
Cartographer: Architecture of a Distributed System
for Automated GUI Map Generation

Paweł Brach, Jacek Chrząszcz, Janusz Jabłonowski, Jakub Światły

Abstract—Vast majority of contemporary computer pro-
grams come with a complex Graphical User Interface. To
facilitate automatic GUI testing, we propose Cartographer, a
system for automatic generation of GUI maps. In compari-
son to existing solutions Cartographer has many important
improvements: it is easily adaptable to particular application
and technology and it is highly scalable, as it is based on a
distributed system of independent Workers.

Index Terms—GUI, GUI map, automatic program testing,
automatic GUI map generator.

I. INTRODUCTION

Contemporary computer programs come with complex
Graphical User Interfaces (GUIs) [1]. It makes them com-
fortable to use but at the same time complicated to analyze
(for example to test them [2]). There are several reasons why
GUIs are not so easy to analyze:

• They use mouse clicks and other kinds of users gestures
(like drag and drop) for communication. That makes the
communication language very complex. Even recording
user actions is not so trivial—programs may recognize
as actions even moving the mouse over some active
parts of a window.

• The set of possible interactions between a GUI program
and a user is extremely rich. Usually the user issues
many commands within one program invocation, it may
be as well thousands like with work within a spreadsheet
or a word processor.

• There is no one single path through the program, usually
at each window the user can make many actions in any
order.

But GUIs are popular and will remain for long (until new
era of user interfaces, maybe speech-based, will dethrone
them). Therefore tools aimed at program analysis have to
deal with them.

In this paper we described a tool, called Cartographer,
capable of performing such analysis. By simulating user
actions on the analyzed application it produces a GUI map—
a graph of connections between windows. Having such a map
is very useful, first of all, paths of the map can be used to
design and automatically generate test suites. The tests can
be enriched with checkpoints, verifying e.g. if specific GUI
elements are present in the window. Design of test suites
according to the map helps us achieve the largest possible
coverage of the GUI. A similar approach to using a GUI map
was presented in [3] and [4].

Map analysis can give many valuable data on the overall
quality of the program GUI. The number of nodes and

The authors’ affiliation is Institute of Informatics, University of Warsaw.
{p.brach,j.chrzaszcz,j.jablonowski}@mimuw.edu.pl,
j.swiatly@students.mimuw.edu.pl

connections gives a metrics of the program complexity. The
length of the longest path describes how easy (or difficult) it
would be for the user to access all program functions. The
average nodes degree gives clues about the complexity of the
program from the user view point. Discovering parts which
are closely or loosely connected may be used to improve
GUI itself, as their existence suggests nontrivial navigation
through the interface.

Not only having a program map is useful — also the
process of generating it can bring some useful functionality.
For example during map generation the program may execute
some actions in each window, like storing its image or
texts presented to the user to a file. Such collection of all
windows images is a valuable tool for somebody, who wants
to evaluate the GUI, for example to check if all windows
have proper view, clear layout and no linguistic errors which
is specially important for program localization teams.

There are several (but not so many) tools already devel-
oped before. One of them is developed within the GUI-
TAR [5], [6] project. Its principal author, Atif Memon, one
of the most active researcher in field of automatic GUI
testing, came up with the idea of the event-flow model.
His approach decomposes GUI window into set of events
with a relation that specifies pairs of events that can be
fired one after another. Having such a graph allows easy
automatic generation of test cases. As a part of GUITAR
project an attempt was made to create a reverse engineering
tool to aid creation of the model. However Memon’s concept,
although elegant, does not suit our purpose of accumulating
precise knowledge of visited GUI windows and developing
an effective way to navigate between them.

Our solution, in contrast to that of Memon, does not
use reverse engineering and is technology independent. The
plug-in architecture of the presented system allows easy
customization for various GUI technologies. The overall
performance of Cartographer is achieved by distributing
analysis subtasks among a pool of Workers.

