

Abstract—Incremental growth in computing has enabled

businesses to distribute their computing environments. In
consequence, an increasing number of threats challenge
distributed applications. Remote Method Invocation (RMI) is a
distributed systems platform used to implement distributed
applications, that is vulnerable to an increasing number of
security threats. Several paradigms for protecting security of
software systems have emerged. Role Based Access Control
(RBAC) is a paradigm used for controlling users access on
software systems.
 RMI has already now been used in many enterprise business
applications. However, no security service has been concretely
implemented as of yet. Thus, our focus was on designing and
implementing a security infrastructure for RMI to address the
security vulnerable issues that may arise in distributed systems
developed using RMI. We introduced a new secure architecture
for the Java RMI that employs the concepts of authentication
and authorization based on Parameterized Role Based Access
Control (PRBAC), which enables application developers to
employ these concepts in distributed applications implemented

using our proposed secure RMI.

Index Terms— distributed systems, remote method

invocation, role-based access control, security.

I. INTRODUCTION

istributed systems security is of paramount importance
for software systems constructed by using this

technology. As a consequence, much research has been
focusing on defining security standards and architectures for
distributed systems middleware. In fact, there were many
security standards and architectures defined for distributed
systems middleware over the past years such as the CORBA
security server, DCE security, Web Services Security and
etc. However, there were no security standards or
infrastructures defined for the Java Remote Method
Invocation (RMI). Such an infrastructure could facilitate the
design and development of secure distributed applications
implemented using the Java RMI. More so, it reduces the

Manuscript received November 22, 2010.
This work was supported by EastNets R & D Belgium, as part of their
support of research towards risk management.
Nezar Nassr(Member, IAENG) is currently pursuing the Ph.D. degree at the
Department of Computer Science and Engineering, Katholieke Universiteit
Leuven , Belgium.(phone: 00 32 498901846; e-mail:
nezar.nassr@cs.kuleuven.be). Nezar is also working as a consultant for
EastNets R & D, Belgium.
Eric Steegmans is a Professor with the Department of Computer Science
and Engineering, Katholieke Universiteit Leuven , Belgium (e-mail:
Eric.Steegmans@cs.kuleuven.be).

security inconsistencies that might arise in developed
distributed applications.
 Much attention has been devoted recently to security
issues and it is apparent that a high level of security is a
fundamental prerequisite for Internet-based transactions,
especially in the business-to-business area [1].
 Distributed business applications require to be protected
in terms of security to prevent access to confidential
information. Moreover, they demand a way of regulating the
user access to the system. A business application must
determine who can access the system as well as how a user
can access the system. e.g. a user in an organization that has
access to an application must access only data he is entitled
to see.
 Java RMI is a programming technology that is used for
developing distributed applications. It provides facilities for
invoking methods on remote objects. The secure version of
RMI (RMI-SSL) provides point to point security between
clients and servers. RMI offers no security at the objects nor
methods invocation levels .
 The review of related research has shown that no work
has been done towards defining a security infrastructure for
RMI. However, there has been a vast area amount of work
done on defining security infrastructures for other distributed
systems middleware such as Web Services Security and the
CORBA Security Server. Thus, our goal was designing and
implementing a security infrastructure for RMI to address
the security vulnerability issues that might arise in
distributed systems developed using RMI. Our work
presents a new secure architecture for Java RMI that
employs the concepts of authentication and authorization
based on role based access control (RBAC), which enables
application developers to employ these concepts in
distributed applications implemented using our proposed
secure RMI.
 Our architecture covers the authentication and
authorization requirements of distributed applications in an
easy-to-use way for software developers. We have followed
an approach that keeps the details of the implementation
transparent for the application developers. Generally
speaking, we have taken into account making the
architecture simple and making only the minimal changes
required to enable the usage of secure RMI by the software
developer. Our architecture also caters to future
enhancements as well.
 The contribution of this work is that it provides the first
secure RMI architecture; that enables software developers to
construct secure distributed applications with the Java RMI.
We have used parameterized RBAC [2] that provides
additional control over roles. We also provided a new way

Security Service Design for the RMI Distributed
System based on Parameterized RBAC

