
Comment-based Keyword Programming
Yusuke Sakamoto, Haruhiko Sato, Satoshi Oyama, Masahito Kurihara

Abstract—Keyword programming is a technique to generate
code fragments automatically from the several keywords pro-
vided by the user and the context of the code. It reduces a
burden of remembering the details of a particular language or
API. In this paper, we extend the technique for using comments,
instead of keywords, in the search of expressions. The use of
comments is expected not only to motivate us to write comments
frequently, but also to give us more semantic information which
is useful for improving quality of generated codes.

Index Terms—Autocomplete, Code assistants, Code comple-
tion

I. I NTRODUCTION

W ITH the advancement of software development tech-
nology, a lot of programming languages such as Java,

C#, VB, PHP, Ruby, etc. exist today. However, modern
programmers must learn and remember the details of these
many programming languages and APIs. It is a heavy burden
for programmers to learn, remember, and use these language
syntaxes correctly. Keyword programming [1] is a technique
to reduce the burden of remembering the details of a particu-
lar language or API. It uses a few keywords provided by the
user to search for expressions that are possible in the context
of the code.

In this paper, we extend the keyword programming and
present the idea of comment-based keyword programming,
which provides a tool to create executable code fragment
from a single line comment input by the user programmer.
Thus it can further reduce the burden of programmers.
Programmers generally have to write comments explaining
what an executable code means for making it easier to
understand. Comment-based keyword programming utilizes
their works of writing comments for creating candidates of
an executable code fragment.

The paper is organized as follows. In Section II, we briefly
review the general idea of the keyword programming. In
Section III, we present the main idea of the comment-based
keyword programming. In Section IV, we conclude our work
and discuss some future work.

II. K EYWORD PROGRAMMING

In keyword programming [1], the user provides a few
keywords for the input query to search for a desired code
fragment. The user interface takes the form of a code
completion interface in an IDE. For instance, Fig.1 shows
a user enteringadd line in a Java file, which the system
translates in-place toarray.add(src.readLine()). The gener-
ated expression contains the user’s keywordsadd and line,
but also fills in many details, including the receiver objects
array and src, the full method name readLine, and the formal

Manuscript received January 12, 2011; revised February 7, 2011.
The authors are with the Graduate School of Information Science
and Technology, Hokkaido University, Sapporo 060-0814, Japan. E-mail:
sayuu@complex.eng.hokudai.ac.jp.

Java syntax for method invocation. Keyword programming is
related to work on searching for examples in a large corpus
of existing code. It can be distinguished by the kind of
query provided by the user. In Prospector [4] and XSnippet
[3], these systems require types for the input. However, in
keyword programming, the input is not restricted to a type.

Fig. 1. In keyword programming, the user types some keywords, presses
a completion command (such as Ctrl-Space in Eclipse), and the keywords
are translated into a valid expression

A. Model

Keyword programming models the available methods,
fields and local variables in the case of Java. Although it
could be applied to many languages, this paper focuses on
Java. Keyword programming defines the modelM as the
triple (T, L, F ), whereT is a set of types,L is a set of
labels used for matching the keywords, andF is a set of
functions.

1) Type set: T: Each type is represented by a unique
name. For Java, keyword programming gets this from the
fully qualified name for the type. Examples include int and
java.lang.Object.

2) Label set: L: Keyword programming uses labels to
represent method names, so that keyword programming can
match them against the keywords in a query. To get the
keywords from an identifier, keyword programming breaks
up the identifier at punctuation and capitalization boundaries.
For instance, the method name currentTimeMillis is repre-
sented with the label (current, time, millis).

3) Function set: F: Functions are used to model each
component in an expression that keyword programming
wants to match against the users keyword query. In Java,
these include methods, fields, and local variables. Keyword
programming models expressions generated by a keyword
query as a function tree. Each node in the tree is associated
with a function fromF , and obeys constraints of the types
of return value and parameters.

B. Evaluation of a Function Tree

Given a function tree whereTfuncs is the list of functions
in the tree, keyword programming calculates the score as
follows:



Fig. 2. This tree is a function tree representing the Java expression
array.add(src.readLine()) from Fig.1. Each node is associated
with a function. The words at the top of each node represent the return
type, and the words at the bottom represent the parameter types.

• +1.0 for each keywordk in the query where there exists
an f ∈ Tfuncs such thatk ∈ label(f). This gives1
point for each keyword that the tree explains.

• −0.05 for eachf ∈ Tfuncs. This favors function trees
with fewer functions.

