



Abstract—In this paper, a special class of trajectory

optimization problems is formulized and solved. It involves the

optimization of different Unmanned Vehicle (UMV)

trajectories, which are coupled through reciprocal constraints.

It is shown in the paper that searching for a solution to the

problem at hand may stipulate not just planning a longer than

the shortest possible path for each UMV, but also choosing

slower travel speeds in order to coordinate between the UMVs.

Although it seems that solving the problem possesses merits, it

has been only partially treated before. Here we suggest solving

it by utilizing an evolutionary approach which involves a new

algorithmic feature that allows striving towards the desired

optimality. The approach is demonstrated and studied through

solving and simulating several trajectory planning problems. It

is shown that a wide range of problems might be related to that

class of problems.

Index Terms—Trajectory planning, unmanned vehicles,

evolutionary algorithms

I. INTRODUCTION

MVs have been a major research field in the last two

decades. The design, control, and planning of their

tasks have been widely investigated [1,7,9-12,15]. Planning

trajectories for several UMVs is significantly more difficult

than the path planning problem for single robot systems

since the size of the joint state space of the robot increases

exponentially to the number of robots [2]. The motivation

for cooperation between UMVs/robots has been based on

the recognition that there are several tasks that can be

performed more efficiently and robustly using multiple

robots [3,8,14]. Another problem treating the interaction

between UMVs deals with planning of paths for different

UMVs with emphasize on avoiding collisions between them

[2], where often the individual paths are also optimized [13].

The current paper deals with a wider definition for the

coupled trajectories problem. Here the task of the UMVs is

not mutual with each UMV having its own task and

therefore its own related optimization problem, possibly

performing in totally different workspaces. Nevertheless,

these individual optimization problems are coupled through

Manuscript received November 30, 2010; revised December 27, 2011.

 (This work was supported by ORT Braude research grant no.

5000.838.1.2.11.

Gideon Avigad is a Senior lecturer in the Mechanical Engineering

Department, Braude College of Engineering, POB 78, Karmiel 21982,

Israel e-mail: gideona@braude.ac.il).

Erella Eisenstadt is a Lecturer in the Mechanical Engineering

Department, Braude College of Engineering, POB 78, Karmiel 21982,

Israel (e-mail: erella@braude.ac.il).

Miri Weiss-Cohen is a Senior lecturer in the Software Engineering

Department of Braude College of Engineering, POB 78, Karmiel 21982,

Israel (e-mail: miri@ braude.ac.il).

reciprocal constraints. For example, depict the map in Fig. 1.

Suppose that an UMV has to travel from point “start 1” to

the point designated as “end 1”. The planners are asked to

plan a path/trajectory for this aircraft while minimizing its

travel time and avoiding mountains. The optimal solution

for this task is designated in Fig. 1 by a dashed curve

between these points. Now consider the same map, but this

time considered by different planners. Their task is to plan

the trajectory of an UMV traveling from “start 2” to “end 2”

and having to deliver supplies to a set of pickup points

designated by plusses while also avoiding the mountains. An

optimal solution for this problem is designated by a dashed

curve passing through these points. Depicting each of these

problems per se, it is clear that the problems might be solved

by totally different teams, possibly with different expertise

and backgrounds. Yet, in the current study, these teams are

forced to cooperate and take mutual decisions as a result of

reciprocal constraints. An example for such a constraint is

the need for the UMVs to have a rendezvous region that will

serve as a refueling point. This demand constrains the

designers to consider altering their plans in order to

coordinate their trajectories, yet preserving the inspiration

for optimization (shortest path). It is noted that both the

location and schedule of the meeting should be found as part

of the optimization problem solution. Moreover, the

problem is not restricted to constraints between aerial or

ground vehicles, with a combination of them being possible.

Fig. 1. A workspace (map) where two UMVs’ trajectories are to be

optimized, while meeting reciprocal constraints.