NEZAR NASSR, ERIC STEEGMANS

D

of combining the rules together with possibilities of AND
and/or OR combination of roles. In our architecture, we also
provided access control at the method level. Moreover, with
our design, software developers do not need to make
dynamic checks, this ensuring that the method can only be
invoked by a client holding the roles that are entitled to him
to access the method. Given these checks are already
implemented by our Security Server.
 The remainder of this paper is organized as follows: In the
next section, we introduce RMI, then in section III we
introduce RBAC and parameterized RBAC is presented in
section IV. In section V, we briefly review a number of
related security models for distributed systems. Following
that expose, we present our solution in section VI, followed
by an explanation of the design of the Security Server in
section VII. Finally section VIII concludes our work.

II. THE JAVA REMOTE METHOD INVOCATION (RMI)

 The Java Remote Method Invocation (RMI) is a
middleware for constructing distributed applications. RMI
enables applications to invoke methods on the server side.
 Whenever an application invokes a method on the server
side, it passes the arguments to the method, following this
step, the method is executed on the server side and the
client gets the return value of the method.
 Figure 1 shows an architecture example of the Java RMI,
the server application consists of the remote interface that
defines the methods the client can invoke on the server, and
the classes that implement the remote interface.

Fig. 1. High-level view of the Java RMI Architecture

 The server application must register itself in the RMI
registry server which is a naming service and a part of the
RMI middleware. Clients must look up the service name
before they can call methods. When the client looks up the
server from the RMI registry it receives a reference to the
server class.
 When a client receives a reference to a server, RMI
downloads a stub that translates calls on that reference into
remote calls to the server. The stub marshals the arguments
to the method using object serialization, and sends the
marshalled invocation across the wire to the server. On the
server side the call is received by the RMI system connected
to a skeleton, which is responsible for unmarshalling the
arguments and invoking the server's implementation of the
method. When the server's implementation is completed,
either by returning a value or by throwing an exception, the
skeleton marshals the result and sends a reply to the client's
stub. The stub unmarshals the reply and either returns the

value or throws the exception as appropriate. Stubs and
skeletons are generated from the server implementation,
usually using the RMI Compiler [3].
 RMI has evolved since it was first introduced in Java 1.1.
RMI was extended in Java 2 to enable object serialization
and eliminate the need for skeletons, which were replaced by
reflection to make connections to the remote objects. Java 5
adds support for the dynamic generation of stub classes at
runtime, obviating the need to use the Java Remote Method
Invocation (Java RMI) stub compiler to pre-generate stub
classes for remote objects [4].
 The secure version of Java RMI (RMI-SSL) provides
means for securing the communication channels between
clients and servers; it also provides protection against
security-sensitive actions such as accessing the local file
system of the server.
 RMI does not provide any means for protection by
authentication or authorization. Any client which is able to
lookup the service name of the RMI server is be able to
invoke methods on the server application. Many applications
require restricting access on the server methods invocation
for only authenticated clients. More so, some applications
require the ability to give clients access only on certain
methods on the server application rather than full access.

III. ROLE-BASED ACCESS CONTROL

 RBAC is a form of access control that explicitly enables
or restricts the resources in a software system. It protects
against unauthorized use and manipulation of resources. In
RBAC permissions are assigned to roles rather than to users,
then roles get assigned to users and hence users get their
access privileges in function of what roles they already have.
Generally, roles represent functions or responsibilities that
can be achieved by a software system, but can also represent
sub-functions.
 At present, application developers and deployers define
the roles that make sense for an application and then identify
which methods each role should be allowed to call.
Therefore, access is defined in terms of operations on
components[5]. For example, in a banking core application,
we can divide users according to their roles in the bank, e.g.
as tellers, account managers, sales, etc. The teller user could
have a teller role that enables him to perform transactions
and see clients information, whereas a sales person with a
sales role could have read only access on client information.
In a different design of roles, someone could define a read-
only role and a "perform-transaction" role, in this case the
teller could be assigned both roles, while the sales user could
be assigned only the "read-only" role.

