Proceedings of the International MultiConference of Engineers and Computer Scientists 2011 Vol I,
IMECS 2011, March 16 - 18,2011, Hong Kong

Security Service Design for the RMI Distributed
System based on Parameterized RBAC

NEZAR NASSR ERIC STEEGMANS

Abstract—Incremental growth in computing has enabled
businesses to distribute their computing environmets. In
consequence, an increasing number of threats chalige
distributed applications. Remote Method Invocation(RMI) is a
distributed systems platform used to implement distbuted
applications, that is vulnerable to an increasing amber of
security threats. Several paradigms for protectingsecurity of
software systems have emerged. Role Based Accesat@n
(RBAC) is a paradigm used for controlling users acess on
software systems.

RMI has already now been used in many enterpriseusiness
applications. However, no security service has beawoncretely
implemented as of yet. Thus, our focus was on desigg and
implementing a security infrastructure for RMI to address the
security vulnerable issues that may arise in distbuted systems
developed using RMI. We introduced a new secure dndecture
for the Java RMI that employs the concepts of authgication
and authorization based on Parameterized Role Baseficcess
Control (PRBAC), which enables application develops to
employ these concepts in distributed applicationgriplemented

using our proposed secure RMI

Index Terms— distributed systems, remote method
invocation, role-based access control, security.

I. INTRODUCTION

istributed systems security is of paramount impur¢éa
for software systems constructed by using

technology. As a consequence, much research has bd

focusing on defining security standards and archites for
distributed systems middleware. In fact, there weny
security standards and architectures defined fstriduted
systems middleware over the past years such aBSGRBA
security server, DCE security, Web Services Secuaitd
etc. However, there were no security standards
infrastructures defined for
Invocation (RMI). Such an infrastructure could faate the
design and development of secure distributed agipdics
implemented using the Java RMI. More so, it reddbes

Manuscript received November 22, 2010.
This work was supported by EastNets R & D Belgiasipart of their
support of research towards risk management.

Nezar NasgMember, IAENG)s currently pursuing the Ph.D. degree at the

Department of Computer Science and Engineerindhdligke Universiteit
Leuven , Belgium.(phone: 00 32 498901846; e-mail:
nezar.nassr@cs.kuleuven.be). Nezar is also wodsragconsultant for
EastNets R & D, Belgium.

Eric Steegmans is a Professor with the Departwfe@bmputer Science
and Engineering, Katholieke Universiteit Leuvereldum (e-mail:
Eric.Steegmans@cs.kuleuven.be).

ISBN: 978-988-18210-3-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

the Java Remote Method

security inconsistencies that might arise in devetb
distributed applications.

Much attention has been devoted recently to &igcur
issues and it is apparent that a high level ofrstyds a
fundamental prerequisite for Internet-based traiwas
especially in the business-to-business area [1].

Distributed business applications require topbbetected
in terms of security to prevent access to confidént
information. Moreover, they demand a way of regntathe
user access to the system. A business applicatiost m
determine who can access the system as well asahaser
can access the system. e.g. a user in an orgamizhtit has
access to an application must access only data @etitled
to see.

Java RMI is a programming technology that is ufed
developing distributed applications. It providesilities for
invoking methods on remote objects. The secureioreisf
RMI (RMI-SSL) provides point to point security beten
clients and servers. RMI offers no security atabgects nor
methods invocation levels .

The review of related research has shown that ok w
has been done towards defining a security infretira for
RMI. However, there has been a vast area amouwbdf
done on defining security infrastructures for otfistributed
systems middleware such as Web Services Secuittythen
CORBA Security Server. Thus, our goal was desigaingd
implementing a security infrastructure for RMI tddaess

thithe security vulnerability issues that might arise

jstributed systems developed using RMI. Our work
presents a new secure architecture for Java RMi tha
employs the concepts of authentication and authtoiz
based on role based access control (RBAC), whielblen
application developers to employ these concepts in
distributed applications implemented using our psHd

§pcure RML.