II. PRELIMINARIES

A map of a GUI is naturally a graph. In a coarse sim-
plification, the nodes of the graph are windows and edges
are user actions that lead from one window to another. But
complex user interfaces require more fine-grained approach
distinction. First of all a part of a user interface which is
perceived by the user as a window, may have different sets
of controls, depending of the context. For example, dialogs
such as “Options” usually have many tabs and different set
of controls on every one of them. On the other hand, the
effect of a user action sometimes depends on the state of
controls (checkboxes checked or unchecked, text entered in



the text areas etc.). Therefore, if the graph constructed by the
cartographer is supposed to be complete, one needs a more
fine-grained approach to the interface graph.

Another problem that one has to face is window identifi-
cation. While this is intuitively obvious for a human being,
strictly defining a window is not a trivial task. Indeed, almost
all “distinctive” features such as title, size, the set of controls
etc. can depend on the context and identification via window
handle is only valid in one run of an application.

A. GUI graph definition.

We decided to conceptually split windows into layers
and take them as nodes of our interface graph. The layers
are identified by the set of active (visible and enabled)
controls i.e. their kinds, sizes, labels, states, etc. — the set
of characteristics that contribute to the control identification
(as opposed to the ones that contribute to the control state) is
defined for each kind of control. Layers are grouped together
into layer groups that are identified by the set of visible
controls. The distinction between layers and layer groups is
depicted in Fig. 1.

The edges of interface graph are user actions that lead
from one layer to another. User actions are identified as
the identification of the control (within the layer) plus the
particular action (left or right click, keyboard input etc.).
Note that this includes edges consisting in e.g. making a
button enabled by checking a checkbox or entering some
text in a textarea.

Having defined layers and layer groups, we can define
a window to be the set of layers such that it is possible
to go from one layer to the other without changing the
window handle. The UI map visualization should take into
consideration the fact that the layers are part of the same
window, but it should be possible to see particular layers in
a more detailed view.

B. Graph representation.

The nodes and edges are internally represented using
hashes of controls characteristics used to calculate a layer
or a layer groups identification. Note the choice of charac-
teristics of controls used to calculate a hash of a given layer
or layer group is very important. If too few characteristics
are chosen, different layers are considered to be one which
may result in an impossibility to repeat an edge which is
actually available only in one of the two unified layers.

On the other hand, if too many characteristics are given,
e.g. including the status (checked/unchecked) of checkboxes
the number of layers becomes exponentially large and the
whole graph becomes impossible to explore.

C. Power User.

Even though the system is supposed to automatically
build a GUI map, we are aware that certain parts of the
interface may be extremely difficult to explore or even
discover automatically. These includes for example parts
of the interface accessible when a correct username and
password is entered etc. Still it is important to somehow
include these hard explorable parts in the final map in order
to get the full advantages of a GUI map. Therefore we

Figure 1. Windows and layers

decided to define a role of Power User to help the automatic
algorithm discover layers and edges that would otherwise be
impossible to explore.

Thanks to the distributed and multipass nature of the
algorithm it is possible to find the first approximation of the
UI graph automatically, than a Power User can add “secret”
edges and during the second pass, the system can follow the
newly added edges and explore new parts of the GUI.

Another role of the Power User is to merge windows or
layers that are said to be different by the system of hashes, yet
are really the same. The lack of unification may result from
the fact that too many control characteristics is taken into
account when identifying layers. The internal representation
of such manually unified layers consists in the table of
identification of layer hashes.

Dually, sometimes a mere analysis of widow controls may
result in a false identification of windows that are actually
different in the sense of results of actions performed on
the controls. Think of a “Confirmation” dialog where the
“Confirm” button really has different actions depending on
what made the dialog appear. Here also, the Power User can
decide that a dialog opened by one action is a different node
graph from the same dialog opened by another action. In our
implementations, the Map Repository service (see Section III
below) is responsible for managing and storing hashes which
identify different elements of GUI map i.e. windows, layers,
controls, actions, tasks, etc. When the Power User wants
to merge two different GUI map elements, it can create a
new unique key which represents a group of hashes. Since
that time, Cartographer uses the new key to identify those
elements.

