

Abstract—Scratch has widely been recognized for its ability

to teach children programming skills and helps to develop

self-confidence. This study proposes another target group of

audience who can capitalize on Scratch to reap multifold

benefits—educators. Educators have been reluctant towards

adopting new pedagogies to teach because of the difficulties

faced when learning the advanced technologies the pedagogies

are built on. By using modularized Scratch programming code

templates, educators can develop a wide variety of interactive

media content, ranging from games to interactive art, in order to

better engage their students and increase learning effectiveness.

This study demonstrates how modularized Scratch

programming is easy to learn and produces interactive media

reflecting the use of new education pedagogies. We created a set

of Scratch code modules for the development of computer games

to show how the modules can be used to develop a variety of

educational games, including but not limited to business

simulation games and adventure games to meet various learning

objectives.

Index Terms—Modularization, Interactive Media Content,

Scratch Programming, Media-rich Graphic User Interface,

Learning Effectiveness

I. INTRODUCTION

CRATCH is a media-rich programming environment

developed by the Massachusetts Institute of Technology

(MIT) Media Lab developed in 2007 [1] to encourage

programming regardless of background and prior

programming experience [2].

Scratch was developed with the main objectives of enhancing

programming literacy amongst youths, especially those in less

economically affluent communities. Through a

simple-to-learn graphic user interface (GUI), Scratch prides

itself as an effective platform to introduce programming to the

young. Beyond the technical skills learnt, Scratch hopes to

teach the young problem solving skills and boost their

self-confidence [3].

Whilst Scratch‘s target audience is the young, this paper

suggests another target audience who can benefit from

Manuscript received November 24, 2010; revised December 31, 2010.

This work was supported in part by Hwa Chong Institution, Singapore, the

Ministry of Education, Singapore, the Massachusetts Institute of

Technology, USA and the Center for Excellence in Education, USA under

the Research Science Institute 2010 summer program.

Looi Qin En is a student researcher at Hwa Chong Institution

(Singapore), 661 Bukit Timah Road, Singapore 269734 (phone:

65-97565638; e-mail: stuqel@i2r.a-star.edu.sg).

Scratch‘s intuitive and easy-to-learn features—educators.

This is achieved using a programming technique known as

code modularization. Code modularization involves a variety

of code blocks divided according to the programming

objectives. Earlier studies have popularized this technique,

applying it to thousands of lines of codes in legacy systems

[4]. We will demonstrate how code modularization can be

applied to comparatively simpler programming using Scratch.

The purpose of this study is to show how educators can

develop interactive media content using Scratch to engage the

students in the classroom using modularized Scratch codes.

Interactive media content is defined as media developed from

new ICT technologies, including but not limited to: computer

games, animation, videos and interactive art. In this study, all

interactive media content are products developed from

Scratch.

Earlier works have re-affirmed the value of meaningful and

motivating interactive learning tools in classroom teaching

[5]. Hence, by using the interactive media content as teaching

aids to complement traditional teaching methods, teachers can

engage their students more in the learning process and thus,

increase learning effectiveness.

There have been many suggested approaches to implement

such new pedagogies in the teaching of specific subjects such

as physics [6] and mathematics [7], but this study aims to

provide a more generic approach towards introducing new

pedagogies.

By incorporating the code modularization technique used in

software engineering, this new pedagogical approach can be

easily developed by educators to customize to their own

needs. Through the explanation of how modularization of

Scratch programming code is executed as well as a case study

of how the modularization was implemented to develop

interactive media content at an educational enterprise, we

hope to convince educators that development of interactive

media content using Scratch is effective and easy to

accomplish.

II. SCRATCH IN EDUCATION

The application of Scratch in education has been widely

discussed, with previous studies attempting to extend its

influence beyond young children. In one study [8], Scratch

was deployed in higher education, where it was used as an

introduction to programming in Harvard summer school‘s

Computer Science S-1: Great Ideas in Computer Science.

Modularizing Scratch Code to Develop

Interactive Media Content

Looi Qin En

S

mailto:stuqel@i2r.a-star.edu.sg

Results from this study were promising as 76% of the students

felt that they had benefitted from Scratch, especially those

with no prior programming experience.

This study aims to further extend Scratch‘s influence beyond

the student to the educator. If Scratch is an effective learning

tool, then it is important for educators to know how to use it so

that they can harness and maximize the benefits associated

with the programming language.

Prior studies have shown how educators have been unwilling

to use new pedagogies to teach in the classroom [9]. The

technologies suggested in the pedagogical approaches are

frequently studied by researchers and there has been

consensus on their ‗effectiveness‘. However, the technologies

are rarely implemented in actual classrooms to enrich the

educational process.

