
  
Abstract — This paper presents an application of a fuzzy 
programming approach for multiple objectives to the 
aggregate production planning (APP). The parameters levels 
have been applied via a case study from the SMEs company in 
Thailand. The proposed model attempts to minimise total 
production cost and minimise the subcontracting units. 
Conventional harmony search algorithm (HSA) with its 
hybridisations of the global best harmony search (GHSA) and 
the variable neighbourhood search of the HSA (VHSA) are 
applied for fine aggregate production planning. Based on the 
experimental results, it can be concluded that the proposed 
VHSA is more effective than the other approaches in terms of 
superiority of solution and required CPU time. The basic idea 
is the change of neighbourhoods during searching for a better 
solution. The hybridisations proceed by a descent method to a 
local minimum exploring then, systematically or at random, 
increasingly distant neighbourhoods of this local solution. The 
proposed model yields an efficient compromise solution and the 
overall levels of decision making satisfaction with the multiple 
objectives. 

Index Terms—Aggregate Production Planning, Fuzzy 
Programming, Harmony Search Algorithm, Global Best 
Harmony Search Algorithm, Variable Neighbourhood Search 
Harmony Search Algorithm. 
 

I. INTRODUCTION 
Most manufacturing companies in Thailand [1] do not 

perform appropriate production planning even though it 
plays an important role for the companies. This may be the 
result from the following issues. Firstly, production planning 
system is not available. Secondly, manufacturing companies 
in Thailand are not interested in the mathematical model of 
production systems including related complex approaches to 
solve such models. Thirdly, manufacturing companies 
require an approach that is easy to understand and verify in 

 
Manuscript received January 7, 2011; revised January 28, 2011. This 

work was supported by the National Research University Project of 
Thailand Office of Higher Education Commission. The authors wish to 
thank the Faculty of Engineering, Thammasat University, THAILAND for 
the financial support.  
  *P. Aungkulanon is a Ph. D. Candidate, the Industrial Statistics and 
Operational Research Unit (ISO-RU), Department of Industrial 
Engineering, Faculty of Engineering, Thammasat University, 12120, 
THAILAND. [Phone: (662)564-3002-9; Fax: (662)564-3017; e-mail: 
pasurachacha@hotmail.com, lpongch@engr.tu.ac.th].  

B. Phruksaphanrat is an Assistant Professor, ISO-RU, Department of 
Industrial Engineering, Faculty of Engineering, Thammasat University, 
12120, THAILAND. 

P. Luangpaiboon is an Associate Professor, ISO-RU, Department of 
Industrial Engineering, Faculty of Engineering, Thammasat University, 
12120, THAILAND. 

 

order to easily convince their management team to agree 
with its solution. Finally, an approach should not require the 
additional investment on any expensive software due to the 
ongoing economic crisis in Thai industries. Based on those 
problems this paper intends to provide another solution for 
developing aggregate production plans to decrease the 
production cost.  

Aggregate production planning or APP [2, 3] is 
concerned with the determination of production, inventory, 
and workforce levels to meet fluctuating demand 
requirements over a planning horizon that approximately 
ranges from six months to one year [4, 5]. Typically, the 
planning horizon incorporates the next seasonal peak in 
demand. The planning horizon is often divided into periods. 
Given demand forecasts for each period of a finite planning 
horizon, the APP specifies production levels, workforce, 
inventory levels, subcontracting rates and other controllable 
variables in each period that satisfy anticipated demand 
requirements while minimising the relevant cost over that 
production planning horizon. The fluctuations in customer’s 
demand can be absorbed by adopting one of the following 
conventional strategies. 

Firstly, the production rate can be altered by affecting 
changes in the workforce through hiring or laying off 
workers. Secondly, the production rate can also be altered 
by maintaining a constant labour force but introducing 
overtime or idle time. Thirdly, the production rate may be 
kept on a constant level and the fluctuations in demand met 
by altering the level of subcontracting. Finally, the 
production rate may be kept constant and changes in 
demand absorbed by changes in the inventory level. Any 
combination of these strategies or alternatives is possible. 
The concern of the APP is to select the strategy with the 
least cost to the manufacturing companies. This problem has 
been under an extensive discussion and several alternative 
methods for finding an optimal solution have been 
suggested in the literature [6, 7]. 

