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Abstract—This paper deals with the problem of stability
analysis for networked control systems via the time-delayed
system approach. The network-induced delays are modeled
as two additive time-varying delays in the closed-loop system.
To check the stability of such particular featured systems, an
appropriate Lyapunov-Krasovskii functional is proposed and
the Jensen inequality lemma is applied to the integral terms
that are derived from the derivative of the Lyapunov-Krasovskii
functional. Here, the cascaded structure of the delays in the
system enables one to partition the domain of the integral terms
into three parts, which produces a linear combination of positive
functions weighted by inverses of convex parameters. This is
handled efficiently by the authors’ lower bounds lemma.

Some numerical examples are given to demonstrate the
effectiveness of the proposed method.

Index Terms—reciprocally convex combination; delay sys-
tems; stability; networked control systems.

I. I NTRODUCTION

I T is well known that the presence of delay elements can
bring about system instability and performance degrada-

tion, leading to design flaws and incorrect analysis conclu-
sions [1]. Hence, a lot of attention has been paid to the time-
delayed systems in recent years.

Among the relevant topics in this field, networked control
systems have emerged as one of the most attractive issues in
line with the rapidly growing network environments [2]–[5].

In the networked control systems, interpreting in the
time-delayed system perspective, signals transmitted from
one point to another may encounter two network-induced
delays: ds(t) from the sampler (sensor) to the controller
and dh(t) from the controller to the holder (actuator). This
causes an introduction of delay elements in the closed-loop
system. For example, when the ordinary plant is considered,
ẋ(t) = Ax(t) + Bu(t), the closed-loop system becomes

ẋ(t) = Ax(t) + BK(x− ds(t)− dh(t)), (1)

i.e. systems with two additive time-varying delays.
As concerns about it, a conventional approach is to assem-

ble the induced delays as a single one,d(t) = ds(t)+dh(t),
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and to consider (1) as a single delayed system withd(t)
as the system delay [6], [7]. Recently, [3], [4] have also
shown the possible reduction of conservatism in the analysis
and synthesis problems by treatingds(t), dh(t) separately in
constructing the Lyapunov-Krasovskii functional. However,
to take into account the relationship between the two delays,
they have to introduce slightly excessive free weighting
matrices.

As a way of reducing the number of decision variables, this
paper focuses on the Jensen inequality lemma [1]. It is well
known that relaxations based on Jensen inequality lemma in
delayed systems produce a special type of function combi-
nations, a linear combination of positive functions weighted
by inverses of convex parameters,say a reciprocally convex
combination. Here, the cascaded structure of delays in the
system enables one to partition the domain of the integral
terms that are derived from the derivative of the Lyapunov-
Krasovskii functional into three parts, which produces a
reciprocally convex combination having three convex pa-
rameters as the weights. This can be handled efficiently
by [8]’s lower bounds lemma that can be applied for all
finite reciprocally convex combinations. It is notable that, to
avoid the emergence of the reciprocally convex combination,
[9] has to introduce a very conservative approximation on
the difference between delays,− ∫ t−ds(t)

t−d(t)
ẋT (s)Xẋ(s)ds ≤

− 1
d̄h

∫ t−ds(t)

t−d(t)
ẋT (s)dsX

∫ t−ds(t)

t−d(t)
ẋ(s)ds, 0 < dh(t)≤ d̄h, in

the middle stage of the derivation.
The paper is organized as follows. Section 2 will explain

the structure of the networked control systems and develop
the corresponding stability criterion. Section 3 will show
simple examples for verification of the criterion.

II. M AIN RESULTS

A. System description

Fig. 1. Networked control systems

Let us consider the system:

ẋ(t) = Ax(t) + Bu(t), (2)

which, with the introduction of the two network-induced
delays:ds(t) from the sampler (sensor) to the controller and



dh(t) from the controller to the holder (actuator), produces
a special type of closed-loop system as

ẋ(t) = Ax(t) + BKx(t− ds(t)− dh(t)),

i.e. systems with two additive time-varying delays. To check
the stability of such particular featured systems is the focus
of the forthcoming section.

B. Stability analysis

Let us consider the following delayed system:

ẋ(t) = Ax(t) + Adx(t− d1(t)− d2(t)), t ≥ 0,

x(t) = φ(t), − d̄1 − d̄2 ≤ t ≤ 0, (3)

where 0 ≤ d1(t) ≤ d̄1, 0 ≤ d2(t) ≤ d̄2, ḋ1(t) ≤ τ̄1,
ḋ2(t) ≤ τ̄2 andφ(t) ∈ C1(d̄1 + d̄2), the set of continuously
differentiable functions in the domain[−2(d̄1 + d̄2), 0]. Let
us defined̄ , d̄1 + d̄2, τ̄ , τ̄1 + τ̄2, d(t) , d1(t) + d2(t),
χ(t) , col{x(t), x(t− d1(t)), x(t− d(t)), x(t− d̄)} and the
corresponding block entry matrices as

e1 , [I 0 0 0]T , e2 , [0 I 0 0]T , e3 , [0 0 I 0]T ,

e4 , [0 0 0 I]T , e5 ,(AeT
1+Ade

T
3 )T , (4)

so that the system can be written asẋ(t) = eT
5 χ(t).