Two reasons are cited for the educators‘ unwillingness

towards using the technologies in the classroom: they are not

familiar with the available information-communication

technologies (ICT), and even if they are, it is difficult to keep

up with the rapid pace of development. As asserted by the

study, effective integration of the technologies require the

learners (students) to be the focus and educators should not

spend significant amounts of time and effort to learn how to

use the technologies to teach.

Scratch has the potential to pervasively introduce ICT

technology as teaching aids in the classroom. As a media-rich

environment which empowers users to create various media

including animations, games and interactive art, Scratch is

highly versatile and customizable, yet easy to learn and

implement.

Scratch was developed to encourage self-exploration of

programming and individual learning [10]. However, the

programming process proposed in this study is one where

educators have more control over and the results can be

monitored. We believe this to be more beneficial and

appealing to educators because they are able to meet the

learning objectives for their students, and if these objectives

are not met, the necessary improvements can be implemented.

Also, the educators will be able to monitor the progress of the

students, thereby enhancing the appeal of this process for

educators compared to letting students freely explore Scratch

on their own; where the outcomes are uncontrollable and

educators are unable to judge whether the learning objectives

have been achieved [11].

III. MODULARIZATION OF CODE

Even with its intuitive GUI and easy to learn functions,

programming in Scratch still involves programming codes,

although the language is presented in a more visual and

graphical style. Scratch breaks down traditional code

languages into code fragments, otherwise known as ―blocks‖.

Using these blocks of code, Scratch programmers drag and

drop the blocks into scripts to develop programs and content,

as seen in Figure 1.

Fig. 1. Drag and drop blocks of code to provide ‗instructions‘

Traditionally, new Scratch programmers would develop large

blocks of continuous code in order to achieve specific

content. These large blocks of code are analogous to a

storyline, where programmers insert blocks to command the

program to run from the start to the end continuously. An

example of programming using large blocks of code is shown

in Figure 2.

Fig. 2. A large block of programming code with instructions from start to

end.

This form of large-block coding in Scratch is simple and gives

the programmer a sense of continuous flow during the

development of content, hence is commonly used.

Programmers can easily identify logic or semantic errors by

analyzing the flow of the whole block of code.

However, this method of programming is only suited for

personal self-exploration of coding in Scratch, like how it is

used in current educational contexts where the young are

encouraged to develop their own programs at their own

individual free-will. Such large-block coding is not suitable

for educators‘ use, because it is too complex and inefficient.

Large-block coding is complex because programmers have to

understand the logic of the entire programming code block.

Despite its easy-to-learn GUI, it still involves learning of the

programming code blocks and requires practice in order for

interactive media content to be built. The hassle educators

have to go through in learning and practicing Scratch

programming in order to develop their own customized

content is the core reason why educators are unwilling to

adopt ICT technologies in the curriculum. Thus Scratch

programming should not be complex and educators should

not need to devote significant time and effort to learn or

practice how to implement the programming code blocks.

The solution we propose in this study to address the

aforementioned problem was used to solve a similar problem

in an earlier study. The concept of clean modularization and

reusing existing code to enhance the appeal of programming

was demonstrated in the introduction of AspectJ, a new

extension to the Java programming language, to developers

[12].

Also, large-block coding is highly inefficient, because every

time an educator wants to develop new content to suit their

students‘ needs or the curriculum needs, they would have to

create a whole new block of code. Previous blocks of code

created by either themselves or others cannot be used because

they are created for a highly focused purpose and modifying

existing blocks of code could be even more inefficient and

problematic than programming new code.

In view of the problems associated with large-block coding,

this study proposes modularization of the coding blocks in

Scratch. Modularization of code is defined as the

development of customized interactive media content using

modularized code templates. Earlier studies have

demonstrated how self-contained, side-effect free code

modules can be developed in order to maintain the structural

integrity of legacy systems [13], indicating how code

modularization can be adapted to solve a similar problem, as

in the case of this study.

Modularized code templates are smaller blocks of code; each

modularized code template serves a unique purpose, and

when all the templates are linked to each other, the similar

outcome is achieved as compared to large-block coding.

These templates would be used to develop the customized

interactive media content each educator requires.

It is important to recognize that the modularization of code is

not breaking down the large blocks of code per se; the

modules of code template are developed based on purpose, as

described in [14]. For example, the most fundamental code

template which any animation or game media content

developed in Scratch would have is the ―Start Script-Stop

Script‖ code module template. This short block of code

provides the simple instructions of when to start running the

scripts in the animation/game and when to stop. Figure 3

shows the code module.