II. AGGREGATE PRODUCTION PLANNING (APP) 

A. Multi-Objective Linear Programming (MOLP) Model 
to APP 
Objective functions of the APP model are to minimise the 

total production cost (Z1) and to minimise subcontracting 
units (Z2). The total production cost composes of permanent 
worker salary, temporary worker wage, overtime cost of 
permanent and temporary workers, hiring and laying off cost 
of temporary workers and inventory holding cost over a 
specific number of m monthly planning periods in the 
planning horizon. In this model, the overtime costs of 
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permanent and temporary workers during workdays and 
holidays are different. The decision variables are as follow. 

 
W    = the number of permanent workers 
TW(t)   = the number of temporary workers in period t 
H(t)  = the number of temporary workers to be hired at 

the beginning of period t  
L(t)  = the number of temporary workers to be laid off 

at the end of period t 
OWn(t)   = overtime man-hours of permanent worker 

during normal workday in period t 
OTWn(t)  = overtime man-hours of temporary worker during 

holiday in period t 
P(t)       = total production quantity in period t 
I(t)       = inventory level in period t  
Sub(t)    = amount of subcontracted unit in period t 
 

Moreover, there are some related parameters in the 
model. n(t) and h(t) are the number of normal workdays and 
holidays that can apply OT in period t, respectively. RH and 
OHn are the number of regular working hours and allowable 
overtime hours in each normal workday, respectively. MIN 
W and Max W are the minimal and maximal number of 
permanent workers to operate the production line, 
respectively. Kw and Ktw are an average productivity rate 
per man-day of permanent and temporary worker, 
respectively. D (t) and SS (t) are forecasted demand and 
safety stock level in period t, respectively. MAX On (t) and 
MAX Oh (t) are the maximal overtime man-hours that can be 
applied during normal workday and holiday in period t, 
respectively.  

MAX TW is the maximal number of temporary workers to 
operate the production line. MAX I is the maximal allowable 
inventory level. MAX Sub is the maximal allowable 
subcontracting units. CW is an average salary per month of a 
permanent worker. CTW is an average wages per day of a 
temporary worker. CH is a hiring cost per person of 
temporary worker. CL is an average inventory holding cost 
per month per unit of product. COWn and COWh are 
overtime cost per man-hour of permanent worker during 
normal workday and holiday, respectively. COTWn and 
COTWh are overtime cost per man-hour of temporary 
worker during normal workday and holiday, respectively. 
CSub is a subcontracting cost per unit. 

There are six APP constraints which consist of permanent 
worker, inventory, production, overtime, temporary worker 
and subcontracting constraints. Firstly, the number of 
permanent workers should not be less than the minimal 
limit; otherwise the production line cannot function. Also, it 
should not be more than the maximum limit; otherwise some 
workers will be idle (3). Secondly, the inventory in each 
period is equal to the inventory from the previous period 
plus the production minus the demand of the period (4). 
Moreover, all demands must be satisfied and the inventory 
level cannot be less than the specified safety stock level (5). 
The inventory level cannot exceed the maximal allowable 
limit since there are limited warehouse spaces (6).  

Thirdly, the production quantity in each period is equal to 
the sum of production quantities generated by permanent 
and temporary workers during regular time and overtime 
(both regular workdays and holidays), plus subcontracted 
quantities, minus a loss of production due to under time (idle 
time) in the period. Note that idle time can help reducing the 
unnecessary inventory level during low demand periods. 

This constraint allows different productivity rates between 
permanent and temporary workers (7). Fourthly, the total 
overtime man-hours of permanent and temporary workers 
must not exceed the maximum allowable limit. The limit is 
calculated based on the total number of permanent and 
temporary workers, number of days, and number of hours in 
each day that the overtime can be applied (8–11). Since 
permanent and temporary workers work as a team in the 
same production line, the number of overtime man-hours per 
person applied to both groups must be the same (12–13).  

On the fifth constraint, Thai labor law states that 
temporary workers could not be continuously hired longer 
than four months (The Labor Protection Act of Thailand, 
1998).  After four months they must become permanent 
workers. Hence, Thai industries will lay off temporary 
workers after four months if they do not want to transfer 
them to permanent ones. Constraint 14 shows that the total 
number of temporary workers working in the current period 
is the sum of the numbers of temporary workers hired at the 
beginning of the last three periods and the current period. 
Constraint 15 indicates that temporary workers hired three 
periods ago will be laid off at the end of the current period. 
APP models developed from western countries do not take 
this constraint into consideration The total number of 
temporary workers in each period cannot exceed the 
maximum allowable limit since the production line has 
limited number of workstations where the temporary 
workers con be assigned (16). Finally, the number of 
subcontracting units cannot exceed the maximum allowable 
limit since subcontractors have limited production capacity 
(17). 