Our architecture covers the authentication and
authorization requirements of distributed applimasi in an
easy-to-use way for software developers. We hallewied

an approach that keeps the details of the impleatient
transparent for the application developers. Gelyeral
speaking, we have taken into account making the
architecture simple and making only the minimal rjes
required to enable the usage of secure RMI by dfftevare
developer. Our architecture also caters to future
enhancements as well.

The contribution of this work is that it providdsetfirst
secure RMI architecture; that enables software ldpees to
construct secure distributed applications with taea RMI.
We have used parameterized RBAC [2] that provides
additional control over roles. We also providedeavrway

IMECS 2011

Proceedings of the International MultiConference of Engineers and Computer Scientists 2011 Vol I,

IMECS 2011, March 16 - 18,2011, Hong Kong

of combining the rules together with possibilities AND
and/or OR combination of roles. In our architectuve also
provided access control at the method level. Mogeowith

value or throws the exception as appropriate. Stutd
skeletons are generated from the server implenienjat
usually using the RMI Compiler [3].

our design, software developers do not need to makeRMI has evolved since it was first introduced avd 1.1.
dynamic checks, this ensuring that the method cdy lme RMI was extended in Java 2 to enable object seaitiin
invoked by a client holding the roles that aretésdito him and eliminate the need for skeletons, which wepéaced by
to access the method. Given these checks are wlreadflection to make connections to the remote objetdva 5

implemented by ouBecurity Server.

The remainder of this paper is organized as faldwthe
next section, we introduce RMI, then in section IWe
introduce RBAC and parameterized RBAC is preseiried
section IV. In section V, we briefly review a numbef
related security models for distributed systemslloing
that expose, we present our solution in sectionfdllpowed
by an explanation of the design of tBecurity Servein
section VII. Finally section VIII concludes our vior

Il. THE JAVA REMOTE METHOD INVOCATION (RMI)

The Java Remote Method Invocation (RMI) is
middleware for constructing distributed applicasoiRMI
enables applications to invoke methods on the seside.

Whenever an application invokes a method on theese
side, it passes the arguments to the method, foltpthis
step, the method is executed on the server sidettas
client gets the return value of the method.

Figure 1 shows an architecture example of the Biwg
the server application consists of the remote fiater that
defines the methods the client can invoke on tineeseand
the classes that implement the remote

Lookup—
Client _
Application ~ Registe RMI Registry

RMI

Server
Application

Fig. 1. High-level view of the Java RMI Architectu

The server application must register itself in RMI
registry server which is a naming service and & pathe
RMI middleware. Clients must look up the servicemea
before they can call methods. When the client lagkghe
server from the RMI registry it receives a refeeenc the
server class.

When a client receives a reference to a server] RM

downloads a stub that translates calls on thateeée into
remote calls to the server. The stub marshals rigpenzents
to the method using object serialization, and setids
marshalled invocation across the wire to the ser@er the
server side the call is received by the RMI systemmected
to a skeleton, which is responsible for unmarshglithe
arguments and invoking the server's implementatibthe
method. When the server's implementation is coraglet
either by returning a value or by throwing an exwep the
skeleton marshals the result and sends a rephetalient's
stub. The stub unmarshals the reply and eithernetthe

ISBN: 978-988-18210-3-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

adds support for the dynamic generation of stulksels at
runtime, obviating the need to use the Java Reetdod
Invocation (Java RMI) stub compiler to pre-generstigh
classes for remote objects [4].

The secure version of Java RMI (RMI-SSL) provides
means for securing the communication channels lgtwe
clients and servers; it also provides protectiorairag}
security-sensitive actions such as accessing tbal Ifile
system of the server.

RMI does not provide any means for protection by
authentication or authorization. Any client whishable to

dookup the service name of the RMI server is bee &bl

invoke methods on the server application. Manyiappbns
require restricting access on the server methodscation
for only authenticated clients. More so, some agapibns
require the ability to give clients access only @grtain
methods on the server application rather tharaftdess.