IV. PARAMETERIZED RBAC MODEL

 Unfortunately, traditional RBAC does not support
different levels of customization for roles. For example, in
our banking example, it might be necessary to give different
tellers different levels of the "perform-transaction" role. One
junior teller could be allowed to do transactions that have
small amounts, while another senior teller could be allowed
to perform large amount transactions. This would be a
nightmare if we are needed to assign an amount limit for
each teller. This disadvantage was subject to further
research, and it was addressed by some techniques such as
Object-sensitive RBAC [6], parameterized RBAC [2], etc.

The other option for addressing this issue with traditional
RBAC is to define a new role for each teller; which makes
managing roles and keeping track of them more
complicated. Moreover, It also could be a vast problem in
dynamic and large scaled organizations.
 Object-Sensitive RBAC [6] addresses the problem by
extending the RBAC model to support fine-grained policies.
The basic idea is to allow roles and privileged operations to
be parameterized by a set of index values, which intuitively
are used to distinguish users of the same role from one
another. A privileged operation can only be invoked if both
the appropriate role is held and the role’s index values
matches the operation’s index value [6].
 The parameterized RBAC model is actually similar to the
Object-Sensitive RBAC; it improves upon the traditional
RBAC model with enhancements that enable the definition
of roles which can be customized or adapted according to
the function changes between a user and another. This
provides a way of implementing hierarchical and levels
differences in roles. e.g. a senior teller who is allowed to
perform transactions with large amounts and a junior teller
that is able only to perform small amount transactions.
 In the parameterized version of RBAC, although roles are
defined as a single role, their implementation suggests their
instantiation into a large number of roles to cater to every
client, which presents a huge burden on the intellectual
manageability of access rights [2].
 The advantages most commonly associated to RBAC
models, can be maintained if the roles are modeled as a
parameterized RBAC. In this model, core RBAC
components, such as roles, would depend on the values of a
parameter. To extend RBAC into a parameterized model,
data about the values of the parameters should be provided.
New permissions that might be created due to the
parameterization should also be identified [2]. By
Parameterized RBAC, the problem explained above with
teller roles can be solved effectively by defining one role
called teller and associating an amount limit parameter to the
teller role, then we can assign a small amount for the junior
teller and a large amount for the senior teller.
 In our work we used the Parameterized RBAC model as
the access control model since it achieves extremely fine
grained access control granularity, as well as provides
completeness in terms of investigating all the concepts and
semantics of a Parameterized RBAC and supporting all the
definitions and features of other well-known RBAC models
[2].

V. RELATED SECURITY MODELS FOR DISTRIBUTED SYSTEMS

 In this context we can mention the DCE and the CORBA
Security Services. DCE is a distributed platform based on
RPC (Remote Procedure Call). Security is one of the basic
components of DCE, and each CELL (a group of hosts) of
DCE associates a security service, which has to be trusted by
all member hosts of the CELL[7]. In DCE a different
authentication procedure is necessary. When a user logs in,
the login program verifies the user's identity using the
authentication server, while authorization is handled by
associating an ACL (Access Control List) with each resource
[8].
 The CORBA Security Service includes interfaces that
define services for the following well-known areas of

computer security: Authentication, Message Protection
(including encryption for guaranteeing confidentiality as
well as integrity), Access Control, Auditing, and Non-
repudiation [1]. CORBA authorization is based on access
control lists (ACL); which provide access control over
resources or services provided by a CORBA application.
 There have been some initiatives to improve upon the
CORBA Security. R. Obelheiro [9] proposed an access
control model for CORBA based on RBAC that supports
automatic role activation by the security components of the
middleware.
 J2EE provides authentication and authorization
mechanisms for Enterprise Java Beans (EJB). The
authorization is based on basic RBAC access control. In
general, security management should be enforced by the EJB
container in a manner that is transparent to the enterprise
beans business methods. EJB security provides security on
the EJB method level where methods can be annotated with
roles [4].
 Moreover, there have been initiatives for adding security
to Web Services, Damiani [10] has proposed an
infrastructure for web services security that enforces access
control policies on the request calls carried by SOAP.
Wonohoesodo [11] has proposed two access control
techniques: one for single services and another for global
services. Their approach introduced global roles which are
used in the mapping to local roles of other service providers.
Moreover, they have proposed a role-mapping mechanism
to maintain the autonomy of roles between providers.