All decision variables are nonnegative and some decision 
variables representing number of workers, namely, W, H(t), 
L(t), and TW(t) are integer. Since in real situations the 
variables W, H(t), L(t) and TW(t) have relatively high 
values, the integer conditions for these variables can be 
relaxed in order to reduce the computation time. The 
solutions can be later rounded to the nearest integer. Thus, 
the objective function and constraints over the time period (t 
= 1, 2, …, 12) can be formulated as the APP mathematical 
programming model below and all parameters and the initial 
values, such as the forecasted demand, the number of 
holidays for overtime and the number of normal workdays, 
in each period, are given in Table I.    
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Forecasted demands for each period are [146,000: 

138,000: 145,000: 139,000: 165000: 145,000: 172,000: 
148,000: 155,000: 141,000: 125,000: 118,000]. Normal 
workdays for each period are [24, 24, 26, 20, 22, 26, 25, 24, 
26, 25, 26, 24]. 

 
TABLE I 

PARAMETERS AND THEIR PRESET VALUES 
Parameters Preset 

Values 
Regular working hours per day 8 
Numbers of allowable overtime hours for each normal 
workday and holidays  

2 

Numbers of allowable overtime hours for each holiday  8 
Minimal numbers of permanent workers to operate the 
production line  

600 

Maximal numbers of permanent workers to operate the 
production line  

1,100 

Maximal number of temporary workers to operate the 
production line 

500 

Average productivity rates of permanent workers 5 
Average productivity rates of temporary workers 4.5 
Maximal allowable inventory levels unlimited 
Maximal subcontracting units unlimited 
Average monthly salary per permanent workers 5,500 
Average wage per day per temporary worker 162 
Average cost of hiring one temporary worker 1,200 
Laying off cod of temporary worker Negligible 
Average inventory holding cost per unit per month 200 
Overtime costs per man-hour per permanent worker 
during normal workday 

34.38 

Overtime costs per man-hour per permanent worker 
during holiday  

45.83 

Overtime costs per man-hour per temporary worker 
during normal workday  

30.38 

Overtime costs per man-hour per temporary worker 
during holiday 

40.50 

Subcontracting cost per unit 300 
Amount of Inventory at the beginning of the first 
period 

0 

Permanent workers based on the company policy to 
keep the number at this level 

500 

Temporary workers hired since three periods ago, two 
periods ago, and one period ago 

150, 150 
and 100 

Holiday in each month 4 

 

B. Fuzzy Programming Approach 
Fuzzy programming approach is one of the most effective 

methods for solving Multiple Objective Decision Making 
(MODM) problem. A fuzzy set can be characterised by a 
membership function, usually denoted μ, which assigns to 

each objective [8]. In general, the non-increasing and non-
decreasing linear membership functions are frequently 
applied for the inequalities with less than or equal to and 
greater than or equal to relationships, respectively. Since the 
solution procedure of the fuzzy mathematical programming 
is to satisfy the fuzzy objective, a decision in a fuzzy 
environment is thus defined as the intersection of those 
membership functions corresponding to fuzzy objectives [9, 
10, 11]. Hence, the optimal decision could be any alternative 
in such a decision space that can maximise the minimum 
attainable aspiration levels, represented by those 
corresponding memberships. 

In a general multiple objective linear programming 
model, all constraints are restricted to the forms of equality 
(=), less-than-or-equality (≤) or greater-than-or-equality     
(≥) as follows:  
 

Maximise  Zk = ck
Tx 

 Subject to      
Ax b≤ , 0x ≥ ,  

where ck∈Rn, x∈Rn, b∈Rm  and A∈Rmxn, k=1,…,K     (18) 
 
 In practical input data are usually fuzzy/imprecise 
because of incomplete or non-obtainable information. To 
formulate this fuzzy information, membership function is 
used. In the proposed model objective functions are fuzzy. 
Then, a symmetric fuzzy programming model can be 
represented by  
 

T
kc x Z≥  

Ax b≤ , 0x ≥                   (19)  
           