The existing methods for solving the problem of different

UMVs’ trajectories, which are optimized while avoiding

collisions among them may be divided into two categories: a

centralized approach, where the configuration spaces of the

individual robots are combined into one composite

configuration space which is then searched for a path for the

whole composite system. In contrast, the decoupled

approach first computes separate paths for the individual

Trajectory Planning for Multi UMVs with

Reciprocal Constraints

Gideon Avigad, Erella Eisenstadt, and Miri Weiss-Cohen

U

robots and then resolves possible conflicts of the generated

paths. Most of the attempts to share components between

solutions to several problems that are coupled through

constraints are associated with the design of a product

family. A product family is a group of related products that

share common components and/or subsystems – yet satisfy a

variety of market niches [16].

A common trajectory optimization problem may be

defined as follows:

Find a trajectory P(x,t) in order to minimize)P( subject

to (,) 0g x t  and (,) 0h x t  . Where x is a vector of

position coordinates and t is the time. ()P may be the path

length, path time, change of direction within the path etc.

The current problem is defined as follows:

 Find trajectories (a solution) (,)P x t where

 1
1(,) [(,),......., (,)]K T

KP x t P x t P x t in order to:

 (()),Min P (1)

11
1() [((,),.... ((,),....., ((,)]

i Ki K T
i KP P x t P x t P x t    

subject to: ((,)) 0jg P x t  for 1 j J  and ((,)) 0eh P x t 

for1 e E  , where xi is the position coordinate of the i-th

trajectory of x and t is the time. ((,)
ii

iP x t is the objective

of the i-th trajectory's planning, which may differ, from one

trajectory to the other. ((,))jg P x t and ((,))eh P x t are

inequality and equality constraints, respectively. The

dependence of the constraints functions (g and h) on several

trajectories engender coupling between the trajectories.

It is noted that the definition as given in (1) is not a

definition of a multi-objective problem. If a MOP is at hand,

the vector xi would be unanimous to all objectives and not

distinct to each objective as is the case in the current

problem. This is further highlighted by the different prime

indices given to the path (i.e., i). In this case, the problem

is formalized as a constrained single objective problem,

where the objective function is a utility of all of the different

problems' objective functions. The problem is defined as

follows:

 (()),Min P

1

() ((,)
K

i i

i i

i

P P x t


   (2)

Subject to: ((,)) 0ig P x t  for 1 i K  ,

 ((,)) 0jr P x t  for 1 j J  , where gi is the i-th

 trajectory specific constraints and rj is the j-th reciprocal

constraint. i is the i-th trajectory weight, which reflects the

designers view concerning the importance of the trajectory

with respect to the other trajectories. This weight may also

include a scaralaizing element. In the current paper, we

utilize  just for scaralizing as we regard all problems to be

important to the same extent. It is noted that the definition in

(2) is a weighted sum approach.

II. REVOLUTE PRISMATIC CHAIN (RPC) ALGORITHM

Genetic Algorithms (GAs) are considered to be a part of

Evolutionary Computation (EC) methods. They are used

extensively for solving single objective problems and are

also an appealing option when Multi Objective Optimization

Problems (MOPs) are to be solved [4-6, 17].

In this work, a new approach is suggested, which is

termed the Revolute Prismatic Chain (RPC). The RPC

algorithm combines gradually extracting (prismatic) and

tilting (revolute) parameters using Genetic Algorithms'

evolutionary parameters. The RPC is constructed from a

predefined number of sections. A section represents the

length of travel made by the UMV at each time step. Each

section is anchored at the end of the prior section (the first

section is anchored to the starting point). The angle at which

each section is extended is coded as a parameter. Also coded

is the length of each section. This means that the speed of

travel is coded by this length (length per time is the speed of

travel). The maximal length is the maximal speed that may

be obtained by the UMV. Note that the speed at each section

is the mean velocity at this section. Fig. 2 depicts a five

section RPC. It is noted that the end of the RPC is not

encored to the end point and is located wherever the last

section ends.

Fig. 2. The RPC with 5 sections. The length of each section and its angle

with respect to the previous section are coded with the evolutionary

algorithm code.