RBAC is a form of access control that explicitiyables
or restricts the resources in a software systenprdtects

ROLE-BASED ACCESSCONTROL

interfacagainst unauthorized use and manipulation of ressurin

RBAC permissions are assigned to roles rather tinaisers,
then roles get assigned to users and hence usktheje
access privileges in function of what roles thegadly have.
Generally, roles represent functions or respdlitgils that
can be achieved by a software system, but carrefsesent
sub-functions.

At present, application developers and deployeafine
the roles that make sense for an application agnl ithentify
which methods each role should be allowed to call.
Therefore, access is defined in terms of operations
components[5]. For example, in a banking coreiagfibn,
we can divide users according to their roles inkthek, e.g.
as tellers, account managers, sales, etc. The tské could
have a teller role that enables him to performdaations
and see clients information, whereas a sales pesétbna
sales role could have read only access on cliémtrnation.
In a different design of roles, someone could definread-
only role and a "perform-transaction” role, in teisse the
teller could be assigned both roles, while thessater could
be assigned only the "read-only" role.

IV. PARAMETERIZED RBAC MODEL

Unfortunately, traditional RBAC does not support
different levels of customization for roles. Foraexple, in
our banking example, it might be necessary to different
tellers different levels of the "perform-transaatiogole. One
junior teller could be allowed to do transactiohatthave
small amounts, while another senior teller couldabewed
to perform large amount transactions. This would e
nightmare if we are needed to assign an amourit 1om
each teller. This disadvantage was subject to duarth
research, and it was addressed by some technigubsas
Object-sensitive RBAC [6], parameterized RBAC [&ic.

IMECS 2011

Proceedings of the International MultiConference of Engineers and Computer Scientists 2011 Vol I,
IMECS 2011, March 16 - 18,2011, Hong Kong

The other option for addressing this issue witltitrenal computer security: Authentication, Message Pratecti
RBAC is to define a new role for each teller; whitlakes (including encryption for guaranteeing confidentjalas
managing roles and keeping track of them moreell as integrity), Access Control, Auditing, andomN
complicated. Moreover, It also could be a vast [mobin repudiation [1]. CORBA authorization is based atess

dynamic and large scaled organizations. control lists (ACL); which provide access controleo
Object-Sensitive RBAC [6] addresses the problem kyesources or services provided by a CORBA apptioati
extending the RBAC model to support fine-grainetges. There have been some initiatives to improve upun

The basic idea is to allow roles and privilegedrapens to CORBA Security. R. Obelheiro [9] proposed an access
be parameterized by a set of index values, whittfitively control model for CORBA based on RBAC that supports
are used to distinguish users of the same role fom@m automatic role activation by the security composensftthe
another. A privileged operation can only be involkiedoth ~ middleware.
the appropriate role is held and the role’s indeftuss J2EE provides authentication and authorization
matches the operation’s index value [6]. mechanisms for Enterprise Java Beans (EJB). The
The parameterized RBAC model is actually simitatite authorization is based on basic RBAC access conttol
Object-Sensitive RBAC; it improves upon the tramitl general, security management should be enforcelebizJB
RBAC model with enhancements that enable the disfimi container in a manner that is transparent to therprise
of roles which can be customized or adapted acegrth beans business methods. EJB security providesiseouar
the function changes between a user and anothds. Tthe EJB method level where methods can be annotéted
provides a way of implementing hierarchical andelsv roles [4].
differences in roles. e.g. a senior teller who llsveed to Moreover, there have been initiatives for addsegurity
perform transactions with large amounts and a jutétter to Web Services, Damiani [10] has proposed an
that is able only to perform small amount transangi infrastructure for web services security that ecésraccess
In the parameterized version of RBAC, althoudksare control policies on the request calls carried byABO
defined as a single role, their implementation sstgytheir Wonohoesodo [11] has proposed two access control
instantiation into a large number of roles to cateevery techniques: one for single services and anothemloial
client, which presents a huge burden on the imelld services. Their approach introduced global rolegchviare
manageability of access rights [2]. used in the mapping to local roles of other serpiciders.
The advantages most commonly associated to RBA@oreover, they have proposed a role-mapping mesimn
models, can be maintained if the roles are modaledr to maintain the autonomy of roles between providers
parameterized RBAC. In this model, core RBAC
components, such as roles, would depend on thewvalia VI. OUR PROPOSEDARCHITECTURE

parameter. To extend RBAC into a parameterized mode g provides an infrastructure for developing dsited
data about the values of the parameters shoulddeded. 5pjications. This infrastructure bypasses someurigc