VI. OUR PROPOSED ARCHITECTURE

 RMI provides an infrastructure for developing distributed
applications. This infrastructure bypasses some security
mechanisms that are considered mandatory for many
applications. In this work we extended the RMI
infrastructure to adapt two goals that are not provided with
the RMI infrastructure, which are authentication and
authorization. The proposed architecture is shown in figure
2.
 We introduced a Security Server in the RMI
Infrastructure. The purpose of the Security Server is
implementing security concepts of user authentication and
authorization.

Fig. 2. The proposed secure RMI architecture.

A. Authentication

 Authentication is the process of determining if a principal
(that is a user or process that needs to communicate
securely) really is who he/she/it claims to be [8]. Whenever
a client attempts to invoke methods on the RMI server
application for the first time, it must authenticate itself. This
requires the client to provide a username and a password to
the server application. The username and password pair are
then checked by the Security Server and it determines
whether or not the client is entitled to access the RMI server.
 The security server must have the authentication
information pre-defined in its database before clients can
make requests to the server. We suggest that the client
authenticates itself once a step could be directly after the
client looks up the service name from the RMI registry
service and gets a reference to the server, the Security Server
afterwards maintains the session between the client and
server applications.

B. Authorization

 Once a user has been authenticated, the question arises
concerning which resources that user may access and how,
this issue is called authorization. We implemented an
authorization mechanism on the method level using
parameterized RBAC[2].
 At the server application side, all the RBAC rules must be
defined in the remote interface; each method will be
annotated by one or more roles that restrict access of that
method to holders of that roles.
 Besides the authentication information of the client the
security server must have the roles granted for that client.
The Security Server extracts roles for methods by reading
the annotations defined in the remote interface.
 Once a client is authenticated and makes a request to
invoke a method on the server, the Security Server should be
able to determine whether the action is allowed or not, based
on the roles assigned for that client and the roles needed by
the method as defined in the remote interface.

VII. SECURITY SERVER DESIGN AND IMPLEMENTATION

 Now that, in the previous section, the proposed
architecture has been explained, we will now introduce our
design of the RMI security server.
 Before getting into the details of the design of the Security
Server, we would first like to expand upon the in-depth
architecture of the Java RMI infrastructure.
 RMI is built upon three layers as shown in figure 3; the
first layer is the Stub and Skelton layer, which lies beneath
the view of the developer. The stub marshals the arguments
to the method using object serialization, and sends the
marshaled invocation across the wire to the server. The
skeleton carries on a conversation with the stub; it reads the
parameters for the method call from the link, makes the call
to the remote service implementation object, accepts the
return value, and then writes the return value back to the
stub [3, 12].
 The following layer is the Remote Reference Layer. This
layer understands how to interpret and manage references
made from clients to the remote service objects. More so, it
connects clients to remote service objects that are running
and exported on a server [12].

 The third and final layer is the transport layer; which is
based on TCP/IP connections between machines in a
network. It provides basic connectivity, as well as some
firewall penetration strategies [12].

Fig. 3. Layered Architecture of the Java RMI, (figure from [12]).

 Our design involves adding a new component to the RMI
Architecture, which we call the Security Server. The
Security Server is placed in the Skeleton layer at the server
side. It also needs some modifications at the Stub level on
the client side. We have also adapted our Security Server
design to support stub and skeleton free RMI introduced in
Java 5. This is accomplished through introducing two
intermediate components at the client side and the server
side that are automatically generated. These components are
responsible for catering to the new changes required by the
secure RMI. The new architecture is shown in figure 4.

Fig. 4. The Layered Architecture of the proposed Secure Java RMI.

A. Authentication

 Once the client looks up the server name from the registry
sever, it must authenticate itself to the Security Server. We
have introduced a new class (SRMIAuthentication)
with a metthod authenticateUser, that is used by the
RMI client to authenticate itself. This method sends the
username and password of the user or the process to the
Security Server, then the Security Server replies back with a
ticket if authentication is successful, otherwise an exception
is returned.

Ticket auth_ticket =
SRMIAuthentication.authenticateUser("use
r1","password123","localhost");

 The username and password must be pre-defined in the
Security Server database. The ticket is an encrypted data
structure that is composed from the username, a random
number that corresponds to the session ID, and an expiration
date/time.