We utilized an elite based EA in order to search for the

solutions to problem [7]. An individual within the

population is constructed out of several chromosomes, each

coding one trajectory out of the coupled problems'

trajectories. Therefore, a decoded individual is a complete

solution to the problem (whether successful or not).

The coded parameters are decoded to intervals such that

NiallforRi
o

i
o ,......110;180180   . The

number of the RPC sections, N, and the number of members

in a set (number of RPC's) is K, are predefined. Also

predefined are the population size n and the number of

generations G. The influence of the constraints violations on

the evolution has been introduced to the algorithm through a

procedure detailed in the following code. The evolutionary

algorithm is an elite based GA[7], described by the

following pseudo code:

The GA pseudo code

a. Initialize a population tP with n individuals.

Also, create a population Qt = Pt

b. While t G

c. Combine parent and offspring populations and

create t t tR P Q .

d. For each individual x in tR compute: (x), d(x),

(x) as detailed in calculations I, II, III,
respectively.

e. Create Elite population Pt+1 of size n from Rt

(procedure I)

f. Create offspring population *
1tQ  of size n from tR

by Tournament selection (procedure II)

g. Perform Crossover to obtain **
1tQ  from *

1tQ  .

h. Perform Mutation' to obtain 1tQ  from **
1tQ  .

i. Set 1t t  and go to b.

Calculation I: Φ(x)

1. Find trajectories:

2. 1
1(,) [(,),......., (,)]K T

KP x t P x t P x t

3. Find
11

1((,)) [((,),.... ((,),....., ((,)]
i Ki K T

i KP x t P x t P x t P x t    

 and compute

1

() ((,)
K

i i

i i

i

x P x t


  

Calculation II: d(x)

1. Find the distance from the i-th RPC end point,

to the i-th end point as follows:

2.

1

1

(,) | (,) 0

max (,)

()
(,) | (,) 0

max (,)

i i i i

end i final
i K

i i i i

end i
i K

g x t g x t

Then x P x t

d x
g x t g x t

Then x P x t

 

 



 

 





 
 




The distance is in fact the longest distance of an

RPC end point to its target point. If an RPC bumps

into an obstacle, than this bumping point, is

regarded as the end of the RPC.

Calculation III: δ(x)

1. For all trajectories of x compute

, (,) (,) 1,...., ;i l
i l i lP x t P x t for all i K i l    

Compute ,() ()i lx   where  , is a

problem related function.

Note: In all examples

 ((,)) (,)i
i iP x t Lengthof thetrajectory P x t  ,

1 1,...,i for all i K   . In the first example where the

reciprocal constraint is to keep the distance between

trajectories smaller than dmin, ,() ()i lx  , in all other

examples, where the reciprocal constraint is to achieve a

meeting point, ,
,

() min()i l
i l

x 


 .

III. EXAMPLES

In this section, several examples are solved. The

examples include problems with two and three coupled

trajectory optimization problems. In all examples, 50%

crossover with Gaussian distributed mutation with

probability of 5% has been utilized.

A. Example 1

Here two similar cases are considered. In both of them,

three UMVs’ trajectories are optimized in order to find the

shortest path for each while avoiding obstacles. The

reciprocal constraint is that each UMV has to meet all other

UMVs once during the travel. The difference between the

two cases of this example is that, in the first, there is just one

obstacle, while in the second, there are three obstacles. The

optimal solutions for the two cases are shown in Fig. 3a and

3b, respectively.

(a) (b)
Fig. 3. Three UMVs’ optimal trajectories with a constraint they must all rendezvous somewhere sometime as they travel. One obstacle (3a) and three

obstacles (3b).