Some issues related to Power User hints are solved by us-
ing scripts. A script is a sequence of user actions performed
on selected controls. In particular, the Power User is able to
define starting scripts which set the application in a certain
state, ready for GUI testing. More than one initial script can
be given: for example one script sets the application into
advanced mode, a second one into basic mode. Two different
Workers could be engaged to explore these two GUI versions.

Other kinds of scripts may involve selecting a particular
file from an “Open File” dialog or entering a valid username
and password in a login window.

III. SYSTEM ARCHITECTURE

A. Background.

Here we provide a conceptual vision of the architecture
of the distributed system for automated GUI map generation
(Cartographer). The designed software architecture consists
of modeling concepts for each self-contained module and its
role in the whole system. In order to propose our design
of the system, we considered existing system architectures
(not only distributed systems) which satisfies functional and
non-functional requirements. Shortly, we could describe our



system as an automated GUI map generator, which take as
its input binary application i.e. executable file and returns a
finite graph as a kind of GUI map representation.

We made basic assumptions for Cartographer and at-
tempted to predict future outcomes with a view to possible
application of this kind of system. We realize that the
problem is too complex and our solution is not going to cover
100% of the product. We have to be as accurate as possible
and recognize a fundamental part of the GUI. The complexity
of the problem, forces Cartographer to be “smart”. The brute
force solutions are unacceptable which is result of the next
assumption which says that the system must be fast and
accurate.

The main function of such systems is not only to displace
group of 10, 100 or even more people who can, just by
clicking, manually create GUI map. This solution should also
recognize not trivial connections between different parts of
the GUI, difficult to be identified by human. The power of
the system will be shown not on the one pass analysis, but in
the later passes on the further versions of the product being
analyzed. During the first pass, essentially big amount of
work needs to be done to recognize application’s behavior.
For example, when program being analyzed requires entering
a password, the Power User must be consulted. In the
further passes on new versions, Cartographer will supply the
password by itself.

B. Design Research.

Design research investigates the process of designing in
all its many fields. In this research, we have defined non-
functional criteria specified for this kind of problems. These
contains performance requirements which take into account
measurable aspects of the system that govern overall speed
and responsiveness. The next criterion describes that system
has to be scalable. System has to manage very complicated
software graphic interfaces, so we should take into consid-
erations distributing of the product analysis.

As far as our findings are concerned, we’ve created
Cartographer’s prototype which made us realize that we
have to build distributed system. Review of existing models
for parallel computation is provided in paper published in
ACM journal [7]. The initial version of our solution was not
parallel. One experiment has been fundamental for further
evolution of development. We have tried to analyze probably
one of the simplest Windows application – Notepad. It turned
out to be too difficult for our single thread prototype where
one Worker did almost whole job. Process of GUI map
creation has not been completed in the expected time. After
24 hours, the returned GUI map covered less than 70% of
the entire map (obtained after 40 hours of Worker’s work)
in the sense of number of discovered states (nodes) and
connections (edges). The resulted GUI map was really huge
- there were 317 nodes and 1187 edges! The reason for that
was windows like Font window, where there are hundreds of
actions to perform which potentially are important for GUI
map generation. As GUI maps are complex, we propose a
distributed system to explore various fragments of GUI in
parallel.

C. Detailed Description.
In this part of our paper we would like to give a high-level

view of the architecture that we have proposed and imple-
mented. We have decided to adapt one of the most popular
technology founded by Microsoft. Windows Communication
Foundation (WCF) [8] is a part of .NET Framework [9] that
provides a unified programming model for rapidly building
service-oriented applications. The WCF architecture is based
on the design principles of service-oriented architecture
(SOA) [10], [11] and gives us convenient and efficient level
of abstraction in the development. The design of our project
is closely related to the idea of cloud computing.

A WCF Service is a program that exposes a collection of
endpoints which enable clients to communicate with desired
data provider. A Client is a program that exchanges messages
with one or more endpoints. A Client may also expose an
endpoint to receive messages from a service in a duplex
message exchange pattern.