New permissions that might be created due to echanisms that are considered mandatory for many
parameterl_zanon should also be |den_t|f|ed [2]. B}épplications. In this work we extended the RMI
Parameterized RBAC, the problem explained abové Wilhteaqircture to adapt two goals that are not joiew with
teller roles can be solved effectively by definioge role e Rv| infrastructure, which are authenticationdan
called teller and associating an amount limit pat@mto the . ihorization. The proposed architecture is shawfigure
teller role, then we can assign a small amountHerjunior 5

teller and a large amount for the senior teller. .We introduced & Security Server in the RMI
In our work we used the Parameterized RBAC matel |nqasirycture. The purpose of thecurity Serveris

the access control model since it achieves extierfil®® j5ementing security concepts of user authenteatind
grained access control granularity, as well as e, ihorization

completeness in terms of investigating all the epts and
semantics of a Parameterized RBAC and supportinthel

definitions and features of other well-known RBA®dels
[2]. Client Application |

Exception
{AuthenticationFailure, ActionMotAllowed |

RMlinvoke

RN Security

V. RELATED SECURITY MODELS FOR DISTRIBUTED SYSTEMS K N Sewer

In this context we can mention the DCE and the CARB Gk
Security Services. DCE is a distributed platfornsédzh on
RPC (Remote Procedure Call). Security is one ofbidisic
components of DCE, and each CELL (a group of hasfts)
DCE associates a security service, which has touséed by
all member hosts of the CELL[7]. In DCE a different
authentication procedure is necessary. When alogerin, Senver Application
the login program verifies the user's identity gsithe
authentication server, while authorization is haddlby
associating an ACL (Access Control List) with eagbource
[8]. Regsiter

.

RMI Invoke

RIl Registry |

The CORBA Security Serwc_e includes interfacest theﬁg. 2. The proposed secure RMI architecture,
define services for the following well-known area$

ISBN: 978-988-18210-3-4 IMECS 2011
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2011 Vol I,
IMECS 2011, March 16 - 18,2011, Hong Kong

A. Authentication The third and final layer is the transport layehich is
Authentication is the process of determining ifrmgipal Pased on TCP/IP connections between machines in a
(that is a user or process that needs to commmic&_\etwork- It proyldes basu_: connectivity, as well s@me
securely) really is who he/she/it claims to be [8enever firewall penetration strategies [12].
a client attempts to invoke methods on the RMI serv

application for the first time, it must authentieatself. This -

requires the client to provide a username and swias to { Client Program) { server Program)
the server application. The username and passwardae I I
then checked by the&ecurity Serverand it determines

¥ ¥

whether or not the client is entitled to accessRM server. | Stubs & Skeletons Stubs & Skeletons
The security server must have the authenticatic ' Remote Reference Layer Remote Reference Layer

. . s . . ystem

information pre-defined in its database beforentiecan Transport Layer

make requests to the server. We suggest that ieat cl
authenticates itself once a step could be direztigr the

client looks up the service name from the RMI riygis
service and gets a reference to the servelSéeairrity Server
afterwards maintains the session between the chect

server applications.

Fig. 3. Layered Architecture of the Java RMI, (fig from [12]).

