Proceedings of the International MultiConference of Engineers and Computer Scientists 2011 Vol I,
IMECS 2011, March 16 - 18,2011, Hong Kong

Comment-based Keyword Programming

Yusuke Sakamoto, Haruhiko Sato, Satoshi Oyama, Masahito Kurihara

Abstract—Keyword programming is a technique to generate Java syntax for method invocation. Keyword programming is
code fragments automatically from the several keywords pro- related to work on searching for examples in a large corpus
vided by the user and the context of the code. It reduces a of existing code. It can be distinguished by the kind of

burden of remembering the details of a particular language or . -
API. In this paper, we extend the technique for using comments, query provided by the user. In Prospector [4] and XSnippet

instead of keywords, in the search of expressions. The use of[3], these systems require types for the input. However, in
comments is expected not only to motivate us to write comments keyword programming, the input is not restricted to a type.
frequently, but also to give us more semantic information which

iS Useful fOI’ impI’OVing quallty Of generated Codes. public List<String> gzetlines(BufferedReader src) throws Exception{

List<Ztrinz> array = new ArravList<Strinz>{};

'hile(sribggady()){

Index Terms—Autocomplete, Code assistants, Code comple-
tion ; return array;

+
I. INTRODUCTION JL Ctrl + Space

public List<3iring> getlines(BufferedReader src) throws Exception{

ITH the advancement of software development tech- List<String erray - ner Arraylisi<itring O;
nology, a lot of programming languages such as Java, e B
C#, VB, PHP, Ruby, etc. exist today. However, modern g et erre

programmers must learn and remember the details of these

many programming languages and APls. Itis a heavy b“rdEB. 1. In keyword programming, the user types some keywords, presses
for programmers to learn, remember, and use these langua@empletion command (such as Ctrl-Space in Eclipse), and the keywords
syntaxes correctly. Keyword programming [1] is a techniguase translated into a valid expression

to reduce the burden of remembering the details of a particu-

lar language or API. It uses a few keywords provided by the

user to search for expressions that are possible in the conféxt™odel

of the code. Keyword programming models the available methods,

In this paper, we extend the keyword programming arfeelds and local variables in the case of Java. Although it
present the idea of comment-based keyword programmiragpuld be applied to many languages, this paper focuses on
which provides a tool to create executable code fragmehiva. Keyword programming defines the modél as the
from a single line comment input by the user programmdriple (7, L, F), whereT is a set of types/L is a set of
Thus it can further reduce the burden of programmeirgbels used for matching the keywords, afdis a set of
Programmers generally have to write comments explainifignctions.
what an executable code means for making it easier tol) Type set: T:Each type is represented by a unique
understand. Comment-based keyword programming utilizagme. For Java, keyword programming gets this from the
their works of writing comments for creating candidates dfilly qualified name for the type. Examples include int and
an executable code fragment. java.lang.Object.

The paper is organized as follows. In Section II, we briefly 2) Label set: L: Keyword programming uses labels to
review the general idea of the keyword programming. Ifepresent method names, so that keyword programming can
Section Ill, we present the main idea of the comment-basgthtch them against the keywords in a query. To get the
keyword programming. In Section 1V, we conclude our workeywords from an identifier, keyword programming breaks
and discuss some future work. up the identifier at punctuation and capitalization boundaries.
For instance, the method name currentTimeMillis is repre-
sented with the label (current, time, millis).

)] 3) Function set: F: Functions are used to model each

In keyword programming [1], the user provides a feVkomponent in an expression that keyword programming
keywords for the mpu_t query to search for a desired cog€ nis to match against the users keyword query. In Java,
fragment. The user interface takes the form of a COdRese include methods, fields, and local variables. Keyword
completion |pterface_|n an IDE. For |nstance, Fig.1 Sho"‘ﬁrogramming models expressions generated by a keyword
a user enteringadd line in a Java file, which the systemgery as a function tree. Each node in the tree is associated

translates in-place tarray.add(src.readLine()). The gener- \yith ‘a function from F, and obeys constraints of the types
ated expression contains the user’s keywadd andline, o return value and parameters.