Figure 2. Cartographer System Architecture: Main components

In high-level view, in our system we single out 3 services:
Management Service, Database Service and Machine Pool
Service. Each of them exposes dedicated endpoints which
are responsible for specific parts of functionality. We will
describe each service with focus on Worker’s and Worker
Manager’s parts. We intentionally disregard hardware issues
because all services could be run on the same machine
as well as on separated machines, what follows the cloud
computing idea. We have tested our implementation on the
network built on virtual machines which allows us to not
care about hardware specific issues like tests reproducibility.

1) Management Service: The Management Service con-
sists of Power User Endpoint and Worker Manager Endpoint.
Power User Endpoint gives an interface for GUI part avail-
able for Power User. The main system control panel uses this
endpoint, which redirect control to an appropriate element
of the whole system. This is also the place where Power
User is able to define new job, e.g. new application analysis,
modifying system parameters, browsing through results, etc.
The next component is Worker Manager Endpoint which is
responsible for the fundamental part of the system logic. The
Worker Manager is an entity which has the following tasks:

• managing pool of Workers in the sense of commission-
ing Workers to do some jobs (e.g. do Mission which



relies on analyzing the specified part of the considered
application GUI),

• cooperate with Power User Endpoint,
• gathering the results from Workers (e.g. partial results,

fragments of GUI map, information about incidents
occurred during walking, etc.)

• merging GUI map from fragments derived from Work-
ers,

• verification of doubtful parts of the map,
• transferring partial results to the Map Repository.

Surely we can say that Worker Manager is one of the
most important elements of the Cartographer system. Worker
Manager is some kind of the logic kernel responsible for
final GUI map creation. One can say that Worker Manager
Endpoint is a bottleneck of the Cartographer. We have taken
steps to avoid that and have implemented Worker Manager in
the multithreaded architecture. The WCF technology enables
us to take advantage of multiple concurrency mode so if we
provide appropriate hardware, there will be no issues with
system capacity. Let us note that the most time consuming
part of the system is Worker job (see Worker algorithm part).

2) Database Service: There will be no sense of doing
analysis like that without giving ability to browse through
the results. Database Service provides an interface for Map
Repository where we store all GUI map fragments derived
from Workers. We keep all information about specified stage
of analysis, like pass id, environment settings, Worker id,
incidents details, application description (revision number,
version number), etc. Power User is able to compare outputs
from different passes which may be useful for comparing two
successive versions of the same application or just running
next pass and analyzing new version of the given software
based on results obtained in the previous stages.

3) Machine Pool Service: Virtual machines can help to
build scalable, manageable and efficient Machine Pool in-
frastructure. The work proposed in this paper focuses on
employing virtual machines for computing partial GUI maps.
There are many advantages of using virtual machines to run
Worker services on them. One of the advantages of having
virtual Machine Pool is that one can instantly obtain the
benefits of the enormous infrastructure without having to
implement and administer it directly. It is very important
to have possibility to configure every node in our machine
network in the same way to make all experiments and
calculations repetitive. We are able to run all Workers on
machines with configuration based on the same disk image.
What is more, we can add or remove machine dynamically
while system is running, so Power User can decide whether
to add or remove additional element from network.

Machine Pool is managed by Machine Pool Manager,
which is available as a service cooperating with Power User
Service. When new nodes are requested by Power User, Ma-
chine Pool Manager runs the configurator on each machine
individually. After that application and Worker Service are
run.

Worker Service gives an interface to a computation unit
run on every node in the Cartographer system. The Worker
fulfills an important role. Its function is to aide in the GUI
map generation by executing Missions specified by Worker
Manager. The common Mission for Worker is to analyze
some new windows or layers of given application and look

for new outgoing edges from the current state. The results
are directly transferred to Worker Manager.

D. Application Environment.
We have investigated two possible approaches to the

definition of nodes and edges of the GUI map. In the first,
coarse-grained, nodes are windows of the application and
edges correspond to transitions between them. In the second
approach, fine-grained one, a node is a window together
with values stored in its controls. The benefit of the first
approach is the reduced number of nodes in the graph. Our
research has shown that a hybrid solution will work best. We
have introduced the notion of a window layer. As mentioned
before a layer encompasses the window and some subset of
values of its controls. The main idea is to observe that not
all controls typically influence the GUI map. For example a
value of a control displaying current time will typically not
enable or disable some possible user navigations through the
GUI. On the other side a checkbox is quite likely to enable
or disable some functionalities of the program. Hence a layer
is a window together with values of important controls.