Here ≥  denotes the fuzzified version of > and has the 

linguistic interpretation “essentially greater than or equal 
to.” Using the simplest type of membership function, it is 
assumed to be linearly increasing over the “tolerance 
interval” of pk and k = 1, 2, …, K.   
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The membership functions, ( )k xμ  should increase 
monotonously from 0 to 1. Pk are subjectively chosen 
constants of admissible violations of objectives. It can be 
defined by the Positive-Ideal Solution (PIS) and the 

Negative-Ideal Solution (NIS). The 
PIS
kZ is the best possible 

solution when kth objective is optimised. The 
NIS
kZ is the 

feasible and worst value of kth objective.  
Under the concept of min-operator, the feasible solution 

set is defined by interaction of the fuzzy objective set. The 
DM makes a decision with a maximum value in the feasible 
decision set. That is 
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or equivalently 
  

Maximise λ  
subject to      

( ) , 1, 2,.., .> =k x k Kμ λ  
≤Ax b , 0≥x  

λ∈[0, 1].                 (24) 
  
Various hybridisations of harmony search algorithm in 

the following section for this fuzzy programming approach 
is applied to APP problem.  

III. HARMONY SEARCH ALGORITHM 

A. Harmony Search Algorithm (HSA) 
Harmony search algorithm is a new meta-heuristic 

optimisation method proposed by Geem et al. in 2001 [12]. 
It is considered a population based or socially-based 
inspiration algorithm with local search aspects. HSA is 
conceptually derived from the natural phenomena of 
musicians’ behaviour when they play or improvise their 
musical instruments together. This comes up with a pleasing 
harmony or a perfect state of harmony as determined by an 
aesthetic quality via the pitch of each musical instrument.  
Similarly, the optimisation process seeks to find a global 
solution as determined by an objective function via the set 
of values assigned to each decision variable. 

In the musical improvisation, aesthetic estimation is 
performed by the set of pitches played by each instrument. 
The harmony quality is enhanced practice after practice. 
Each type of music composes of specific instruments played 
by musicians. If all pitches bring a good harmony, that 
experience is stored in each player’s memory, and the 
possibility to make a good harmony is increased for the next 
time. Assume there are a certain number of preferable 
pitches in each musician’s memory. Each instrument 
provides various notes. In music improvisation, each player 
sounds any pitch in the possible range, together making one 
a harmony vector. 

If all plays together with different notes there is a new 
musically harmony. If this leads to a better new harmony 
than the existing worst harmony in their memories, a new 
harmony is included in their memories. In contrast, the 
worst harmony is excluded from their memories. Three rules 
of musical improvisation consist of rules of playing any one 
pitch from his memory, playing an adjacent pitch of one 
pitch from his memory, or playing totally random pitch from 
the possible sound range. These procedures are repeated 
until a fantastic harmony is found.  

Similarly in engineering optimisation, harmony of the 
notes or pitches generated by a musician is analogous to the 
fitness value of the solution vector. Each musician can be 
replaced with each decision variable. The musician’s 
improvisations are analogous to local and global search 
schemes in optimisation techniques. During searching, if all 
decision variable values make a good solution, that 
experience is stored in each variable’s memory, and the 
possibility to make a good solution is also increased for the 
next time. Similarly, when each decision variable chooses 

one value in the HSA, it follows three rules which are to 
choose any one value from the harmony memory (HM) or 
memory considerations, choose an adjacent value of one 
value from the HM defined as pitch adjustments, or totally 
choose a random value from the possible value range 
defined as randomisation. These three rules in the HSA are 
associated with two parameters of a harmony memory 
considering rate (PHMCR) and a pitch adjusting rate (PPAR). 

HSA is very successful in a wide variety of optimisation 
problems. It also presents several advantages with respect to 
conventional optimisation techniques. HSA does not require 
initial values for the decision variables and it imposes fewer 
mathematical requirements. Furthermore, instead of a 
gradient search like conventional algorithms, the HSA 
provides a stochastic search with no derivative information 
which is based on the harmony memory consideration rate 
or PHMCR and the pitch adjustment rate or PPAR so that it is 
not necessary to derive the associated function during the 
problem analysis. HSA generates a new vector, after 
considering all of the existing vectors, whereas other meta-
heuristics, such as the genetic algorithm, only considers the 
two parent vectors. The pseudo code is used to briefly 
explain to all the procedures of the HSA shown in Fig. 1. 
 