Our design involves adding a new component taRkg
Architecture, which we call theSecurity Server The
Security Serveris placed in the Skeleton layer at the server

B. Authorization side. It also needs some modifications at the Stubl on

Once a user has been authenticated, the questisms a the client side. We have also adapted Security Server
concerning which resources that user may acceshand design to support stub and skeleton free RMI intoed! in
this issue is called authorizationWe implemented an Java 5. This is accomplished through introducing tw
authorization mechanism on the method level usingtermediate components at the client side andstreer
parameterized RBAC[2]. side that are automatically generated. These coemisrare

At the server application side, all the RBAC rutesst be responsible for catering to the new changes reduisethe
defined in the remote interface; each method wil bsecure RMI. The new architecture is shown in fighire
annotated by one or more roles that restrict acoédhat

method to holders of that roles. ;‘ e
Besides the authentication information of the rdlithe ‘ ki I
security server must have the roles granted far ¢hant. ' A Y

The Security Serveextracts roles for methods by reading
the annotations defined in the remote interface.

&
— I
3 Security Server = v
Once a client is authenticated and makes a redoest I 224 o u et

i . (or intermediate client g lorintermediate server

invoke a method on the server, Becurity Serveshould be Sl e

able to determine whether the action is allowedair based s Raterence REmele Reterance

on the roles assigned for that client and the ro&eded by Leter il

the method as defined in the remote interface. [B ROt Laver]
VII. SECURITY SERVERDESIGN AND IMPLEMENTATION Fig. 4. The Layered Architecture of the proposeduge Java RMI.

Now that, in the previous section, the proposed
architecture has been explained, we will now inicelour A. Authentication

design of the RMI security server. . _ Once the client looks up the server name fronmeiéstry
Before getting into the details of the designhefSecurity sever, it must authenticate itself to tBecurity Serverwe
Seryer we would first like t_o expand upon the in-depthhave introduced a new clasSRM Aut hent i cat i on)
architecture of the Java RMI infrastructure. with a metthodaut hent i cat eUser , that is used by the
RMI'is built upon three layers as shown in figdethe R client to authenticate itself. This method serttie
first layer is the Stub and Skelton layer, whigtslbeneath |\ ,sername and password of the user or the proceti®to
the view of the developer. The stub marshals tgareents gecyrity Serverthen theSecurity Servereplies back with a

to the method using object serialization, and sefis icket if authentication is successful, otherwiseexception
marshaled invocation across the wire to the serVée g returned.

skeleton carries on a conversation with the stuleads the
parameters for the method call from the link, matkescall Tj cket auth_ticket =
to the remote service implementation object, accepe SRM Aut henti cati on. aut henti cat eUser ("use

return value, and then writes the return value backhe r1","passwordl123","| ocal host");
stub [3, 12].
The following layer is the Remote Reference Layénis The username and password must be pre-definedein t

layer understands how to interpret and manageeamfes Security Servedatabase. The ticket is an encrypted data
made from clients to the remote service objectsteMim, it structure that is composed from the username, doran
connects clients to remote service objects thatramaing number that corresponds to the session ID, andginagion
and exported on a server [12]. date/time.

ISBN: 978-988-18210-3-4 IMECS 2011
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2011 Vol I,

IMECS 2011, March 16 - 18,2011, Hong Kong

The Security Servehas to maintain a copy of that ticket@enyAl | annotation states that no security roles are
in its database. The stub (or the client interntediapermitted to execute the method or methods [4].

component in Java 5) then marshals the ticket wdbh

invocation request to the RMI server. T8ecurity Server
then intercepts each request at the server sidevaitthtes
the ticket with the value stored in its databasasdsl on the
validation result, the Security Sever either allofusther

processing or blocks the request.

This process is transparent for the client progithm only
change that is needed at the client program isigiray its
credentials once
SRM Aut henti cati on. aut henti cat eUser
method.