Hence, this demonstrates how modularization of code is

different from simply breaking the large code down into

smaller blocks; the ―Start Script‖ code and ―Stop Script‖ code

would be in different code modules if the latter method is

used. Also breaking down large code serves little use, for the

code modules are but continuations of the previous modules

and the same problems of complexity and inefficiency would

still not be solved.

Fig. 3. The fundamental modular code template—―Start Script-Stop Script‖

Through the modularization of codes based on each code

block‘s purpose, both problems of complexity and

inefficiency would be addressed effectively. With each code

block serving a unique purpose, educators can easily change

the details to suit their purposes. For example, if the educator

wants to change the point scoring system in the game s/he is

developing, s/he only needs to change the score item on the

code block as seen in Figure 4 and the scoring system would

be changed according to preferences.

Fig. 4. Change the decision or item command to modify the point scoring

system

In order to decide on which code module templates are to be

made available for each type of interactive media, education

policy makers would need to discuss and collaborate with

programmers. For the purpose of discussion in this study, we

propose four fundamental code module templates to develop

a specific type of interactive media—computer games.

Start-Stop Code: As discussed earlier, the start-stop code

module is the most basic code module which instructs when to

start and stop running the scripts (scripts are sequences of

instructions given by the codes), causing the game to begin

and end accordingly.

Point Scoring Code: Educators who want to track the

progress of students would use this code module to allocate

points for the decisions made. When students play the game,

they make certain decisions, and based on their choices,

points are awarded and/or deducted.

Character Animation: Most computer games would involve

at least one character; this code module offers the basic

functions of animations (e.g. walking) and dialogue (e.g. in

speech dialog boxes) for each character. For multiple

characters, this code module can be duplicated.

Storyline: A game needs to have a storyline and a problem for

gamers to solve; this code module helps to present the

problem(s) faced in the game through text and graphic

display.

Samples of the start-stop code and point scoring code

modules have been shown in the above figures (Figures 3 and

4 respectively). Demonstrations of the character animation

code and storyline code modules will be presented in the case

study (Figures 5 & 7 and 6 & 8 respectively).

IV. BENEFITS OF MODULARIZATION

Beyond the increased simplicity and enhanced efficiency of

modularizing Scratch codes, this process also offers multiple

benefits.

Firstly, through these smaller blocks of code which are

classified according to purpose (e.g. point scoring), it is easier

to spot logic and semantic errors and resolve the problems.

With large code blocks, when an error is identified when

previewing the output program, the programmer has to go

through the whole block of code to identify the problem or

semantic error. Upon identification of the problem, any

change to the code could possibly affect other codes, resulting

in more semantic errors and problems. For example, if the

point scoring system for one game scenario is changed within

the large block of code, the other point scoring systems for

other game scenarios need to be changed similarly.

However, with these smaller code blocks, any problems can

be easily directed to the corresponding modular code block

(e.g. if the point scoring system is not functioning as intended,

the programmer works on the point system modular code

block directly). Furthermore, the changes made in each code

block are contained and only affect the relevant codes within

the block itself. The independence of code blocks resulting

from code modularization prevents a chain reaction from

occurring after a change has been made to one line of code

(i.e. codes which serve different purposes would not be

affected by a change made in a specific code block).

In addition, the development of the interactive media content

would be more efficient because the code templates are

developed for almost any variation of the specific type of

interactive media. The modularized codes used in this study

were developed to function as a game engine. By using these

modular code templates, a wide variety of games can be

developed to suit multiple purposes.

Earlier studies conducted on code modularizations have

shown how this technique provides a high degree of flexibility

and code reusability [15], although a different programming

language was used—Java.

Hence, educators do not have to develop new blocks of code

to cater to different students or different curriculum

objectives; all that is required is to modify pre-existing code

templates. Students can then look forward to a diversified and

non-static learning experience.

V. CASE STUDY OF MODULARIZATION

In order to demonstrate how modularization of codes in

Scratch can help to develop interactive media content more

effectively, we implemented the technique to develop

computer games in Build-It-Yourself (BIY) [16].

BIY is an enterprise which conducts workshops to encourage

children (aged 10-12) to solve problems creatively using

technology. The skills taught to the children are

ICT-enhanced skills such as team work and documentation

skills. In order to understand and assess how effective BIY‘s

workshops have been in teaching the children these

ICT-enhanced skills, two computer games were created using

the same modularized Scratch game code: The Computer

Tycoon and Fix the Robot.