but also fills in many details, including the receiver objects
array and src, the full method name readLine, and the fom@l

II. KEYWORD PROGRAMMING

Evaluation of a Function Tree

Manuscript received January 12, 2011; revised February 7, zollelven a function tree WherFfuncs is the list of functions
The authors are with the Graduate School of Information Science

and Technology, Hokkaido University, Sapporo 060-0814, Japan. E-mdll the tree, keyword programming calculates the score as
sayuu@complex.eng.hokudai.ac.jp. follows:

ISBN: 978-988-18210-3-4 IMECS 2011
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2011 Vol I,

IMECS 2011, March 16 - 18,2011, Hong Kong

boolean
add
List String
List Stri n.g
array readline
BufferedReader

BufferedReader
src

Fig. 2. This tree is a function tree representing the Java express
array.add(src.readLine()) from Fig.1. Each node is associated

I1l. COMMENT-BASED KEYWORD PROGRAMMING

For utilizing the comments in generating code fragments in
keyword programming, we propose comment-based keyword
programming. The actual flow of comment-based keyword
programming is as follows: first, the user input a short,
one line comment and invokes the tool by command of
Ctrl-Space. Second, the tool shows multiple candidates of
executable code fragment on a pop-up window and the user
isglect a suitable one. Finally, the tool outputs the code and
the input comment remains on the source code (Fig.4).

with a function. The words at the top of each node represent the return

type, and the words at the bottom represent the parameter types.

an f € Tuncs Such thatk € label(f). This givesl
point for each keyword that the tree explains.

—0.05 for eachf € Ttyuncs. This favors function trees
with fewer functions.

For eachf € Tyyncs, consider eachw € label(f), and
subtract0.01 if w is not in the query. This favors less
verbose function trees.

+0.001 for eachf € Ttunes Wheref is a local variable,
or f is a member variable or member method of th

enclosing class. This favors functions and variable

which are close to the user’s context.

Since it takes a lot of time to calculate all the combinatior

of the functions, keyword programming uses a dynam
programming (Fig.3) to reduce the amount of calculation.

Algorithm 1 Pseudocode to fill out the dynamic program
ming table in keyword programming
procedure DynamicProgram()
for each1 <i < h do
for eacht € T' do
bestRoots(t,1) < ()
for each f € F' where ret(f) € sub(t) do
e + GetBestExplForFunc(f,i—1)
if e < —oo then
best Roots(t,1) < bestRoots(t,i) U (e, f)
end if
bestRoots(t,i) < GetBestN (bestRoots(t,1),)
end for
end for
end for

procedure GetBest Expl For Func(f, hmaz)
€cumulative < expl(f)
for each p € params(f) do
epest < (—0,0,0,0,...)
for each 1 < i < h,pq, dO
for each (¢, f') € bestRoots(p, i) do
if €cumulative T e > Ehest then
€pest < €cumulative T e
end if
end for
end for
Ccumulative < Chest
end for
return

(ecumulative)

ISBN: 978-988-18210-3-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

+1.0 for each keyword: in the query where there exists

public List<String> getlLines(BufferedReader src) throws Exception {
List<String> array = new ArrayList<Strine>();
while (S’ci' ready())'
read a |ine from src,

array|

L 4

public List<String> getlines(BufferedReader src) throws Exception {
List<String> array = new ArravList<String>();
while (;r‘:{ rea‘
0 d a

return array;

and add it to

return array;

ine from src, and add it to array

array.add(Boolean.FALSE).compareTo(src.readLine())
1 src.readLine().compareTo(array.add(Boolean.FALSE))
(array.add(src.readLine()) |
array.add(Boolean.FALSE).equals(src.readLine()
Character.FORMAT.compareTo(src.readLine())
src.readLine().equals(array.add(Boolean.FALSE))
Boolean.getBoolean(array.add(Boolean. FALSE), src.readL
Boolean.parseBoolean(array.add(Boolean.FALSE), src.rea
Boolean.valueOf(array.add(Boolean.FALSE), src.readLine(
String.valueOf(src.readLine(), array.add(Boolean.FALSE))
Character.MAX_VALUE.compareTo(src.readLine())
Double.MAX_VALUE.compareTo(src.readLine())
Float.MAX_VALUE.compareTo(src.readLine())

¥

public List<String> getLines(BufferedReader src) throws Exception {
ist<String> array = new ArrayList<String>();
while (src.ready

read a line from src,
array.add(src. readLine())

and add it to arra

return array;

Fig. 4. This picture shows a flow of the actual works of our tool. It is a
plug-in of the Eclipse IDE.