Consider the following Lyapunov-Krasovskii functional:

V (t) , V1(t) + V2(t) + V3(t) + V4(t) + V5(t), (5)

V1(t) = xT (t)Px(t), P >0, (6)

V2(t) =
∫ t

t−d1(t)

xT (α)Q1x(α)dα, Q1 >0, (7)

V3(t) =
∫ t

t−d(t)

xT (α)Q2x(α)dα, Q2 >0, (8)

V4(t) =
∫ t

t−d̄

xT (α)Q3x(α)dα, Q3 >0, (9)

V5(t) = d̄

∫ 0

−d̄

∫ t

t+β

ẋT (α)Rẋ(α)dαdβ, R>0. (10)

Theorem 1:The delayed system (3) is asymptotically sta-
ble if there exist matricesP , Q1, Q2, Q3, R, S1,2, S1,3 and
S2,3 such that the following conditions hold:

Ω1 + Ω2 < 0, (11)
[
R S1,2

∗ R

]
≥ 0,

[
R S1,3

∗ R

]
≥ 0,

[
R S2,3

∗ R

]
≥ 0, (12)

P >0, Q1 >0, Q2 >0, Q3 >0, R>0, (13)

where

Ω1 = e5PeT
1 +e1PeT

5 +e1(Q1+Q2+Q3)eT
1 −e4Q3e

T
4

−(1−τ̄1)e2Q1e
T
2 −(1−τ̄)e3Q2e

T
3 +d̄2e5ReT

5 , (14)

Ω2 =−


(e1−e2)T

(e2−e3)T

(e3−e4)T



T


R S1,2 S1,3

∗ R S2,3

∗ ∗ R





(e1−e2)T

(e2−e3)T

(e3−e4)T


 . (15)

Proof: The time derivatives ofVi(t) become

V̇1(t)=2ẋT (t)Px(t) = 2χT (t)e5PeT
1 χ(t), (16)

V̇2(t)=χT (t){e1Q1e
T
1 − (1− ḋ1(t))e2Q1e

T
2 }χ(t), (17)

V̇3(t)=χT (t){e1Q2e
T
1 − (1− ḋ(t))e3Q2e

T
3 }χ(t), (18)

V̇4(t)=χT (t){e1Q3e
T
1 − e4Q3e

T
4 }χ(t), (19)

V̇5(t)= d̄2χT (t)e5ReT
5 χ(t)− d̄

∫ t

t−d̄

ẋT (β)Rẋ(β)dβ, (20)

so thatV̇ (t) can be upper-bounded by the following quantity:

V̇ (t) ≤ χT (t)Ω1χ(t)

− d̄

∫ t

t−d1(t)

ẋT (β)Rẋ(β)dβ

− d̄

∫ t−d1(t)

t−d(t)

ẋT (β)Rẋ(β)dβ

− d̄

∫ t−d(t)

t−d̄

ẋT (β)Rẋ(β)dβ (21)

≤ χT(t){Ω1 (22)

− 1
α

(e1−e2)R(e1−e2)T

− 1
β

(e2−e3)R(e2−e3)T

− 1
γ

(e3−e4)R(e3−e4)T}χ(t) (23)

≤ χT(t)(Ω1 + Ω2)χ(t), (24)

where the inequality (22) comes from the Jensen inequality
lemma [1], and that of (24) from [8]’s lower bounds lemma
(see Appendix) as

− χT(t){



√
β
α (e1−e2)T

−
√

α
β (e2−e3)T



T[
R S1,2

∗ R

]


√
β
α (e1−e2)T

−
√

α
β (e2−e3)T




+

[√
γ
α (e1−e2)T

−
√

α
γ (e3−e4)T

]T[
R S1,3

∗ R

][√
γ
α (e1−e2)T

−
√

α
γ (e3−e4)T

]

+




√
γ
β (e2−e3)T

−
√

β
γ (e3−e4)T



T[
R S2,3

∗ R

]


√
γ
β (e2−e3)T

−
√

β
γ (e3−e4)T


}χ(t)≤0, (25)

where

α=
d1(t)

d̄
, β=

d2(t)
d̄

, γ =
d̄− d(t)

d̄
.

Note that whenα = 0 or β = 0 or γ = 0, we haveχT (t)
(e1− e2) = 0 or χT (t)(e2− e3) = 0 or χT (t)(e3− e4) = 0,
respectively. So the relation (24) still holds. This completes
the proof.