The purpose of developing these games—to measure soft

skills, could possibly be one of the main reasons why

educators would use interactive media content as an

alternative/complementary teaching tool, in recognition of the

ineffectiveness of traditional assessment methods involving

the pen-and-paper tests in measuring skills [17].

The Computer Tycoon is a business simulation computer

game where the gamer runs a computer trouble-shooting

business and has to make decisions in order to overcome the

problems s/he faces. Based on the decisions made, points are

awarded for sound and logical decisions, and the total score of

the game is the reflection of the level of competency of the

child‘s ICT-enhanced skills. Figure 5 shows the instructions

of the game (developed from storyline code) whilst Figure 6

shows one of the decisions the gamer has to make—choosing

a business partner (developed from character animation

code).

Fig. 5. The ‗Instructions‘ screen on the preview pane on the right, the

modified modularized code template on the scripts pane on the left.

Fig. 6. One of the decisions the gamer has to make—choosing a business

partner

Fix the Robot is an adventure game developed from the same

modularized code templates. Utilizing the same point scoring

system and coding instructions, the score from the adventure

game also aims to reflect the level of competency of the

children‘s ICT-enhanced skills, albeit using a different genre

of game. The gamer is presented with a situation: their robot is

broken and they have to find out how to repair the robot as

well as search for resources to rebuild it. Figure 7 shows the

introduction of the problem to the gamer—that the robot is

damaged (developed from storyline code). Figure 8 shows

one of the decisions the gamer has to make—understanding

the problem faced (developed from character animation

code).

Fig. 7. Introducing the problem to gamers—the robot is damaged and the

gamer has to repair it.

Fig. 8. One of the decisions the gamer has to make—What is the problem?

From this case study, we have seen how a variety of media

content, including but not limited to computer games can be

developed with modularized code templates. Although both

games differ in genre—The Computer Tycoon being a

business simulation game whilst Fix the Robot being an

adventure game, they stem from the same modularized code

templates, hence demonstrating the versatility of

modularizing Scratch codes.

VI. CONCLUSION

By understanding why new ICT technologies are unable to

effectively pervade into the curriculum, the Scratch code

modularization technique has yielded promising results in the

development of customized interactive media content to

better engage students.

Furthermore, by leveraging on existing technologies proven

to work in educational contexts (Scratch), development of

these modularized programming code templates are easy to

accomplish and can be efficiently deployed to meet a wide

variety of objectives. The case study discussed earlier has

shown but a few of the many capabilities and variants these

modularized code templates can lead to.

With Scratch widely available worldwide at zero cost,

coupled with its intuitive, easy to learn features, we recognize

the potential modularized Scratch code can have on

classrooms worldwide, especially in less economically

affluent communities. All that is needed to capture the

attention of many young minds is a computer with Scratch

interactive media content, and with the modularized Scratch

codes, even the least developed and affluent of communities

can provide children a fun, active and engaging learning

experience.

VII. FUTURE WORK

Although modularization of Scratch code is very promising as

discussed in this study, there has to be follow-up work in

order to affirm and implement this strategy into curriculum

for effective teaching.

Future work would involve educators trying to develop

various interactive media content using our modularized code

templates to assess the level of intuitiveness and ease of use.

This study only involves a theoretical discussion of how the

Scratch code is simplified, but actual experimental studies

with educators are required in order to effectively gauge how

intuitive and efficient programming from these modularized

Scratch codes are.

It would be beneficial to conduct comparative studies;

educators should attempt to develop their own interactive

media content without any use of the modularized codes, then

program with the modularized codes, and a more satisfying

and efficient programming process for the latter study would

augment this study‘s argument.

The proposed follow-up experimentation would be to

establish a hypothetical learning objective for educators to

develop interactive media content (e.g. create an animation to

demonstrate how an object, regardless of weight, falls at the

same velocity at a given height). Given a fixed timeframe for

the development (e.g. 3 hours), one group of educators will

program without code module templates whilst the other

group of educators will be provided code module templates to

work with; each educator works individually. Upon

completion of the experiment, the end-products of both

groups of educators would be compared; a significantly more

complete end-product and reduced occurrences of semantic

errors for the group of educators provided with code module

templates would indicate the effectiveness of this technique

and encourage application in the real classroom setting.

In addition, modularized code templates should also be

developed for other interactive media content, because

educators have varying needs and not all educators would

want to implement games in their classroom teaching; they

could prefer other interactive media such as videos and

interactive art. Hence, by developing a wider variety of

modularized code templates, educators would be further

encouraged to adopt this strategy to transform the classroom

teaching from a passive process to an active and engaging

experience.