• For eachf ∈ Tfuncs, consider eachw ∈ label(f), and
subtract0.01 if w is not in the query. This favors less
verbose function trees.

• +0.001 for eachf ∈ Tfuncs wheref is a local variable,
or f is a member variable or member method of the
enclosing class. This favors functions and variables
which are close to the user’s context.

Since it takes a lot of time to calculate all the combinations
of the functions, keyword programming uses a dynamic
programming (Fig.3) to reduce the amount of calculation.

Algorithm 1 Pseudocode to fill out the dynamic program-
ming table in keyword programming

procedure DynamicProgram()
for each 1 ≤ i ≤ h do

for each t ∈ T do
bestRoots(t, i)← ∅
for each f ∈ F where ret(f) ∈ sub(t) do
e← GetBestExplForFunc(f, i− 1)
if e < −∞ then
bestRoots(t, i)← bestRoots(t, i) ∪ (e, f)

end if
bestRoots(t, i)← GetBestN(bestRoots(t, i), r)

end for
end for

end for

procedure GetBestExplForFunc(f, hmax)
ecumulative ← expl(f)
for each p ∈ params(f) do

ebest ← (−∞, 0, 0, 0, . . .)
for each 1 ≤ i ≤ hmax do

for each (e′, f ′) ∈ bestRoots(p, i) do
if ecumulative + e′ > ebest then
ebest ← ecumulative + e′

end if
end for

end for
ecumulative ← ebest

end for
return (ecumulative)

III. C OMMENT-BASED KEYWORD PROGRAMMING

For utilizing the comments in generating code fragments in
keyword programming, we propose comment-based keyword
programming. The actual flow of comment-based keyword
programming is as follows: first, the user input a short,
one line comment and invokes the tool by command of
Ctrl-Space. Second, the tool shows multiple candidates of
executable code fragment on a pop-up window and the user
select a suitable one. Finally, the tool outputs the code and
the input comment remains on the source code (Fig.4).

Fig. 4. This picture shows a flow of the actual works of our tool. It is a
plug-in of the Eclipse IDE.

A. Advantage

If you use our tool at programming, there are two ad-
vantages. Since the input is a comment, you unify the two
works, writing codes and writing comments. Since the input
is a comment, you tend to write more comments naturally
than usual. Our tool reduces the works of programming and
enhances the readability.

B. Algorithm for multiple outputs

We have improved the algorithm of previous study pre-
sented in the section of algorithm. The algorithm of previous
study outputs only one candidate. We have improved it in
order to output multiple candidates. The improved points are
as follows:

• Each cell in the dynamic programming table keeps a
few hundred of candidates. In previous work, each cell
contains at most 3 candidates.

• Each cell keeps a function tree, instead of the root
function of the tree.

• Outputs are a few hundred of function trees whose
height is at most 3 (same as previous study) and having
desired return type.

The reason that the number of candidates is limited to a
few hundred of pairs is the limit of memory size (4GB in



Fig. 3. This is the dynamic programming table for a run of the algorithm on the input add line in the context of Fig. 1. Each row represents a height, and
each column represents a return type. Each cell contains up to three boxes. The box with the highest score in each cell is enlarged. Each box represents
a function with the name in the center, the return type above the name, and the parameter types listed below the name. The return type of each function
must be a subtype of the column type that the box is in. The number above the return type is the score of the function.

our environment). Although this algorithm clearly consumes
larger amount of memory than previous algorithm, our tool
responds within a second even if the size of function setF
is a few thousand.

Algorithm 2 Our DynamicProgram procedure
procedure DynamicProgram()
for each 1 ≤ i ≤ h do

for each t ∈ T do
bestRoots(t, i)← ∅
for each f ∈ F where ret(f) ∈ sub(t) do
tree← GetBestExplForFunc(f, i− 1)
e← tree.getRoot().getE()
if e < −∞ then
bestRoots(t, i)← bestRoots(t, i) ∪ tree

end if
bestRoots(t, i)← GetBestN(bestRoots(t, i), r)

end for
end for

end for

In addition to output multiple candidates, we have tried to
consider the use of frequency of the selected candidate. Be-
cause of higher probability of occurrence, a lot of candidates
is useful. However, a lot of candidates is also a burden for
users when selecting what they need. We think that this is
a similar problem of web search engines. Like web search
engines, the list of candidates presented to users should be
customized for each user using the tool.

