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Abstract—In this paper, a special class of trajectory 

optimization problems is formulized and solved. It involves the 

optimization of different Unmanned Vehicle (UMV) 

trajectories, which are coupled through reciprocal constraints. 

It is shown in the paper that searching for a solution to the 

problem at hand may stipulate not just planning a longer than 

the shortest possible path for each UMV, but also choosing 

slower travel speeds in order to coordinate between the UMVs. 

Although it seems that solving the problem possesses merits, it 

has been only partially treated before. Here we suggest solving 

it by utilizing an evolutionary approach which involves a new 

algorithmic feature that allows striving towards the desired 

optimality. The approach is demonstrated and studied through 

solving and simulating several trajectory planning problems. It 

is shown that a wide range of problems might be related to that 

class of problems. 

 
Index Terms—Trajectory planning, unmanned vehicles, 

evolutionary algorithms 

 

I. INTRODUCTION 

MVs have been a major research field in the last two 

decades. The design, control, and planning of their 

tasks have been widely investigated [1,7,9-12,15]. Planning 

trajectories for several UMVs is significantly more difficult 

than the path planning problem for single robot systems 

since the size of the joint state space of the robot increases 

exponentially to the number of robots [2]. The motivation 

for cooperation between UMVs/robots has been based on 

the recognition that there are several tasks that can be 

performed more efficiently and robustly using multiple 

robots [3,8,14]. Another problem treating the interaction 

between UMVs deals with planning of paths for different 

UMVs with emphasize on avoiding collisions between them 

[2], where often the individual paths are also optimized [13].  

The current paper deals with a wider definition for the 

coupled trajectories problem. Here the task of the UMVs is 

not mutual with each UMV having its own task and 

therefore its own related optimization problem, possibly 

performing in totally different workspaces. Nevertheless, 

these individual optimization problems are coupled through 
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reciprocal constraints. For example, depict the map in Fig. 1. 

Suppose that an UMV has to travel from point “start 1” to 

the point designated as “end 1”. The planners are asked to 

plan a path/trajectory for this aircraft while minimizing its 

travel time and avoiding mountains. The optimal solution 

for this task is designated in Fig. 1 by a dashed curve 

between these points. Now consider the same map, but this 

time considered by different planners. Their task is to plan 

the trajectory of an UMV traveling from “start 2” to “end 2” 

and having to deliver supplies to a set of pickup points 

designated by plusses while also avoiding the mountains. An 

optimal solution for this problem is designated by a dashed 

curve passing through these points. Depicting each of these 

problems per se, it is clear that the problems might be solved 

by totally different teams, possibly with different expertise 

and backgrounds. Yet, in the current study, these teams are 

forced to cooperate and take mutual decisions as a result of 

reciprocal constraints. An example for such a constraint is 

the need for the UMVs to have a rendezvous region that will 

serve as a refueling point. This demand constrains the 

designers to consider altering their plans in order to 

coordinate their trajectories, yet preserving the inspiration 

for optimization (shortest path).  It is noted that both the 

location and schedule of the meeting should be found as part 

of the optimization problem solution. Moreover, the 

problem is not restricted to constraints between aerial or 

ground vehicles, with a combination of them being possible. 

 
Fig. 1.  A workspace (map) where two UMVs’ trajectories are to be 

optimized, while meeting reciprocal constraints. 

 

The existing methods for solving the problem of different 

UMVs’ trajectories, which are optimized while avoiding 

collisions among them may be divided into two categories: a 

centralized approach, where the configuration spaces of the 

individual robots are combined into one composite 

configuration space which is then searched for a path for the 

whole composite system. In contrast, the decoupled 

approach first computes separate paths for the individual 
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robots and then resolves possible conflicts of the generated 

paths. Most of the attempts to share components between 

solutions to several problems that are coupled through 

constraints are associated with the design of a product 

family. A product family is a group of related products that 

share common components and/or subsystems – yet satisfy a 

variety of market niches [16].  