Procedure HSA Meta-heuristic() 
Begin; 

Initialise algorithm parameters:  
IM:  the preset number of improvisations 
HMS:  the size of the harmony memory  
BW: the 'distance bandwidth' or the amount of maximal change 

for pitch adjustment between two neighbouring values in 
discrete candidate set 

PHMCR:  the rate of considering from the harmony memory  
PPAR: the 'pitch adjustment rate  

Initialise the HMS harmony memories; 
Evaluate the fitness values for all HMS;  
For j = 1 to IM  

Randomly select a position of [1, 2, …, HMS] to improvise;  
Generate a random number in the range [0, 1] or RN1; 
Check RN1 with PHMCR; 

If  RN1 < PHMCR better, then pick the component from 
memory; 
Generate a random number in the range [0, 1] or RN2; 
If RN2 < PPAR better, then adjust the harmony by a 

small amount BW; 
Generate a random number in the range [0, 1] or 
RN3; 
If RN3 > 0.5 
  Pitch Adjustment Harmony vector increase; 
Else 
  Pitch Adjustment Harmony vector decrease; 
End if; 

Else  
   Do nothing; 

     End if; 
Else  

Pick a new random value in the allowed range;  
    End if; 

Replace a new harmony if better; 
End for; 

End; 
End procedure; 
 

Fig. 1. Pseudo Code of the HSA Meta-heuristic. 
 

As concerned in the literature for the algorithm parameter 
levels, an HMS of 20-50, a PHMCR of 0.7-0.95, and a PPAR of 
0.3-0.7 were frequently recommended in HSA applications. 
However, the IM and BW were determined based on the 
number of objective function and possible value ranges of 
decision variable evaluations from other competitive 
algorithms, respectively.  



B. Harmony Search Algorithm with VNS Concept of 
Improvement (VHSA) 
Variable neighbourhood search method (VNS), initially 

introduced by Mladenovic and Hansen in 1997 [13], is one 
among meta-heuristics designed for solving combinatorial 
and global optimisation problems. It exploits systematically 
the idea of neighbourhood change within a local search 
method to approach a better solution. Contrary to other local 
search methods, VNSM proceeds by a descent method to a 
local minimum exploring then, systematically or randomly, 
increasingly distant neighbourhoods of this incumbent 
solution.  

The first variant, called VHSA, uses maximal (or minimal) 
point in each iteration for the HMS improvement. This 
system needs improvement solutions of nearly optimal 
design point.  Because HMS improves from an experience 
of solutions, these are then stored in groups of HMS. This 
system wants improvement in the best of the optimal points 
in each iteration.  

C. Novel Global Best Harmony Search Algorithm 
(NGHSA) 
A prominent characteristic of Particle Swarm Optimisation 

(PSO) [14] is that the individual is inclined to mimic its 
successful companion. Inspired by the swarm intelligence of 
particle swarm, a new variation of the HSA is proposed in 
this paper. The new approach, called NGHSA, modifies the 
improvisation step of the HSA such that a new harmony can 
mimic the global best harmony in the HM. NGHSA and 
HSA are different in three aspects as follows.  

Firstly, in the first step the harmony memory considering 
rate (PHMCR) and pitch adjusting rate (PPAR) are excluded 
from the NGHSA, and genetic mutation probability (Pm) is 
included in the NGHSA. Secondly, in the third step, the 
NGHSA modifies the improvisation step of the HSA, and it 
works as shown in Fig. 2. 

 
For each i ∈ [1, N] do 
xR = 2xi

Best - xi
Worst; 

If   xR ≥ xiU 
xR = xiU; 

Elseif xR < xiL 
xR = xiL; 

End;  
xi’ = xi

Worst  + r(xR - xi
Worst);    % position updating 

If rand() ≤ pm then  
xi’ = xiL+ rand() (xiU - xiL);    % genetic mutation 

End; 
 End; 
 

Fig. 2. Pseudo Code of the NGHSA Sub-Procedure. 
 