A. Advantage

If you use our tool at programming, there are two ad-
vantages. Since the input is a comment, you unify the two
works, writing codes and writing comments. Since the input
is a comment, you tend to write more comments naturally
than usual. Our tool reduces the works of programming and
enhances the readability.

B. Algorithm for multiple outputs

We have improved the algorithm of previous study pre-
sented in the section of algorithm. The algorithm of previous
study outputs only one candidate. We have improved it in
order to output multiple candidates. The improved points are
as follows:

« Each cell in the dynamic programming table keeps a
few hundred of candidates. In previous work, each cell
contains at most 3 candidates.

« Each cell keeps a function tree, instead of the root
function of the tree.

o Outputs are a few hundred of function trees whose
height is at most 3 (same as previous study) and having
desired return type.

The reason that the number of candidates is limited to a
few hundred of pairs is the limit of memory size (4GB in

IMECS 2011

Proceedings of the International MultiConference of Engineers and Computer Scientists 2011 Vol I,
IMECS 2011, March 16 - 18,2011, Hong Kong

Height
-0.059 1.772 1.633 -0.059
List<String> boolean String BufferedReader
array add valueOf src
3 List<String> String String Object
-0.128 1.751 1.751 1.633 0.881 -0.139 -0.208
List<String: boolean boolean string string
e getlines add valueOf readLine
Bufferedreader Collection Object set Object string Boolean BufferedReader
-0.059 0.822 0.881 -0.059
List<String> boolean String BufferedReader
array addAll readline src
2 List<String> List BufferedReader
0.128 0.822 0.822 -0.069 -0.070
Listestring. boolean boolean string string
o getlines addAll add toString File.separator
Bufferedreader List<String> String
--0.059 -0.100 -0.069 -0.059
List<String> boolean String BufferedReader
1 array ImagelO.getUseCache toString src
-0.070 -0.070
sting sting
e new String | File.separator
Type
List<String> boolean String BufferedReader

Fig. 3. This is the dynamic programming table for a run of the algorithm on the input add line in the context of Fig. 1. Each row represents a height, and
each column represents a return type. Each cell contains up to three boxes. The box with the highest score in each cell is enlarged. Each box represent
a function with the name in the center, the return type above the name, and the parameter types listed below the name. The return type of each function

must be a subtype of the column type that the box is in. The number above the return type is the score of the function.

our environment). Although this algorithm clearly consume8lgorithm 3 Our GetBestExplForFunc procedure
larger amount of memory than previous algorithm, our tool procedure GetBest ExplFor Func(f, hmaz)

responds within a second even if the size of function/set

is a few thousand.

Algorithm 2 Our DynamicProgram procedure
procedure DynamicProgram()
foreach1 <i<h do
for eacht € T do
bestRoots(t,1) < ()
for each f € F where ret(f) € sub(t) do
tree < GetBestExplFor Func(f,i— 1)
e < tree.getRoot().get E()
if e < —oo then
bestRoots(t,1) < bestRoots(t,i) Utree
end if
bestRoots(t, i) < GetBestN (bestRoots(t,i),r)
end for
end for
end for

Ccumulative < expl(f)
treepest — CreateFunctionTree(f, ecumulative)
for each p € params(f) do
€pest (—00,0,0,0,...)
treeparam < null
for each 1 < i < A4, dO
for each tree € bestRoots(p,i) do
if €cumulative T e > Chest then
€pest < €cumulative T+ e
treeparam < tree
end if
end for
end for
€cumulative < Cbest
treepest <— AddChild(treepest, treeparam)
end for
return

(ecumulatiue)

In addition to output multiple candidates, we have tried t_%xplained in the section of II-B. The candidate list is sorted
consider the use of frequency of the selected candidate. Bizdescending order of the score.
cause of higher probability of occurrence, a lot of candidates

is useful. However, a lot of candidates is also a burden fer
users when selecting what they need. We think that this is

. Implementation

a similar problem of web search engines. Like web searchWe have implemented our idea as an Eclipse plug-in. Our
engines, the list of candidates presented to users shouldt®@ works following steps:

customized for each user using the tool.