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

3

4

5

end 1

end 2end 3

start 1

start 2 start 3

L1 = 4.186

L2 = 4.244

L3 = 4.122 max. distance = 0.081

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

3

4

5

end 1

end 2end 3

start 1

start 2 start 3

L1 = 4.036

L2 = 4.105

L3 = 4.557 max. distance = 0.122

B. Example 2

In this example, two UMVs move from different

starting points to different end points while traveling the

shortest path and avoiding a big obstacle (in Fig. 4, its

boundaries are bold lines), yet are bound to meet once,

possibly for the purpose of refueling. The place and time

of the meeting is not specified. The minimal distance at

the time of meeting is set to dmin<0.1. In terms of (1), the

problem may be defined as follows:
T

21]L,L[

1

(,) (,) (,) :

(,) (,) 0

i i
i i

i
i j

P x t P x t j J P x t

P x t O x t

(obstacle avoidance)
* * *

* *
2

, (,), (,) (,) :

(,) (,) 0

i j
i j

i j
i j

t P x t P x t P x t

P x t P x t

(meeting point at least at one
*t)

C. Example 3

The purpose of the second example is to show the

applicability of the suggested algorithm to solve multi

trajectory planning problems for which, apart from

optimizing the trajectories, avoidance of collisions is

important. Instead of a constraint to keep the distance

between the UMVs, less than a predefined distance, here,

the constraint is altered such that, the distance between

the UMVs should not be less than the predefined

distance. It is further noted that the UMVs are bound to

travel in opposite directions due to the location of their

related starting and end points. 20-section RPC coded

solutions, where each section may vary between 0.0 and

0.8, were run for 1000 generations

The populations after 100 and 1000 (final) generations

are depicted in Fig. 4a and 4b, respectively. It is observed

that after 100 generations not all RPCs reach the end

point, with a few of them bumping into the obstacle. At

the end of the run (after 1000 generations), the solutions

converge to a single solution, which is depicted in Fig.

4b. Note that for the meeting to take place, one UMV (the

one that started on the left) had to wait for the other to

come around the obstacle and then continue to travel to

its end point within the speed limit (determined by the

boundaries set to the length of the RPC sections). This

means that the other UMV had to travel fast at the

beginning and then slow down after the rendezvous.

Fig. 5 (a)-(b) depicts a three-UMV trajectory planning

problem. Fig. 5a depicts four trajectory sections evolved

by using the paper’s approach. The dashed lines show the

minimal distance between the UMVs during their travel.

The trajectories are almost straight lines and the distance

is within the allowed limit. Fig. 5b depicts the same

problem; this time the trajectories are being evolved by

using RPCs with 20 sections. It is clear that non-violation

of the constraint is more ensured, yet at the cost of

computational time and optimality.

Fig. 6 depicts the evolved trajectories of the five-UMV

problem (RPC are with five sections each).

IV. SUMMARY AND CONCLUSIONS

In the paper, a formulation for a class of problems has

been suggested. A problem belonging to this class

involves the optimization of UMV trajectories that are

subject to reciprocal constraints. The definition

incorporates a wide range of problems, including cases

where the UMVs do not share the same workspace.

Reciprocal constraints between trajectories may be

associated with demands such as the following:

(a) (b)

Fig. 4. An evolutionary search for optimal trajectories for two UMVs, with a demand for rendezvous. Fig 4a depicts the population after

 100 generations and 4b at the end of the evolution (generation 1000).

(a) (b)

Fig. 5: (a) Three UMVs’ trajectories with 3-section RPCs.(b) Three UMVs’ trajectories with 5-section RPCs.

Fig. 6. Five UMVs’ trajectories with 5 section RPCs

 (a) At any time, keep the distance between the UMVs

below a predefined distance; (b) At any time, keep the

distance between the UMVs above a predefined distance

(avoiding collisions); (c). Always allow line of sight

contact between the UMVs; (d). Always occupy one

UMV at each sub-workspace, etc.

A robust approach has been suggested that can cope

with solving all of these problems. It involves the

representation of a path by a telescopic antenna. The

length and orientation of the antenna’s sections are

evolved by a genetic algorithm.

REFERENCES

[1] G. Avigad, and K. Deb, “The sequential optimization-constraint

multi-objective problem and its applications for robust planning of

robot paths,” in Proc. IEEE Congress on Evolutionary

Computation (CEC'2007), September 2007, pp. 2101–2108.
[2] M. Bennewitz, W. Burgard, and S. Thrun, “Optimizing schedules

for prioritized path planning of multi-robot systems,” in Proc.
2001 ICRA. IEEE International Conference on Robotics and

Automation, 2001, pp. 1271–1276.