The most important step of the HSA is Step 3, and it 

includes memory consideration, pitch adjustment and 
random selection. PPAR and BW have a profound effect on 
the performance of the HS. Mahdavi et al. [15] proposed a 
new variant of the HS, called the improved harmony search 
(IHS). The IHS dynamically updates PPAR and BW according 
to (25)-(27): 
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The ‘‘best” and ‘‘worst” are the indexes of the global best 

and the worst harmony in the HM, respectively. The terms 
of r and rand() are all uniformly generated random number 
in the range of [0, 1]. A new harmony, as shown in Fig. 1, is 
used to illustrate the principle of position updating with the 

step i of Best Worst
i ix x− ; where i is defined as adaptive step 

of the ith decision variable. The region between the worst 
and best solution spaces is defined as a trust region for the 
ith decision variable. The trust region is actually a region 
near the global best harmony. A reasonable explanation is as 
follows. 

In the early stage of optimisation, all solution vectors are 
sporadic in solution space, so most adaptive steps are large 
and most trust regions are wide, which is beneficial to the 
global search of the NGHSA. While in the late stage of 
optimisation, all non-best solution vectors are inclined to 
move to the global best solution vector, most solution 
vectors are close to each other. In this case, most adaptive 
steps are small and most trust regions are narrow, which is 
beneficial to the local search of the NGHSA. The reasonable 
design for the ith step can guarantee that the proposed 
algorithm has strong global search ability in the early stage 
of optimization and also has strong local search ability in the 
late stage of optimisation. Dynamically the ith adjusted step 
keeps a balance between the global search and the local 
search. Genetic mutation operation with a small probability 
is carried out for the worst harmony of harmony memory 
after updating position. This could enhance the capacity of 
escaping from the local optimum for the proposed 
algorithm. In Step 4, the NGHSA replaces the worst 
harmony of xWorst in the HM of x’ even if x’ is worse than 
xWorst. 

IV. COMPUTATIONAL RESULTS AND ANALYSES 
In this work with the computational procedures 

previously described, a computer simulation program of the 
fuzzy programming approach of the APP model was 
implemented in a Visual C#2008 computer program. The 
suitable linear and continuous membership function has 
been determined for quantifying the fuzzy aspiration levels. 
The corresponding linear membership functions can be 
defined in accordance with an analytical definition of 
membership functions. From the conventional harmony 
search algorithm, an interval of the membership calculated 
from all responses in both scenarios of the average minimal 
total production cost and the average subcontracting units in 
the harmony memory.  
 

TABLE II 
INITIAL RESULTS CATEGORISED BY BOTH OBJECTIVES AND INDIVIDUAL 

OBJECTIVE WITH THE NOMINAL DEMAND 

Scenarios Minimal Total 
Production Cost 

Minimal 
Subcontracting  Units 

Feasible Best so far 66,343,158   95,907 
Simple-HSA with the 
minimal cost 79,432,529 15715 

Simple-HSA  with the 
minimal Subcontracting 89,261,867 0 

Pk 9,829,338 15,715 



The HSA and VHSA parameters of HMS, PHMCR and PPAR 
are set at 30, 0.90 and 0.35, respectively. The NGHSA 
parameters of HMS, PHMCR, PPARMAX, PPARMIN, BWMax, BWMIN 
and Pm are set at 30, 0.90, 0.99, 0.01, 0.005, 0.0000005 and 
0.01 respectively. Minimal total production cost and 
subcontracting units scenarios are calculated from all 
previous data in the harmony memory with 200 iterations at 
the nominal demand including the demand decrease and 
increase at 10% (Tables II-IV). A mathematical expression 
of the proposed model for this APP problem with the 
nominal demand can be then shown as followed with the 
corresponding (3)-(17). 
    

 max [ ],= λ  

z 79,432,5291
9,829,338
−⎛ ⎞

λ ≤ − ⎜ ⎟
⎝ ⎠

1  

2z - 0
1

15,715
⎛ ⎞

λ ≤ − ⎜ ⎟
⎝ ⎠                (28)

 

 
The comparisons are made for three different levels of 

demand in the APP. The demand deviation is taken to be 
independently and normally distributed with mean of the 
nominal level with the 10% increase and decrease. Using the 
fuzzy approach of the APP an aim is to simultaneously 
minimise total production costs and subcontracting units 
over a 12-month period. At the nominal demand (Table V), 
total production costs and subcontracting units seemed to be 
better at 0.960 of the overall levels of decision making 
satisfaction via the VHSA. The results repeated similarly 
when there is the demand increase at 10% as shown in Table 
VI. The NGHSA seemed to provide the better level of 
decision making satisfaction when there is the demand 
increase at 10% as shown in Table VII. 