We define a sorting rule for user customized list. We

1) A programmer inputs keywords on the editor, and
invokes our tool.

calculate the score of each candidate of function tree by the2) Our algorithm of keyword programming generates an

sum of (1) the number of times of the use of a function
tree and (2) the score for a function tree calculated the rules

ISBN: 978-988-18210-3-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

output of a few hundred of candidates taking source
code context into account.

IMECS 2011

Proceedings of the International MultiConference of Engineers and Computer Scientists 2011 Vol I,
IMECS 2011, March 16 - 18,2011, Hong Kong

-0.059 1772 1.633 -0.059
List boolean String BufferedReader
array add valueOf src
3 List String String Object
28 1751 h 1633 B1
0090 7 i s | il v
e e, |nes cas add .ee valueOf line wae | rovBedods [ee
e Collection Object et | Sting Boolean |Reader |r " integer |
-0.059 0.822 0.881 -0.059
List boolean String BufferedReader
array addAll readLine src
2 List List BufferedReader
0.090 28 0.822 p2 -0.069 |70 0139 los
o s> boolean an String d BufferedReader g
e 1S ese | addan P ees | toString fprator wen | oovmmem ™
Reader |- e e suing |r o integer |
-0.059 -0.100 -0.069 -0.059
List boolean String BufferedReader
1 array ImagelO.getUseCache toString src
= -0.070
5 0.090 e ZO
g Rt new String [arator P
T . .
ype List boolean String BufferedReader

Fig. 5. This figure is an image of the improved dynamic programming table in order to output multiple candidates. Each cell of the table is a function
tree. Each cell contains a few hundred of function trees.

3) Our tool sorts list of output candidates with their usand "append’, we will allow our tool to handle synonyms by
of frequency. making a thesaurus specialized for software developments.
4) The programmer selects candidate and the use of

selected candidate is written in the database. /\” comment) Input
Fig.6 shows the usefulness of considering the use of fi - — l
guency. These two pictures are the snapshots after invok (_Kerworas Verysimple
our Eclipse tool on the same context. The left snapshot l natural language processing
the first time of the invocation. The right is the third time _ . m
In this context, the candidate that user needs are colorec ~ €YWerdProgramming (_Kevwords) (Something e nformation >/‘
the list. The candidate exists higher in the list of the rigt l
shapshot. The introduction of the use of frequency mak — e— Extended keyword programming
commonly-used candidates easy to find. \Gendidatesofeode)
1
IV. CONCLUSION AND FUTURE WORK (candidatesof code) Comment) Output

One line short comment is often used line by line es-

ecially on a commercial source code that requires hi
P y q . g-lp 7. These are the overviews of the tool.
readability. Comment-based keyword programming is VeRogramming and the right is our study.
useful for such situations. Our future work is applying a very
easy natural language processing for processing input small
comment (Fig.7). We think that applying it will improve the _ _ o

.. . CH'] G. Little, R. C. Miller. Keyword programming in JavaAutomated

precision of the tool. We will analyze parts of speech Software Engineering 16(1), pp. 37-71, 2009.
the input using part-of-speech tagger and apply the namifgy Steven P. Reiss. Semantics-based code semteedings of the 31st
conventions of programming. For example, the inpald (. 0 o eppet Mining For Sample Code
line” is a Verb-Object pattern. The result is likely to be[' pran, I - aypool ppes 9 P '

The left is keyword

REFERENCES

: -) ; Proceedings of the 21st annual ACM SIGPLAN conference on Object-
"add(line)” or "line.add(X)” or "addLine()". The input:

"robot moves to (x,y) is a Subject-Verb pattern. The result
is likely to be 'robot.move(x,y) or " move(robot,x,yy. The

in a function tree. We will add a new scoring rule to existin
four rules on the basis of this way of thinking. The oth

(4]
object and the subject are likely to be a child node of the verb

oriented Programming Systems, Languages, and Applications (OOPSLA
2006), pp. 413-430.