 The Security Server has to maintain a copy of that ticket
in its database. The stub (or the client intermediate
component in Java 5) then marshals the ticket with each
invocation request to the RMI server. The Security Server
then intercepts each request at the server side and validates
the ticket with the value stored in its database. Based on the
validation result, the Security Sever either allows further
processing or blocks the request.
 This process is transparent for the client program, the only
change that is needed at the client program is providing its
credentials once it starts a new session using the
SRMIAuthentication.authenticateUser
method.

B. Authorization

 The Security Server parses the Remote Interface and reads
the annotations of the methods, then it determines which
roles are needed for invoking each method. The Security
Server then maintains this information in its database.
 When the client sends a request to invoke a method, the
stub must then marshal the ticket received from the Security
Server to the RMI server with the method arguments. When
the Skeleton receives the method arguments and the ticket
from the Stub, it extracts the ticket from the arguments and
sends it together with the method name to the Security
Server for verification. The Security Server then checks if
the ticket exists in its database. If it exists then it reads the
roles assigned to that client and checks if the request to
invoke the method could be achieved. If the client has the
roles required for invoking the method, then the Security
Sever sends a positive signal to the Skelton allowing it to
continue the process. If the client does not have enough roles
to invoke the method, the Security Server then sends a
negative signal to the Skeleton which by its turn denies the
client's request and throws an ActionNotAllowed Exception
which is then marshalled to the Stub.
 Nothing has to be changed in the RMI Server application,
given all changes are done in the skeleton on the server side
which is generated by the RMI Compiler (rmic). All the
changes done in the stub and skeleton are systematic, and
automatic generation of the changes is very straightforward.

C. RBAC Roles Definition for Server Methods

 To control access control on methods at the server side,
we have adapted the Parameterized RBAC model explained
in section IV. The server methods are annotated with a set
of roles that are required by each method to enable
invocation. These roles are specified in the methods
declarations in the Remote Interface. We use Java
annotations to achieve this functionality.
 Java EE provides a specification for defining method
permissions using annotations for Enterprise Beans [4]. The
method permissions for the methods of a bean class can be
specified on the class, the business methods of the class, or
both. Method permissions can be specified on a method of
the bean class to override the method permissions value
specified on the entire bean class. The approach provides
three types of permissions; the @RolesAllowed("list-of-
roles") annotation; is a list of security role names to be
mapped to the security roles that are permitted to execute the
specified method or methods, while the @PermitAll
annotation specifies that all security roles are permitted to
execute the specified method or methods. Finally the

@DenyAll annotation states that no security roles are
permitted to execute the method or methods [4].
 However, this approach does not provide any possibility
for defining parameterized RBAC roles. As a consequence,
we adapted a similar approach of specifying roles, but with
modifications to enable parameterization of roles. A similar
approach was introduced in [6] for defining roles with
parameters.
 We adapted an approach for defining the roles similar to
mathematical function definitions, where the roles names
substitute the function name and the parameters substitute
the function arguments. For example:
Role_Name (param1, param2)
 Role parameters could take values in the role definitions
which can also utilize wide range of operands e.g. > ,<, =,
∈, etc. If we take an example as a bank account and the role
required to enter a payment for an account is AddPayment
and this role could have parameters such as:

- Account number in group of customers that the clerk
can handle (e.g. accGRP).

- The clerk is allowed to do transactions on account
with amounts larger than the amount specified (e.g.
Amount).

 Then our definition of the roles will be as follows:
@RolesAllowed {AddPayment (acc_num in accGRP,

Amount > transaction_amount)}

public void Insert_Payment(acc_num,

transaction_amount){

 }

 In the example above, the user must hold the
AddPayment role with amount greater than the transaction
amount as a parameter for his role to be able to invoke the
method. In our approach, it is also possible for a method to
have more than one role in the @RolesAllowed annotation.
Moreover, it is possible to separate roles with an AND
operand allowing the method to require more than a role to
be invoked or with an OR operand allowing the user to
invoke the method if he has one of the roles specified.
 The following code fragment shows an example of a
Remote Interface with RBAC roles declarations.
import java.rmi.*;
public interface ExpenseServer extends Remote {
 @RolesAllowed{AddPayment(Amount>
transaction_amount) }
 void InsertPayment(acc_num, transaction_amount,
value_date)
 throws RemoteException;
}

Fig. 5. Code fragment shows remote interface with annotated RBAC roles.