Remark 1: It is well known that relaxations based on
Jensen inequality lemma in delayed systems produce a
special type of function combinations, a linear combination
of positive functions weighted by inverses of convex parame-
ters. And, to the knowledge of the authors, all such particular
featured combinations of functions in the literature have had
only two convex parameters as the weights. However, here
the cascaded structure of delays in the system (3) enables
one to partition the domain of the integral term in (20) into
three parts as (21), which produces the reciprocally convex
combination (23) having three convex parameters(α, β, γ) as



the weights. This is handled efficiently by [8]’s lower bounds
lemma that can be applied for all finite reciprocally convex
combinations.

It is notable that [10]’s relaxation method, which properly
approximates the coefficient̄d in the integral terms (21) so
as to obtain a condition that is linear in some parameters, has
not addressed how to extend it for the case where integral
terms are partitioned more than twice.

III. E XAMPLES

Example 1:Consider the system (3) taken from [3] with

A =
[−2.0 0.0

0.0 −0.9

]
, Ad =

[−1.0 0.0
−1.0 −1.0

]
. (26)

The maximum upper bounds on the delays (MUBDs) under
the assumption:

ḋ1(t) ≤ 0.1, ḋ2(t) ≤ 0.8 (27)

are listed in Tables I–II. Comparing with the recently devel-
oped results, we can see that the result in this paper is less
conservative with relatively low decision variables.

TABLE I
MUBDS OFd2 FOR GIVEN d̄1 IN EXAMPLE 1

Method d̄1 =1.0 d̄1 =1.2 d̄1 =1.5 # of variables
Li et al.(2009) [7] 0.378 0.178 infeasible 32

Lam et al.(2007) [3] 0.415 0.340 0.248 59
Gao et al.(2008) [4] 0.512 0.406 0.283 85
Du et al.(2009) [9] 0.512 0.406 0.283 15

Peng& Tian(2008) [6] 0.665 0.465 0.165 18
Theorem 1 0.873 0.673 0.373 27

TABLE II
MUBDS OFd1 FOR GIVEN d̄2 IN EXAMPLE 1

Method d̄2 =1.0 d̄2 =1.2 d̄2 =1.5 # of variables
Lam et al.(2007) [3] 0.212 0.090 infeasible 59
Gao et al.(2008) [4] 0.378 0.178 infeasible 85
Li et al.(2009) [7] 0.378 0.178 infeasible 32
Du et al.(2009) [9] 0.378 0.178 infeasible 15

Peng& Tian(2008) [6] 0.665 0.465 0.165 18
Theorem 1 0.873 0.673 0.373 27

Example 2:Consider the system (3) taken from [9] with

A=
[−1.7073 0.6856

0.2279 −0.6368

]
, Ad =

[−2.5026 1.0540
−0.1856 −1.5715

]
. (28)

The derivatives of the delays are assumed to be

ḋ1(t) ≤ 0.3, ḋ2(t) ≤ 0.8. (29)

By Theorem 1, the improvement of this paper is shown in
Tables III–IV.

TABLE III
MUBDS OFd2 FOR GIVEN d̄1 IN EXAMPLE 2

Method d̄1 =0.1 d̄1 =0.2 d̄1 =0.3 # of variables
Lam et al.(2007) [3] 0.412 0.290 0.225 59
Li et al.(2009) [7] 0.484 0.384 0.284 32

Gao et al.(2008) [4] 0.484 0.385 0.293 85
Du et al.(2009) [9] 0.484 0.385 0.293 15

Peng& Tian(2008) [6] 0.577 0.477 0.377 18
Theorem 1 0.684 0.584 0.484 27

TABLE IV
MUBDS OFd1 FOR GIVEN d̄2 IN EXAMPLE 2

Method d̄2 =0.1 d̄2 =0.2 d̄2 =0.3 # of variables
Li et al.(2009) [7] 0.484 0.384 0.284 32

Lam et al.(2007) [3] 0.547 0.343 0.185 59
Peng& Tian(2008) [6] 0.577 0.477 0.377 18

Gao et al.(2008) [4] 0.585 0.419 0.292 85
Du et al.(2009) [9] 0.585 0.419 0.292 15

Theorem 1 0.684 0.584 0.484 27

IV. CONCLUSIONS

This paper proposed an efficient stability criterion for
networked control systems via the time-delayed system ap-
proach. The network-induced delays were modeled as two
additive time-varying delays in the closed-loop system. To
check the stability of such particular featured systems, an
appropriate Lyapunov-Krasovskii functional was constructed
and the Jensen inequality lemma was applied to the integral
terms that were derived from the derivative of the Lyapunov-
Krasovskii functional. Here, owing to the cascaded structure
of delays in the system, the domain of the integral terms
could be partitioned into three parts, which produced a linear
combination of positive functions weighted by inverses of
convex parameters. This was handled efficiently by Park et
al. (2010)’s lower bounds lemma.

Examples showed the resulting criterion outperforms all
existing ones with relatively low decision variables.
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