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Abstract—This paper aims to verify numerical existence of
boundary controls that steer the de St. Venant system in finite
time, from a given unsteady subcritical state to another. The
method of characteristics is used in obtaining the numerical
solution. The problem is divided into two parts: first, an
unsteady subcritical flow is steered towards a steady one; then
such flow is steered towards another unsteady subcritical state.

Index Terms—global controllability; first order quasilinear
hyperbolic partial differential equation; de St. Venant equa-
tions.

I. INTRODUCTION

FLUID flow in a slightly inclined rectangular open
channel with friction is modeled by the de St. Venant

equations. If the open channel is defined lengthwise by
x ∈ [0, L], the average velocity of flow by v(x, t), depth
of flow by h(x, t), θ as the slope of the open channel, sf
for the coefficient of friction, and g for the gravitational
acceleration, then the de St. Venant equations can be written
in the following form:{

v∂xh+ h∂xv + ∂th = 0,
g∂xh+ v∂xv + ∂tv = g(θ − sf );

(1)

Equations in (1) are also known as continuity and mo-
mentum equations, respectively. The continuity equation is
established by equating the net inflow and the rate of change
of fluid in the control volume. On the other hand, the
momentum equation is derived by applying the second law
of motion on the fluid inside the control volume. The control
volume is a fixed volume in space wherein fluid may flow
in and out. It is taken as volume from infinitesimal length of
the channel dx over a small period of time dt.

The de St. Venant equations can be written in a variety of
form. It can be written in matrix form as

∂t

(
h
v

)
+

(
v h
g v

)
∂x

(
h
v

)
=

(
0

g(θ − sf )

)
. (2)
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The partial differential equations can be reduced into
ordinary differential equations known as the characteristic
form of the de St. Venant equations, written as follows:

d(v ± 2c)

dt
=
∂(v ± 2c)

∂x

dx

dt
+
∂(v ± 2c)

∂t
= g(θ − sf ), (3)

for dx
dt = v ± c, where c(t, x) = (gh(x, t))

1
2 is the wave

celerity.
They can also be written as a first order quasilinear

hyperbolic system of diagonal form

∂t

(
R+

R−

)
+A

(
R+, R−) ∂x(R+

R−

)
=

(
g(θ − sf )
g(θ − sf )

)
, (4)

where R+ = v+2c, R− = v−2c are the Riemann invariants
and A (R+, R−) is the diagonal matrix

A (R+, R−) =

(
3
4R

+ + 1
4R

− 0
0 1

4R
+ + 3

4R
−

)
=

(
v + c 0

0 v − c

)
.

Numerous studies concerning boundary controllability for
quasilinear hyperbolic system were established [1], [2], [9],
[6], [5], [7], [8]. Gugat and Leugering [4] were able to prove
that one can control globally the flow of fluid from one
steady subcritical state to another (see also [3]). Particularly,
[4] considered fluid flow through a frictionless horizontal
channel that is described by the quasilinear hyperbolic form
of the de St. Venant equations

∂t

(
R+

R−

)
+A

(
R+, R−) ∂x(R+

R−

)
= 0. (5)

Recently, Mendoza, Valdez, and Arceo [10] extended the
main result in [4]. They were able to show that the de St.
Venant system (5) can be steered from a given unsteady
subcritical state to another in finite time by applying non-
linear boundary controls in such a way that the solution is
continuously differentiable. Likewise, the derivatives of the
solution and boundary controls are also bounded.

In this paper, we consider the numerical implementation as
a verification for the existence of a global boundary control
for the de St. Venant systems (5) from a given unsteady
subcritical state to another in finite time.

II. RESULTS

In this section we state the following results proved in
[10] concerning the de St. Venant equations steered between
unsteady subcritical states. For the definitions and notations
please refer to [10]. We start by stating the main theorem as
follows:



Theorem 1. Consider the de St. Venant system (5) with
boundary conditions of the form R+(0, t) = g1(t) and
R−(L, t) = g2(t). Let a nonempty compact rectangular set
Ω = [a+, b+] × [a−, b−] ⊂ R2 be given such that for all
(d, e) ∈ Ω, we have 3

4d+ 1
4e > 0 and 1

4d+ 3
4e < 0, i.e., Ω

contains only subcritical states.
Given an ε > 0, let Ωε = [a++ ε

2 , b+−
ε
2 ]×[a−+ ε

2 , b−−
ε
2 ].

Then we can find boundary controls g1, g2 that steer the de
St. Venant system with boundary conditions R+(0, t) = g1(t)
and R−(L, t) = g2(t) in finite time T from any unsteady
initial state Φ ∈ C1([0, L],R2), Φ[0, L] ⊆ C1(Ωε) to an
unsteady state Ψ ∈ C1([0, L],Ω) in such a way that the
corresponding solution is continuously differentiable.

Moreover, this can be achieved in such a way that the
absolute values of the derivatives of the solution and of the
controls g1, g2 remain smaller than any given upper bound.

For the outline of proof of Theorem 1, two lemmas
are used. Lemma 1 is concerned with applying boundary
controls which steer the de St. Venant system from unsteady
subcritical initial state Φ which is continuously differentiable
Ωε-valued function on [0, L] to a constant terminal subcritical
state Φ1 ∈ Ω in finite time T1 provided the norm of the
difference of the initial and final states is bounded by α > 0.
Moreover, during this transition the corresponding solution
is continuously differentiable. Furthermore, the absolute val-
ues of the derivatives of the solution and the controls are
bounded. On the other hand, Lemma 2 is concerned with
applying boundary controls which steer the de St. Venant
system from a steady subcritical state Φ1 ∈ Ω to an unsteady
subcritical state Ψ which is continuously differentiable Ω-
valued function on [0, L] in finite time T2. Also, during this
transition the solution is continuously differentiable. Like-
wise, the absolute values of the derivatives of the solution
and the controls are bounded. Thus the theorem is proved by
combining the two lemmas.