 The security server reads the annotations ahead of each
method then it creates a data structure that have all method
names and the required roles and parameters for invocation.
The Security Server asserts each invocation request with this
data structures to ensure that the client possesses enough
permission to invoke the method.

D. Session Maintenance between Client and Server
Applications

 In our design we provide a mechanism that avoids
redundant authentications between clients and servers when
a client tries to invoke a method on the server. Once the
client is authenticated, the Security Server generates a ticket
that is associated to the client authentication information in
the Security Server Database. Afterwards, the client passes
this ticket with each request to invoke a method. The
Security Sever checks this ticket and determines if the client
was authenticated before or not. This ticket has an random
generated code that acts like a session identifier.

VIII. CONCLUSION

 In this work we presented both a design and an
implementation of a security server for the Java RMI. RMI
has been used in many different enterprise business
applications, however, no security service has been
implemented as of yet. On the other hand, there have been
security services implementations for other distributed
systems infrastructures such as CORBA, but these designs
use access control lists (ACL) and control over resources.
 We have designed a simple and extendable architecture
that uses parameterized RBAC for access control which is
much better than access control lists. This enables software
developers who wish to use our secure version of RMI to
have more control on accessing methods rather than
resources since in many cases resources represents general
concepts.
 Our current implementation can be enhanced by using
more sophisticated authentication techniques and by using a
more refined language for expressing RBAC roles. And
finally with an RMI compiler that can generate the secure
stubs and skeletons.

REFERENCES

[1] A. Alireza, U. Lang, M. Padelis, R. Schreiner, and M. Schumacher,
The Challenges of CORBA Security, Sicherheit in Netzen und
Medienströmen, Informatik aktuell, 2000.

[2] A. E. Abdallah and E. J. Khayat. A formal model for parameterized
role-based access control. Formal Aspects in Security and Trust.
Springer, 2004.

[3] Java RMI White Paper,
http://java.sun.com/javase/technologies/core/basic/rmi/whitepaper/in
dex.jsp

[4] The Java EE 5 Tutorial,
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html

[5] R. Sandhu, E. Coyne, H. Feinstaein, C. Youmann,. Role-based access
control models, IEEE Computer 29 (2). (1996) 38–47.

[6] J. Fischer, D. Marino, R. Majumdar, and T. Millstein, Fine-Grained
Access Control with Object-Sensitive Roles, European Conference
on Object-Oriented Programming (ECOOP 2009).

[7] Xingshe, Z. and Xiaodong, L. Design and Implementation of CORBA
Security Service. In Proceedings of the 36th international
Conference on Technology of Object-Oriented Languages and
Systems. TOOLS. IEEE Computer Society, Washington, DC, 2000.

[8] Andrew S. Tanenbaum, Distributed operating systems. Prentice-Hall,
Inc. Englewood Cliffs, 1995, pp554-563.

[9] Obelheiro, R. R. and Fraga, J. S. 2002. Role-Based Access Control
for CORBA Distributed Object Systems. In Proceedings of the the
Seventh IEEE international Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS 2002)(January 07 - 09, 2002).
WORDS. IEEE Computer Society, Washington, DC, 53.

[10] Damiani, E., di Vimercati, S. D., Paraboschi, S., and Samarati, P.
2001. Fine grained access control for SOAP E-services.
InProceedings of the 10th international Conference on World Wide
Web (Hong Kong, Hong Kong, May 01 - 05, 2001). WWW '01.
ACM, New York, NY, 504-513.

[11] Roosdiana Wonohoesodo, Zahir Tari, "A Role based Access Control
for Web Services," scc, pp.49-56, Services Computing, 2004 IEEE
International Conference on (SCC'04), 2004.

[12] RMI Online Course,
http://java.sun.com/developer/onlineTraining/rmi/RMI.html