For that reason, we have investigated which user interface
elements may influence GUI map. We introduced items
called “Configuration Controls” - those controls, whose value
change alters (directly or indirectly) the GUI map. In other
words these are exactly those controls, whose value change is
necessary for traversing the entire GUI. But the identification
of them is far from trivial. From practical point of view most
difficult to find are those of them, whose change influences
controls in other than their own windows. Unfortunately such
controls do exist, for example in Options or Configuration
windows of various programs.

The interaction of the user with such elements causes a
change in application state. And this may influence which
windows will be accessible in the future. These are poten-
tially controls like menu, button, text box, radio button, check
box, spin box, list, tab, scroll-bar and others. Sometimes we
are not able to test all possible actions that could be done
with controls. There are GUI controls which cause a need for
manual entering data during GUI map generation because of
too large number of possible values like text box, spin box,
list (e.g. multi-select one). We have implemented a module
called Task Generator to reduce situations when Power User
action is needed. The Task Generator will be described in
detail in the next parts. These all controls will be called
interactive elements here.

The next group of controls, called GUI static elements
have no connected actions to be performed. These are labels,
groups of elements, graphics, etc. There are used by our
algorithm only to support windows identification.

On the other hand, we have identified application envi-
ronment elements that may have impact on GUI map. Many
of them are related to a operating system, system registry
and the level of utilization of accessible resources: virtual
memory, disk storage, processes and threads, communica-
tion ports, network connections etc. There is also impact
from other programs running concurrently including the
system ones, configuration files, attached external devices.
We have tried to minimize the influence of this part by using
virtualization and providing the same configuration for all
machines.



IV. GUI MAP GENERATION

The purpose of this section is to describe the general idea
of the Cartographer algorithm. It does not delve deep into
implementation details but gives a bird’s eye view of the
main part of the Cartographer system.

The algorithm generates a graph, with window layers
as nodes and edges for transitions between them. Layer
represents the part of the given window with visible and
enabled (not grayed) controls on it. Different window views
should be represented by different layers. Each edge has its
own identifier. Additionally edges are labeled with actions,
which made the transition between layers/windows. There is
in general no possibility for making return transitions, hence
the only way to visit a node more than once is in going
forward. Therefore full exploration of a node will demand
multiple openings of the corresponding window.

Each window is identified by its properties, like set of
controls it contains, its size etc. For each visit in a node
we store a structure, describing this visit, containing among
others the identifier of the edge used to leave the layer. Each
node holds a reference to the current visit structure.

A. Setting new job.

The GUI map generation process starts when Power User
specifies new application for analysis through the Power User
Endpoint. In the beginning every Worker is in the idle state
and is waiting for messages from Worker Manager.

Worker gets from Worker Manager messages with the
following types:

• NEW_MISSION - it means that Worker has to run
specified application, and then execute initialization
script (if one exists). Initialization script is responsi-
ble for preparing application for further analysis (e.g.
configuring application, omitting splash screen, etc.),

• PLAY_SCRIPT - Worker has to do script (walk through
the given path in the UI map) and start discovering GUI
map,

• CONTINUE_FROM_CURRENT_PLACE - Worker
should just start walking from current place and
discovering GUI map,

In the beginning Worker Manager usually sends
NEW_MISSION message to every Worker in the system with
initialization script provided by Power User.

B. Worker Manager algorithm.

We can divide Worker Manager part into 2 main modules:
Mission Generator and Map Validator.

1) Mission Generator.: This part of Worker Manager is
responsible for generating new Missions for Workers. Every
node in GUI map is tagged with number which quantities
the percentage of completed tasks (it says how much we
have analyzed the considered node). The Mission Generator
is looking for the least analyzed nodes and commissions
idle Workers to analyze these parts of GUI map. In the
Worker Manager algorithm we optimize the Worker’s job and
commission them to analyze the node which is the closest to
the current Worker place. From bird’s eye view we can say
that process of building GUI map is similar to breadth-first
search (BFS) algorithm.