B. Authorization

The Security Serveparses the Remote Interface and read

the annotations of the methods, then it determimbigh
roles are needed for invoking each method. Bleeurity
Serverthen maintains this information in its database.
When the client sends a request to invoke a mettned
stub must then marshal the ticket received fromSibeurity

Serverto the RMI server with the method arguments. When

the Skeleton receives the method arguments andictket

from the Stub, it extracts the ticket from the angmts and
sends it together with the method name to Sexurity

Serverfor verification. TheSecurity Servethen checks if
the ticket exists in its database. If it existsntliereads the
roles assigned to that client and checks if theuesfjto

invoke the method could be achieved. If the clieas the
roles required for invoking the method, then ®Becurity

Seversends a positive signal to the Skelton allowingpit
continue the process. If the client does not haxaigh roles
to invoke the method, th&ecurity Serverthen sends a
negative signal to the Skeleton which by its tuemids the
client's request and throws an ActionNotAllowed &pibon

which is then marshalled to the Stub.

Nothing has to be changed in the RMI Server appba,
given all changes are done in the skeleton onghesside
which is generated by the RMI Compiler (rmic). &ie
changes done in the stub and skeleton are systeraat
automatic generation of the changes is very sttfaighard.

C. RBAC Roles Definition for Server Methods

To control access control on methods at the sesids,
we have adapted the Parameterized RBAC model exgolai
in section IV. The server methods are annotatéld aviset

of roles that are required by each method to ena € s
invocation. These roles are specified in the metho
declarations in the Remote Interface. We use Ja\é%lu

annotations to achieve this functionality.

Java EE provides a specification for defining rodth
permissions using annotations for Enterprise B¢&hsThe
method permissions for the methods of a bean dasde
specified on the class, the business methods ofléss, or
both. Method permissions can be specified on a odedi
the bean class to override the method permissi@hsev
specified on the entire bean class. The approachides
three types of permissions; t@Rol esAl | owed(" list-of-
roles') annotation;
mapped to the security roles that are permitteskéezute the
specified method or methods, while tt@rermit Al |
annotation specifies that all security roles aremitted to

However, this approach does not provide any piisgib
for defining parameterized RBAC roles. As a consege,
we adapted a similar approach of specifying rdbes,with
modifications to enable parameterization of rokesimilar
approach was introduced in [6] for defining rolesthw
parameters.

We adapted an approach for defining the roleslaind
mathematical function definitions, where the rolemmes

it starts a new session using tkabstitute the function name and the parameterstisute

the function arguments. For example:
Role_Name (paraml, param2)
Role parameters could take values in the rolendiefins
which can also utilize wide range of operands B.¢<, =,
51, etc. If we take an example as a bank account antbta
required to enter a payment for an accouridslPayment
and this role could have parameters such as:
- Account number in group of customers that the clerk
can handle (e.g. accGRP).
- The clerk is allowed to do transactions on account
with amounts larger than the amount specified (e.qg.
Amount).

Then our definition of the roles will be as follsw
@RolesAllowed {AddPayment (acc_num in accGRP,
Amount > transaction_amount)}
public void Insert_Payment(acc_num,
transaction_amount){

}

In the example above, the user must hold the
AddPayment role with amount greater than the tratitsa
amount as a parameter for his role to be able ok the
method. In our approach, it is also possible fonethod to
have more than one role in the @RolesAllowed aatiwot.
Moreover, it is possible to separate roles with AND
operand allowing the method to require more thaala to
be invoked or with an OR operand allowing the uter
invoke the method if he has one of the roles sjsetif

The following code fragment shows an exampleaof
Remote Interface with RBAC roles declarations.
import java.rmi.*;
public interface ExpenseServer extends Remote {
@RolesAllowed{AddPayment(Amount>
action_amount) }
void InsertPayment(acc_num, transaction uarfjo
e_date)
throws RemoteException;

}

Fig. 5. Code fragment shows remote interface afthotated RBAC roles.