A common trajectory optimization problem may be 

defined as follows:  

Find a trajectory P(x,t) in order to minimize )P(  subject 

to ( , ) 0g x t   and ( , ) 0h x t  . Where x is a vector of 

position coordinates and t is the time. ( )P may be the path 

length, path time, change of direction within the path etc.  

The current problem is defined as follows: 

 Find trajectories (a solution) ( , )P x t  where 

 1
1( , ) [ ( , ),......., ( , )]K T

KP x t P x t P x t  in order to:  

 ( ( )),Min P                  (1)

11
1( ) [ ( ( , ),.... ( ( , ),....., ( ( , )]

i Ki K T
i KP P x t P x t P x t      

subject to: ( ( , )) 0jg P x t   for 1 j J  and ( ( , )) 0eh P x t   

for1 e E  , where xi is the position coordinate of the i-th 

trajectory of x and t is the time. ( ( , )
ii

iP x t is the objective 

of the i-th trajectory's planning, which may differ, from one 

trajectory to the other. ( ( , ))jg P x t and ( ( , ))eh P x t are 

inequality and equality constraints, respectively. The 

dependence of the constraints functions (g and h) on several 

trajectories engender coupling between the trajectories.  

It is noted that the definition as given in (1) is not a 

definition of a multi-objective problem. If a MOP is at hand, 

the vector xi would be unanimous to all objectives and not 

distinct to each objective as is the case in the current 

problem. This is further highlighted by the different prime 

indices given to the path (i.e., i ). In this case, the problem 

is formalized as a constrained single objective problem, 

where the objective function is a utility of all of the different 

problems' objective functions. The problem is defined as 

follows:  

 ( ( )),Min P

1

( ) ( ( , )
K

i i

i i

i

P P x t


     (2) 

Subject to: ( ( , )) 0ig P x t   for 1 i K  , 

 ( ( , )) 0jr P x t   for 1 j J  , where gi is the i-th 

 trajectory specific constraints and rj is the j-th reciprocal 

constraint. i is the i-th trajectory weight, which reflects the 

designers view concerning the importance of the trajectory 

with respect to the other trajectories. This weight may also 

include a scaralaizing element. In the current paper, we 

utilize   just for scaralizing as we regard all problems to be 

important to the same extent. It is noted that the definition in 

(2) is a weighted sum approach. 

II. REVOLUTE PRISMATIC CHAIN (RPC) ALGORITHM 

Genetic Algorithms (GAs) are considered to be a part of 

Evolutionary Computation (EC) methods. They are used 

extensively for solving single objective problems and are 

also an appealing option when Multi Objective Optimization 

Problems (MOPs) are to be solved [4-6, 17].  

In this work, a new approach is suggested, which is 

termed the Revolute Prismatic Chain (RPC). The RPC 

algorithm combines gradually extracting (prismatic) and 

tilting (revolute) parameters using Genetic Algorithms' 

evolutionary parameters. The RPC is constructed from a 

predefined number of sections. A section represents the 

length of travel made by the UMV at each time step. Each 

section is anchored at the end of the prior section (the first 

section is anchored to the starting point). The angle at which 

each section is extended is coded as a parameter. Also coded 

is the length of each section. This means that the speed of 

travel is coded by this length (length per time is the speed of 

travel). The maximal length is the maximal speed that may 

be obtained by the UMV. Note that the speed at each section 

is the mean velocity at this section. Fig. 2 depicts a five 

section RPC. It is noted that the end of the RPC is not 

encored to the end point and is located wherever the last 

section ends.  

 
Fig. 2.  The RPC with 5 sections. The length of each section and its angle 

with respect to the previous section are coded with the evolutionary 

algorithm code. 

 

We utilized an elite based EA in order to search for the 

solutions to problem [7]. An individual within the 

population is constructed out of several chromosomes, each 

coding one trajectory out of the coupled problems' 

trajectories. Therefore, a decoded individual is a complete 

solution to the problem (whether successful or not).  