[3] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun,

“Collaborative multi-robot exploration,” in Proc. IEEE Int. Conf.

on Robotics and Automation, San Francisco, CA, 2000, pp. 476–

481.

[4] O. Castillo, L. Trujillo, and P. Melin, “Multiple objective genetic

algorithms for path-planning optimization in autonomous mobile

robots,” Soft Computing, vol. 11, pp. 269–279, 2007.

[5] Z. Cai, and Z. Peng, “Cooperative coevolutionary adaptive genetic

algorithm in path planning of cooperative multi-mobile robot

aystems,” J. of Intelligent and Robotic Systems, vol. 33(1), pp. 61–

71, 2002.

[6] L. Chi-Ming, “Multicriteria–multistage planning for the optimal

path selection using hybrid genetic algorithms,” Applied
Mathematics and Computation, vol. 180, pp. 549–558, 2006.

[7] K. Deb, A. Pratap, S. Agarwal, and T. A. Meyarivan, T. A, “Fast

and elitist multi objective genetic algorithm: NSGA–II,” IEEE

Transactions on Evolutionary Computation, vol. 6(2), pp. 182–

197, 2002.

[8] B. Donald, L. Gariepy, and D. Rus, D., “Distributed manipulation

of multiple objects using ropes,” in Proc. IEEE Int. Conf. on

Robotics and Automation, 2000, pp. 450–457.

[9] J. S. Jennings, G. Whelan, and W. F. Evans,. “Cooperative search

and rescue with a team of mobile robots,” in Proc. IEEE Int. Conf.

on Advanced Robotics (ICAR), Monterey, CA. 1997, pp. 193–200.

[10] I. Kaminer, O. Yakimenko, A. Pascoal, and R. Ghabcheloo, ().

“Path generation, path following and coordinated control for time-

critical missions of multiple UAVs,” in Proc. American Control

Conf., Minneapolis, MN, 2006.

[11] M. Hebert, Intelligent unmanned ground vehicles: Autonomous
navigation research at Carnegie Mellon. Norwell, MA: Kluwer

Academic Publishers, 1997

[12] A. Moshaiov, G. Avigad, and N. Brauner, “Multi-objective path

planning by the concept-based IEC method,” in Proc. 2004 IEEE
Int. Conference on Computational Cybernetics, ICCC 2004.

Vienna, Austria, 2004.

[13] S. Mittal, and K. Deb, “Three-dimensional path planning for

UAVs using multi-objective evolutionary algorithms ,” Proc.

Congress on Evolutionary Computation (CEC-2007), September,

2007, pp. 25–28.

[14] L. E. Parker, “Multiple mobile robot systems,” in Springer
Handbook of Robotics, ch. 40, B. Siciliano and O. Khatib, Ed..

Springer, 2008.

[15] T. Sugar, and V. Kumar, “Control and coordination of multiple

mobile robots in manipulation and material handling tasks,” in

Experimental Robotics VI: Lecture Notes in Control and

Information Sciences, vol. 250P. Corke, and J. Trevelyan, Eds.:

Berlin: Springer-Verlag, 2000, pp. 15–24.

[16] T.W. Simpson, “Product platform design and optimization: status

and promise,” in Proc. Design Eng. Technical Conf. and

Computers and Information in Eng. Conf. (DETC’03 ASME 2003),

Chicago, IL, 2003.

[17] R. Saravanan, S. Ramabalan, and C. Balamurugan, C.,

“Evolutionary multi-criteria trajectory modeling of industrial

robots in the presence of obstacles,” Engineering Applications of

Artificial Intelligence, vol. 22, pp. 329–342, 2009.

-6 -4 -2 0 2 4 6

-3

-2

-1

0

1

2

3

4

5

6

7

Start1

End1

Start2

End2

Start3

End3

Start4

End4

Start5

End5