 
 

TABLE III 
INITIAL RESULTS CATEGORISED BY BOTH OBJECTIVES AND INDIVIDUAL 

OBJECTIVE ON THE 10% DEMAND DECREASE  

Scenarios Minimal Total 
Production Cost 

Minimal 
Subcontracting  Units 

Simple-HSA with 
the minimal cost 80,159,075 16,934 

Simple-HSA  with 
the minimal 
Subcontracting 

89,471,737 0 

Pk 9,312,662 16,934 
 

TABLE IV 
INITIAL RESULTS CATEGORISED BY BOTH OBJECTIVES AND INDIVIDUAL 

OBJECTIVE ON THE 10% DEMAND INCREASE  

Scenario Minimal Total 
Production Cost 

Minimal 
Subcontracting  Units 

Simple-HSA with 
the minimal cost 100,030,561 156,131 

Simple-HSA  with 
the minimal 
Subcontracting 

108,041,936 100,025 

Pk 8,011,375 56,106 
 

TABLE V 
EXPERIMENTAL RESULTS CATEGORISED BY THE ALGORITHMS ON THE 

NOMINAL DEMAND  

Algorithm Max λ Minimal Total 
Production Cost 

Minimal 
Subcontracting  Units 

HSA 0.889 80,073,238 0 
VHSA 0.960 80,012,432 0 

NGHSA 0.949 80,071,863 0 

TABLE VI 
EXPERIMENTAL RESULTS CATEGORISED BY THE ALGORITHMS ON THE 10% 

DEMAND INCREASE  

Algorithm Max λ Minimal Total 
Production Cost 

Minimal 
Subcontracting  Units 

HSA 0.880 100,956,577 105,103 
VHSA 0.915 100,536,630 104,038 

NGHSA 0.910 100,616,218 102,163 
 

TABLE VII 
EXPERIMENTAL RESULTS CATEGORISED BY THE ALGORITHMS ON THE 10% 

DEMAND DECREASE  

Algorithm Max λ Minimal Total 
Production Cost 

Minimal 
Subcontracting  Units 

HSA 0.675 83,164,217 0 
VHSA 0.629 82,859,019 0 

NGHSA 0.725 81,632,893 0 
 

When the performance of the HSA variants of HSA, 
VHSA and NGHSA was compared, the VHSA seems to be 
better in terms of speed of convergence (Fig. 3). The basic 
idea is the change of neighbourhoods during searching for a 
better solution. The hybridisations proceed by a descent 
method to a local minimum exploring then, systematically 
or at random, increasingly distance neighbourhoods of this 
local solution. Furthermore, in some additional experiments, 
small BW values with large PPAR values usually cause the 
improvement of best solutions in final generations to 
converge to the optimal solution vector. 
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Fig. 3 Speed of Convergence on the Nominal Demand. 

V. CONCLUSIONS 

The APP is concerned with the determination of 
production, the inventory and the workforce levels of a 
company on a finite time horizon. Objectives are to reduce 
the total production cost to fulfill a non-constant demand 
and to reduce subcontracting units assuming fixed sale and 
production capacity. In this study we proposed an 
application of a fuzzy programming approach to the 
aggregate production planning with various level of the 
demand.  

The proposed model attempts to minimise total 
production cost and subcontracting units so that in the end 
the organisation gets the optimal production plan with the 
overall highest levels of decision making satisfaction. The 
major limitations of the proposed model concern the 
assumptions made in determining each of the decision 
parameters, with reference to production cost, forecasted 
demand, maximal work force levels, and production 
resources. Hence, the proposed model must be modified to 



make it better suited to practical applications. Future 
researchers may also explore the fuzzy properties of 
decision variables, coefficients and relevant decision 
parameters in the APP problems. 
 Various hybridisations of the HSA for solving the APP 
problems with a fuzzy programming approach. VHSA and 
NGHSA employ the variable neighbourhood search and 
novel global best algorithms for generating new solution 
vectors that enhances accuracy and convergence rate of 
harmony search algorithm. In this paper the impacts of 
algorithm parameters on the harmony search algorithm such 
as BW are discussed and a strategy for tuning these 
parameters is presented. The VHSA has been successfully 
applied to this benchmarking engineering optimisation 
problem. Numerical results reveal that the VHSA can find 
better solutions when compared to others and is a powerful 
search algorithm.  
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