The coded parameters are decoded to intervals such that

NiallforRi
o

i
o ,......110;180180   . The 

number of the RPC sections, N, and the number of members 

in a set (number of RPC's) is K, are predefined. Also 

predefined are the population size n and the number of 

generations G. The influence of the constraints violations on 

the evolution has been introduced to the algorithm through a 

procedure detailed in the following code. The evolutionary 

algorithm is an elite based GA[7], described by the 

following pseudo code:  

 

The GA pseudo code 

a. Initialize a population tP with n individuals.  

Also, create a population Qt = Pt 

b. While t G  

c. Combine parent and offspring populations and 

create t t tR P Q . 



 

d. For each individual x in tR compute: (x), d(x), 

(x) as detailed in calculations I, II, III, 
respectively. 

e. Create Elite population Pt+1 of size n from Rt 

(procedure I ) 

f. Create offspring population *
1tQ  of size n from tR  

by Tournament selection (procedure II ) 

g. Perform Crossover to obtain **
1tQ   from *

1tQ  . 

h. Perform Mutation' to obtain 1tQ   from **
1tQ  . 

i. Set 1t t   and go to b. 

 
Calculation I: Φ(x) 

1. Find trajectories: 

2. 1
1( , ) [ ( , ),......., ( , )]K T

KP x t P x t P x t   

3. Find
11

1( ( , )) [ ( ( , ),.... ( ( , ),....., ( ( , )]
i Ki K T

i KP x t P x t P x t P x t    

 and compute 

1

( ) ( ( , )
K

i i

i i

i

x P x t


    

Calculation II: d(x) 

1. Find the distance from the i-th RPC end point, 

to the i-th end point as follows: 

2.  

1

1

( , ) | ( , ) 0

max ( , )

( )
( , ) | ( , ) 0

max ( , )

i i i i

end i final
i K

i i i i

end i
i K

g x t g x t

Then x P x t

d x
g x t g x t

Then x P x t

 

 



 

 





 
 




 

 

The distance is in fact the longest distance of an 

RPC end point to its target point. If an RPC bumps 

into an obstacle, than this bumping point, is 

regarded as the end of the RPC. 

 

Calculation III: δ(x) 

1. For all trajectories of x compute 

, ( , ) ( , ) 1,...., ;i l
i l i lP x t P x t for all i K i l    

Compute ,( ) ( )i lx    where  , is a 

problem related function. 
 

Note: In all examples 

 ( ( , )) ( , )i
i iP x t Lengthof thetrajectory P x t  , 

1 1,...,i for all i K   . In the first example where the 

reciprocal constraint is to keep the distance between 

trajectories smaller than dmin, ,( ) ( )i lx  , in all other 

examples, where the reciprocal constraint is to achieve a 

meeting point, ,
,

( ) min( )i l
i l

x 


 . 

 

III. EXAMPLES 

In this section, several examples are solved. The 

examples include problems with two and three coupled 

trajectory optimization problems. In all examples, 50% 

crossover with Gaussian distributed mutation with 

probability of 5% has been utilized. 

A. Example 1 

Here two similar cases are considered. In both of them, 

three UMVs’ trajectories are optimized in order to find the 

shortest path for each while avoiding obstacles. The 

reciprocal constraint is that each UMV has to meet all other 

UMVs once during the travel. The difference between the 

two cases of this example is that, in the first, there is just one 

obstacle, while in the second, there are three obstacles. The 

optimal solutions for the two cases are shown in Fig. 3a and 

3b, respectively. 