The security server reads the annotations aheashaf
method then it creates a data structure that hthveethod
names and the required roles and parameters focation.
The Security Serveasserts each invocation request with this

is a list of security role names & bdata structures to ensure that the client possessasgh

permission to invoke the method.

execute the specified method or methods. Finallg th

ISBN: 978-988-18210-3-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2011

Proceedings of the International MultiConference of Engineers and Computer Scientists 2011 Vol I,
IMECS 2011, March 16 - 18,2011, Hong Kong

D. Session Maintenance between Client and Server
Applications

In our design we provide a mechanism that avoids2] RMI Online Course,
redundant authentications between clients and ewken
a client tries to invoke a method on the servemcedthe
client is authenticated, tHgecurity Servegenerates a ticket
that is associated to the client authenticationrimftion in
the Security ServeDatabase. Afterwards, the client passes
this ticket with each request to invoke a methothe T
Security Sevechecks this ticket and determines if the client
was authenticated before or not. This ticket hasazaadom
generated code that acts like a session identifier

VIIl. CONCLUSION

[11] Roosdiana Wonohoesodo, Zahir Tari, "A Role basecess Control
for Web Services," scc, pp.49-56, Services CompgutiD04IEEE
International Conferencen (SCC'04), 2004.

http://java.sun.com/developer/onlineTraining/rmi/RMml|

In this work we presented both a design and an
implementation of a security server for the Javal RRMI

has been used

in many different enterprise business

applications, however, no security service has been
implemented as of yet. On the other hand, there teen
security services implementations for other distiiol
systems infrastructures such as CORBA, but thesigme
use access control lists (ACL) and control oveoueses.

We have designed a simple and extendable aralmi¢éect

that uses parameterized RBAC for access controthwis
much better than access control lists. This enatiésvare
developers who wish to use our secure version of RM
have more control on accessing methods rather than
resources since in many cases resources repregargsal
concepts.

Our current implementation can be enhanced bygusin
more sophisticated authentication techniques andsbng a

more refined language for expressing RBAC rolesd An

finally with an RMI compiler that can generate tbecure
stubs and skeletons.

(1]

(2]

(3]

(4]
(5]
(6]

[7]

(8]
(9]

[10]

ISBN:

REFERENCES

A. Alireza, U. Lang, M. Padelis, R. Schreiner, andSchumacher,
The Challenges of CORBA Securifyicherheit in Netzen und
Medienstrémen, Informatik aktueR000.

A. E. Abdallah and E. J. Khayat. A formal model fiarameterized
role-based access contrélormal Aspects in Security and Trust.
Springer, 2004.

Java RMI White Paper,
http://java.sun.com/javase/technologies/core/basitthitepaper/in
dex.jsp

The Java EE 5 Tutorial,
http://java.sun.com/javaee/5/docs/tutorial/doc/inbeml

R. Sandhu, E. Coyne, H. Feinstaein, C. Youmanrig-Based access
control models|EEE ComputeR9 (2). (1996) 38-47.

J. Fischer, D. Marino, R. Majumdar, and T. MillateFine-Grained
Access Control with Object-Sensitive RolEsiropean Conference
on Object-Oriented Programmir{@@COOP 2009).

Xingshe, Z. and Xiaodong, L. Design and Impleméatadf CORBA
Security Service In Proceedings of the 36th international
Conference on Technology of Object-Oriented Laggsa and
Systems. TOOL$EEE Computer Society, Washington, DC, 2000.
Andrew S. Tanenbaum, Distributed operating syst&rentice-Hall,
Inc. Englewood Cliffs, 1995, pp554-563.

Obelheiro, R. R. and Fraga, J. S. 2002. Role-Bagm@ss Control
for CORBA Distributed Object Systemi Proceedings of the the
Seventh |IEEE international Workshop on Object-CedrReal-Time
Dependable Systems (WORDS 2002)(January 07 - 002)20
WORDS. |IEEE Computer SocigWashington, DC, 53.

Damiani, E., di Vimercati, S. D., Paraboschi, S é&samarati, P.
2001. Fine grained access control for SOAP E-sesvic
InProceedings of the 10th international ConferemceWorld Wide
Web (Hong Kong, Hong Kong, May 01 - 05, 2001). WWW .'01
ACM, New York, NY, 504-513.

978-988-18210-3-4

ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2011