ACKNOWLEDGEMENT

The author of this paper would like to express his heartfelt

appreciation towards Mr. John Galinato & Dr. Jenny Sendova

from Build-It-Yourself and the Bulgarian Academy of

Science for the invaluable guidance and advice rendered

during this study. The author would also like to thank the

members of the Build-It-Yourself team as well as Research

Science Institute staff and scholars have provided support and

guidance, leading to the successful completion of the study.

REFERENCES

[1] Scratch: Imagine, Program, Share, by the Massachusetts Institute of

Technology Media Lab Lifelong Kindergarten Group. Available at:

http://www.scratch.mit.edu

[2] J. Fildes, ―Free tool offers ‗easy‘ coding‖, BBC News, 14 May 2007.

Available at: http://news.bbc.co.uk/2/hi/technology/6647011.stm.

Accessed on 20 November 2010

[3] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman, M. Resnick,

―Scratch: a sneak preview‖, in Proc. of Second International

Conference on Creating, Connecting and Collaborating through

Computing, 2004, pp. 104-109.

[4] L. Markosian, P. Newcomb, R. Brand, S. Burson, T. Kitzmiller, ―Using

an enabling technology to reengineer legacy systems‖, in

Communications of the ACM Vol. 37 Issue 5. New York, USA: ACM,

May 1994, pp. 58-70

[5] H.-H C., Chen, H. F. O‘Neil, ―A formative evaluation of the training

effectiveness of a computer game‖, in Computer games and team and

individual learning. Oxford, UK: Elsevier, 2008, pp.39-54.

[6] D. Toback, A. Mershin, I. Novikova, ―New Pedagogy for Using

Internet –Based Teaching Tools in Physics Course‖, CERN Document

Server, Physics 0408034, 2004

[7] M. Lampert, ―Using Technology to Support a New Pedagogy of

Mathematics Teacher Education‖, in Journal of Special Education

Technology v12”. Virginia, USA: Technology and Media Division of

the Council for Exceptional Children, 1994, pp. 276-289

[8] D. J. Malan, H. H. Leitner, ―Scratch for budding computer scientists‖,

in Proc. of the 38th SIGCSE technical symposium on Computer science

education. New York, USA: ACM, 2007, pp. 223-227.

[9] E. Stefanova, P. Boytchev, N. Nikolova, E. Kovatcheva, E. Sendova,

―Embracing and enhancing ideas as a strategy for ICT education‖, in

Research, Reflections and Innovations in Integrating ICT in

Education Vol. 1. Badajoz, Spain: Formatex, 2009, pp. 206-211.

Available at: http://www.formatex.org/micte2009/book/206-211.pdf

[10] M. Resnick, J. Maloney, A. M-. Hernandez, N. Rusk, E. Eastmond, K.

Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, Y. Kafai,

―Scratch: Programming for All‖, in Communications of the ACM Vol.

52 No. 1. New York, USA: ACM, November 2009, pp.60-67

[11] R. B. Kozma, ―Technology and Classroom Practices: An International

Study‖, in Journal of Research on Technology in Education, 36 (1).

Washington DC, USA: International Society for Technology in

Education, 2003, 36 (1), pp. 1-14

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W.

Griswold, ―Getting started with ASPECTJ‖, in Communications of the

ACM Vol. 44 Issue 10. New York, USA: ACM, Oct 2001, pp.59-65

[13] R. Al-Ekram, K. Kontogiannis, ―Source code modularization using

lattice of concept slices‖, in Proc. of the Eighth European Conference

on Software Maintenance and Reengineering 2004. Tampere, Finland:

IEEE Computer Society, 2004, pp. 195-203

[14] K. Schneider, J. Brandt, E. Vecchie, ―Modular Compilation of

Synchronous Programs‖, in From Model-Driven Design to Resource

Management for Distributed Embedded Systems, IFIP TC 10 Working

Conference on Distributed and Parallel Embedded Systems 2006 Vol.

225. Braga, Portugal: Springer Link, 2006, pp. 75-84

[15] J. Hannemann, G. Kiczales, ―Design pattern implementation in Java

and AspectJ‖, in Proc. of the 17th ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and applications

2002. New York, USA: ACM, 2002, pp. 161-173

[16] Build-It-Yourself, Cambridge, MA 02139.

http://www.build-it-yourself.com

[17] P. Sacks, ―Standardized Minds‖, Da Capo Press, 2001, pg 3.

http://www.scratch.mit.edu/
http://news.bbc.co.uk/2/hi/technology/6647011.stm
http://www.formatex.org/micte2009/book/206-211.pdf
http://www.build-it-yourself.com/