We define a sorting rule for user customized list. We
calculate the score of each candidate of function tree by the
sum of (1) the number of times of the use of a function
tree and (2) the score for a function tree calculated the rules

Algorithm 3 Our GetBestExplForFunc procedure

procedure GetBestExplForFunc(f, hmax)
ecumulative ← expl(f)
treebest ← CreateFunctionTree(f, ecumulative)
for each p ∈ params(f) do
ebest ← (−∞, 0, 0, 0, . . .)
treeparam ← null
for each 1 ≤ i ≤ hmax do

for each tree ∈ bestRoots(p, i) do
if ecumulative + e′ > ebest then
ebest ← ecumulative + e′

treeparam ← tree
end if

end for
end for
ecumulative ← ebest
treebest ← AddChild(treebest, treeparam)

end for
return (ecumulative)

explained in the section of II-B. The candidate list is sorted
in descending order of the score.

C. Implementation

We have implemented our idea as an Eclipse plug-in. Our
tool works following steps:

1) A programmer inputs keywords on the editor, and
invokes our tool.

2) Our algorithm of keyword programming generates an
output of a few hundred of candidates taking source
code context into account.



Fig. 5. This figure is an image of the improved dynamic programming table in order to output multiple candidates. Each cell of the table is a function
tree. Each cell contains a few hundred of function trees.

3) Our tool sorts list of output candidates with their use
of frequency.

4) The programmer selects candidate and the use of
selected candidate is written in the database.

Fig.6 shows the usefulness of considering the use of fre-
quency. These two pictures are the snapshots after invoking
our Eclipse tool on the same context. The left snapshot is
the first time of the invocation. The right is the third time.
In this context, the candidate that user needs are colored in
the list. The candidate exists higher in the list of the right
snapshot. The introduction of the use of frequency makes
commonly-used candidates easy to find.

IV. CONCLUSION AND FUTURE WORK

One line short comment is often used line by line es-
pecially on a commercial source code that requires high
readability. Comment-based keyword programming is very
useful for such situations. Our future work is applying a very
easy natural language processing for processing input small
comment (Fig.7). We think that applying it will improve the
precision of the tool. We will analyze parts of speech of
the input using part-of-speech tagger and apply the naming
conventions of programming. For example, the input: ”add
line” is a Verb-Object pattern. The result is likely to be
”add(line)” or ” line.add(X)” or ” addLine()”. The input:
” robot moves to (x,y)” is a Subject-Verb pattern. The result
is likely to be ”robot.move(x,y)” or ” move(robot,x,y)”. The
object and the subject are likely to be a child node of the verb
in a function tree. We will add a new scoring rule to existing
four rules on the basis of this way of thinking. The other
future works are as follows: We will extract important words
for programming by analyzing open source project forums
with TF/IDF to take priorities of words into account. Since
keyword programming cannot handle synonyms like ”add”

and ”append”, we will allow our tool to handle synonyms by
making a thesaurus specialized for software developments.

Fig. 7. These are the overviews of the tool. The left is keyword
programming and the right is our study.

REFERENCES

[1] G. Little, R. C. Miller. Keyword programming in Java.Automated
Software Engineering, 16(1), pp. 37-71, 2009.

[2] Steven P. Reiss. Semantics-based code searchProceedings of the 31st
International Conference on Software Engineering, pp. 243-253, 2009.

[3] N. Sahavechaphan, K. Claypool. XSnippet: Mining For Sample Code.
Proceedings of the 21st annual ACM SIGPLAN conference on Object-
oriented Programming Systems, Languages, and Applications (OOPSLA
2006) , pp. 413-430.

[4] D. Mandelin, L. Xu, R. Bodik, D. Kimelman. Jungloid Mining: Helping
to Navigate the API Jungle.Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation, pp.
48-61.

[5] Rosco Hill, Joe Rideout. Automatic Method Completion.Proceedings
of the 19th IEEE international conference on Automated software
engineering, pp. 228-235, 2004.

[6] Brad A. Myers, Andrew J. Ko, Sun Young Park, Jeffrey Stylos, Thomas
D. LaToza, Jack Beaton. More natural end-user software engineering.
Proceedings of the 4th international workshop on End-user software
engineering, pp. 30-34, 2008.



Fig. 6. Snapshots of the simulation using our Eclipse plug-in. Although these two pictures are on the same context, the item that user needs (colored
items in the list) exists in different order. The left picture is the first time of the command invocation. The right is the third time. By the introduction of
the use of frequency, commonly-used items are way up on the list.

[7] Brad A. Myers, John F. Pane, Andy Ko. Natural programming languages
and environments.Communications of the ACM, 47(9), pp. 47-52,
2004.

[8] Miller, George A. ”WordNet - About Us.” WordNet. Princeton Univer-
sity, http://wordnet.princeton.edu. 2009.




