paul Ammann and Jeff Offutt, Introduction to Software Testing, 1st

Edition, ISBN-10: 0521880386, Cambridge University Press,

January 28, 2008.