D. Mandelin, L. Xu, R. Bodik, D. Kimelman. Jungloid Mining: Helping

to Navigate the API JungleéRProceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementappn
48-61.

] Rosco Hill, Joe Rideout. Automatic Method Completidtroceedings

of the 19th IEEE international conference on Automated software

future works are as follows: We will extract important words
for programming by analyzing open source project foruni@l
with TF/IDF to take priorities of words into account. Since
keyword programming cannot handle synonyms likeld’

engineering, pp. 228-235, 2004.

Brad A. Myers, Andrew J. Ko, Sun Young Park, Jeffrey Stylos, Thomas

D. LaToza, Jack Beaton. More natural end-user software engineering.
Proceedings of the 4th international workshop on End-user software
engineering, pp. 30-34, 2008.

ISBN: 978-988-18210-3-4 IMECS 2011

ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2011 Vol I,
IMECS 2011, March 16 - 18,2011, Hong Kong

2 public class Task01 { 7 pwlic class Tagk0] {
3 A conwert 12 347 --> 71,2,3,47 3 // conwert T1°23 47 - 71,2,3,47
4 lic String spacesT Commas(strmg message) | 4 lic String spacesToCommas(Strmg message) |
5 String seace = 5 String space =
i g String comma = E % String comma =
3 //return <messaze. replacet | | (space, comma)>>>; [//retumn <meszage. replacetl | (space, comma)>>>;
K] retum messaze Q4 retumn message
2oy mesage epocetopce, comme) LI [———
12 comma 12 message.replace(space, comma)
message comma
space message
{message. replaceAll(space, commay) | space
message. replaceFirst(space, comma) message.replaceFirst(space, comma)
new String() new String()
message.replace(space, comma).intern() message.replace(space, comma).intem()
message.replace(space, comma).trim() message.replace(space, comma).trim()
message. replace(space, comma).concat(message) message.replace(space, comma).concat(message)
message. replace(space, comma).toString() message.replace(space, comma).toString()
new String(message. replace(space, commay)) new String(message. replace(space, comma))
System.getenv(message replace(space, comma)) System.geteny(message replace(space, comma})
new Error().getMessage() new Error().getMessage()
new Exception().getMessage() new Exception().getMessage()
new Throwable().getMessage() new Throwable(). getMessage()
String.valueOf(message.replace(space, comma), message) String.valueOf(message.replace (space, comma), message)
message.replace(space, comma).spacesToCommas() message.replace(space, comma).spacesToCommas()
message. replace(space, comma).toLowerCase() message.replaca(space, comma).toLowerCase()
message. replace(space, comma).toUpperCase() message.replace(space, comma).toUpperCase()
String.valueOf(message.replace(space, comma)) String.valueOf(message.replace(space, comma))
System.clearProperty(message.replace(space, comma)) System.dearProperty(message.replace(space, comma))
Systam.getProperty(message.replace(space, comma)) System.getProperty(message.replace(space, comma))

Fig. 6. Snapshots of the simulation using our Eclipse plug-in. Although these two pictures are on the same context, the item that user needs (colored
items in the list) exists in different order. The left picture is the first time of the command invocation. The right is the third time. By the introduction of
the use of frequency, commonly-used items are way up on the list.

[7] Brad A. Myers, John F. Pane, Andy Ko. Natural programming languages
and environmentsCommunications of the ACM 47(9), pp. 47-52,
2004.

[8] Miller, George A. "WordNet - About Us.” WordNet. Princeton Univer-
sity, http://wordnet.princeton.edu. 2009.

ISBN: 978-988-18210-3-4 IMECS 2011
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