  

(a) (b) 
Fig. 3.  Three UMVs’ optimal trajectories with a constraint they must all rendezvous somewhere sometime as they travel. One obstacle (3a) and three 

obstacles (3b). 
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B. Example 2 

In this example, two UMVs move from different 

starting points to different end points while traveling the 

shortest path and avoiding a big obstacle (in Fig. 4, its 

boundaries are bold lines), yet are bound to meet once, 

possibly for the purpose of refueling. The place and time 

of the meeting is not specified. The minimal distance at 

the time of meeting is set to dmin<0.1. In terms of (1), the 

problem may be defined as follows: 
T

21 ]L,L[
 

1

( , ) ( , ) ( , ) :

( , ) ( , ) 0

i i
i i

i
i j

P x t P x t j J P x t

P x t O x t
     

(obstacle avoidance) 
* * *

* *
2

, ( , ), ( , ) ( , ) :

( , ) ( , ) 0

i j
i j

i j
i j

t P x t P x t P x t

P x t P x t
   

(meeting point at least at one 
*t ) 

C. Example 3 

The purpose of the second example is to show the 

applicability of the suggested algorithm to solve multi 

trajectory planning problems for which, apart from 

optimizing the trajectories, avoidance of collisions is 

important. Instead of a constraint to keep the distance 

between the UMVs, less than a predefined distance, here, 

the constraint is altered such that, the distance between 

the UMVs should not be less than the predefined 

distance. It is further noted that the UMVs are bound to 

travel in opposite directions due to the location of their 

related starting and end points. 20-section RPC coded 

solutions, where each section may vary between 0.0 and 

0.8, were run for 1000 generations 

 

 

 

The populations after 100 and 1000 (final) generations 

are depicted in Fig. 4a and 4b, respectively. It is observed 

that after 100 generations not all RPCs reach the end 

point, with a few of them bumping into the obstacle. At 

the end of the run (after 1000 generations), the solutions 

converge to a single solution, which is depicted in Fig. 

4b. Note that for the meeting to take place, one UMV (the 

one that started on the left) had to wait for the other to 

come around the obstacle and then continue to travel to 

its end point within the speed limit (determined by the 

boundaries set to the length of the RPC sections). This 

means that the other UMV had to travel fast at the 

beginning and then slow down after the rendezvous. 

Fig. 5 (a)-(b) depicts a three-UMV trajectory planning 

problem. Fig. 5a depicts four trajectory sections evolved 

by using the paper’s approach. The dashed lines show the 

minimal distance between the UMVs during their travel. 

The trajectories are almost straight lines and the distance 

is within the allowed limit. Fig. 5b depicts the same 

problem; this time the trajectories are being evolved by 

using RPCs with 20 sections. It is clear that non-violation 

of the constraint is more ensured, yet at the cost of 

computational time and optimality. 

Fig. 6 depicts the evolved trajectories of the five-UMV 

problem (RPC are with five sections each). 

IV. SUMMARY AND CONCLUSIONS 

In the paper, a formulation for a class of problems has 

been suggested. A problem belonging to this class 

involves the optimization of UMV trajectories that are 

subject to reciprocal constraints. The definition 

incorporates a wide range of problems, including cases 

where the UMVs do not share the same workspace. 

Reciprocal constraints between trajectories may be 

associated with demands such as the following:  

     

 
(a) (b) 

Fig. 4. An evolutionary search for optimal trajectories for two UMVs, with a demand for rendezvous. Fig 4a depicts the population after 

 100 generations and 4b at the end of the evolution (generation 1000). 

  



 

 
(a) (b) 

Fig. 5:  (a) Three UMVs’ trajectories with 3-section RPCs.( b) Three UMVs’ trajectories with 5-section RPCs. 

 

 

 
Fig. 6.  Five UMVs’ trajectories with 5 section RPCs 

 

 

 (a) At any time, keep the distance between the UMVs 

below a predefined distance; (b) At any time, keep the 

distance between the UMVs above a predefined distance 

(avoiding collisions); (c). Always allow line of sight 

contact between the UMVs; (d). Always occupy one 

UMV at each sub-workspace, etc.  

A robust approach has been suggested that can cope 

with solving all of these problems. It involves the 

representation of a path by a telescopic antenna. The 

length and orientation of the antenna’s sections are 

evolved by a genetic algorithm. 
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