2) Map Validator.: This module is responsible for verifi-
cation of doubtful parts of the GUI map. The GUI map is
built from fragments derived from Workers. In the easiest
case, when there are no conflicts between two parts of the
map derived from different Workers, process of merging
them is simple. Unfortunately, sometimes we have to deal
with a situation when conflicts exist. The conflicted parts
are marked with “doubtful” flag. Worker Manager has to
verify these parts and resolve conflicts. Sometimes, when
connections between two nodes are nondeterministic, it is
not possible. In this case, we keep the appropriate flag.

Worker Manager is constantly communicating with
Database Service and stores partial results into database.

C. Worker algorithm.

We assumed that there are instances of the following
analyzers:

• TaskGenerator - generates tasks for the given layer,
• TaskSelector - selects task with the highest priority.

Task here represents compound task which contains set
of simple tasks (e.g. right-click on the button). Window
configuration is a kind of overlay on real window structure
in operating system readable for Cartographer. Walk stack
represents whole Worker knowledge about real windows
stack (should represent stack of windows which are visible
on the desktop in a given moment). When Worker gets new
Mission from Worker Manager, it plays attached initialization
script if one exists. After this step Worker is able to start
discovering GUI map from current place. Below we present
pseudocode of main Worker algorithm part (discovering).

D. Task Generator and Task Selector logic.

On its mission Worker has to decide which actions to
take and in what order. Sometimes this decision is critical,
because GUI design forces the user to perform a specific
sequence of events to reveal a path to some window or layer.
This problem is solved by an entity called Task Generator
(TG). An input for TG is the tree of GUI elements, and
its output is a collection of compound tasks with priorities
assigned. Compound task is a sequence of simple tasks,
which are primitive GUI actions such as setting a value
in textbox or checking a checkbox. TG uses two main
approaches.

First one is a naive generation of all available actions in
the current state. All compound task generated are composed
of just one simple task and have the same priority. Using
this approach ensures that every active GUI element is used
at least once. The shortcoming is that it cannot handle a
situation when a specific sequence of actions is needed. This
requirement is met with the second approach.

The second approach is based on generic, manually de-
clared rules. Generally speaking, these rules describe patterns
of GUI window structure and tell what actions to take when
such a pattern is found. Rules are declared in an external
xml file, which contains four main sections.

1) Selectors: Selector is essentially a filter that can be
applied to GUI elements tree. Selector takes a stream of
elements as its input and leaves only elements that satisfy
defined constraints. Selector can make use of other streams of
elements in its constraints, but it cannot filter them. Streams



if (WalkStack.Count > 0) {
// Get foreground window configuration
var conf = WalkStack.Pop();
// Calculate active (foreground) layer
var layer = conf.GetActiveLayer();
// Generate compound tasks for Worker
var tasks = TaskGenerator(layer);

while (var task = TaskSelector(tasks).GetNext()) {
// Do all steps of the current compound task
while (task.DoStep()) {
// Check whether window is still foreground
if (conf.IsForeground()) {

// Update window configuration (look for changes)
conf.Update();

// Check whether layer is still foreground
if (layer != conf.GetActiveLayer()) {

// Report to Worker Manager that there is
// new edge between layers on
// the same window
Report();

WalkStack.Push(conf);

// End of walking, Worker has to wait
// for new Mission from Worker Manager
return;

}//if(layer!=...

}//if conf.IsForeground

else { // new window

// Get new window configuration
var actConf = getActiveWindow();

if (WalkStack.Contains(actConf)) {
// Reports that task causes switching
// windows on the walk stack
Update(WalkStack);
Report();
return;

}// if (WalkStack.Contains(actConf))

else {
// Reports that there is new edge between
// different windows
Update(WalkStack);
WalkStack.Push(actConf);
Report();
return;

}
}// else

}// while task.DoNext()
}// while(...TaskSelector(tasks)...)

}// if (WalkStack.Count...
else {
Error("Nothing to do");
return;

}

Figure 3. Worker algorithm

are defined in the first section of selector definition. Stream
can be defined as a whole elements tree (TG uses tree built-
in iterator and doesn’t make any assumptions about the order
of nodes that it returns), or the elements tree filtered by some
other selector (cycles are not allowed). Some constraints
have already been implemented, but the architecture allows
easy enhancements. Some of the implemented constraints
are: checking a value of an element property, i.e. text or
type, checking an existence of other element in defined
neighborhood, checking a relation to other element in the tree
(child, grandparent, etc.) checking if the element is a window.
Constraints can be linked by conjunctions and disjunctions
and modified by negation.

2) Forbidden elements: If for some reason we do not want
the Worker to use specific elements from GUI we can put

the selectors that describe them in the forbidden elements
section. Entries in this section contain nothing more than
selector names.

3) Tasks: In the tasks section one can define compound
tasks. Every definition contains three sections. The first one
is a definition of the element streams, which is similar to
the one in selector declaration. Second section is optional
and it allows specifying additional constraints that these
streams must satisfy. The third section contains simple tasks
definitions that are composed of action name, serialized
arguments and stream from which the element should be
taken. The semantics are as follows: TG divides selectors into
two groups. The first group contains elements that are used
in simple tasks definition, and second one those that are not.
Then it removes forbidden elements (see Forbidden elements
above) from the first group and checks if every stream (in
both groups) enumerates to at least one element. If not, the
definition is omitted. Otherwise it creates a cartesian product
of the streams and generates compound task for each tuple
that it contains. Note that the purpose of the streams from
the second group is to force that some specific controls exist
on the window, even though we don’t want to use them.

4) Priorities: In this section priorities can be assigned
to compound tasks created with definitions from the tasks
section. Each entry contains task definition name and a num-
ber that represents priority. TG uses these two approaches
simultaneously. Task Selector simply gets the task with the
highest priority.

V. CONCLUSIONS

We have presented an architecture of a system to automat-
ically build a map of the GUI, based on an semi-automatic
interaction with the windows and GUI controls. Experiments
conducted on an implemented prototype are very promising.
They show the power of the chosen distributed architecture of
the system. When a complete system is built it will become
an invaluable help in quality assurance of GUI applications.

REFERENCES

[1] A. Dix, J. E. Finlay, G. D. Abowd, and R. Beale, Human-Computer
Interaction. Prentice Hall, 2003.

[2] P. Gerrard, “Testing GUI Applications,” in EuroSTAR ’97, November
1997. [Online]. Available: http://www.gerrardconsulting.com/GUI/
TestGui.html

[3] A. M. Memon, “Automatically repairing event sequence-based GUI
test suites for regression testing,” in ACM Transactions on Software
Engineering and Methodology, 2008.

[4] X. Yuan and A. M. Memon, “Using GUI run-time state as feedback to
generate test cases,” in ICSE ’07 Proceedings of the 29th international
conference on Software Engineering, 2007.

[5] A. M. Memon, “Using reverse engineering for automated usability
evaluation of GUI-based applications,” in Software Engineering Mod-
els, Patterns and Architectures for HCI. Springer-Verlag London Ltd,
2009.

[6] ——, “Gui ripping: Reverse engineering of graphical user interfaces
for testing,” in In Proceedings of The 10th Working Conference on
Reverse Engineering, 2003, pp. 260–269.

[7] D. T. David B. Skillicorn, “Models and languages for parallel compu-
tation,” in ACM Computing Surveys (CSUR). ACM, 1998.

[8] J. Smith, Inside Windows Communication Foundation. Microsoft
Press, 2007.

[9] A. Troelsen, “Exploring the .NET universe using curly brackets,” in
Pro C# 2010 and the .NET 4 Platform. Apress, 2010.

[10] H. Carr, “The PEPt service oriented architecture,” in 2nd International
Conference on Service Oriented Computing New York City. ICSOC,
2004.

[11] P. R. Reed, Reference architecture: The best of best practice. Pub-
lished on IBM Website, 2004.