III. NUMERICAL SOLUTION

In this section we utilize the method of characteristics
in determining the numerical solution of the de St. Venant
system steered from a given state to another (unsteady to
steady or vice versa) in finite time. Numerically, we consider
only the extended length of the open channel Le = L+ 2δ,
where L is the length of the channel and δ > 0. The extended
length of the open channel is subdivided into N ∆x intervals
for N ∈ N. Initially at time t = 0, for every point in the
extended length of the open channel, velocity, height and
celerity which are all continuously differentiable functions
are given initial values. Likewise, the following constants
are used, gravitational acceleration g = 9.81, slope of the
channel θ = 0 and coefficient of friction sf = 0.

The solution for a particular point P in the advanced time
t+∆t1 from a previous time t is numerically the intersection
of the forward characteristic d(v+2c)

dt for dx
dt = v + c and

backward characteristic d(v−2c)
dt for dx

dt = v − c emanating
from points Q and R at time t. The region bounded by the
forward and backward characteristics from points Q and R
through point P is referred to as the domain of dependence
of point P . When determining the value of the solution at a
particular point P , the information coming from the domain
of dependence of point P is sufficient to achieve stability

and accuracy of the numerical solution at point P . Thus
stability and accuracy of the numerical solution depend on
the values of ∆t and ∆x. The forward characteristic from
point Q to point P has slope dt

dx = 1
v+c and the backward

characteristic from point R to point P has slope dt
dx = 1

v−c .
To remain within the domain of dependence of point P ,
dx
dt > (v + c) must be satisfied. This stability criteria is
referred to as the Courant-Friedrichs-Lewy (CFL) condition.
Hence, to ensure stability of numerical calculation for every
point in the extended length of the channel for a particular
period of time, we have to choose the time step ∆t1 such that
∆t1 ≤ ∆t = ∆x

max(vi+ci)
, where vi is the initial velocity, ci is

the initial celerity at initial time t = 0 for i = 1, · · · , N + 1.
We now formulate an algorithm in steering the de St.

Venant system from a given state to another state in finite
time T by the following pseudocode below.

Step 1. Set the values of the following:
· time T ;
· length L;
· δ > 0;
· Le = L+ 2δ;
· N ∈ N;
· ∆x = Le

N ;
· x = [0 : N ] ∗∆x;
· g = 9.81;
· slope of the open channel θ;
· coefficient of friction sf ;
· initial states: velocity vi, height hi, celerity ci;
· ∆t = ∆x

max(vi+ci)
;

· T
∆t1
∈ N s.t. ∆t1 < ∆t (CFL condition);

· T = [0 : T
∆t1

= TN ] ∗∆t1.

Step 2. Define the initial condition on [−δ, L+ δ].
for n = 1, ..., N + 1
· vi(xn, 0);
· ci(xn, 0);
· hi(xn, 0).

Let
V = [vi(x1, 0) · · · vi(xN+1, 0)] ;
C = [ci(x1, 0) · · · ci(xN+1, 0)] ;
H = [hi(x1, 0) · · ·hi(xN+1, 0)] .

Step 3. For n = 1, ..., N + 1 determine v(xn, t+ 1)

and c(xn, t+ 1) from a previous time t.
for t = 1, ..., TN

for n = 1, ..., N
set the values of vm, cm as

vm(xn, t) = vi(xn,t)+vi(xn+1,t)
2 ;

cm(xn, t) = ci(xn,t)+ci(xn+1,t)
2 ;

for n = 2, ..., N
v(xn, t+ 1) = 1

2vm(xn−1, t) + 1
2vm(xn, t)

+cm(xn−1, t)− cm(xn, t)
+∆t ∗ g(θ − sf );

c(xn, t+ 1) = 1
4vm(xn−1, t)− 1

4vm(xn, t)
+ 1

2cm(xn−1, t) + 1
2cm(xn, t);

h(xn, t+ 1) = c2(xn,t+1)
g ;

for n = 1
v(x1, t+ 1) = vm(x1, t);
c(x1, t+ 1) = cm(x1, t);



h(x1, t+ 1) = c2(x1,t+1)
g ;

for n = N + 1
v(xN+1, t+ 1) = vm(xN , t);
c(xN+1, t+ 1) = cm(xN , t);
h(xN+1, t+ 1) = c2(xN+1,t+1)

g ;

V (x1 : xN+1, t+ 1) =
[
V ; v(x1 : xN+1, t+ 1)T

]
;

C(x1 : xN+1, t+ 1) =
[
C; c(x1 : xN+1, t+ 1)T

]
;

H(x1 : xN+1, t+ 1) =
[
H;h(x1 : xN+1, t+ 1)T

]
;

vi(x1 : xN+1, t) = v(x1 : xN+1, t+ 1);

ci(x1 : xN+1, t) = c(x1 : xN+1, t+ 1).

Step 4. Plot the graph of the height, velocity or celerity of
the open channel.

IV. NUMERICAL EXAMPLES

Executing our code in Scilab version 4.1.1, we establish
th following numerical examples.

We first numerically verify the existence of boundary
controls that steer the de St. Venant system from a given
unsteady subcritical state to a steady subcritical state. We
define an initial state Φ which is a continuously differentiable
function satisfying conditions of Theorem 1 in [10].

Example 1. We want the unsteady subcritical state Φ(x) =
(Φ1(x),Φ2(x)) ∈ Ωε, where Φ1(x) = v(x) + 2c(x) and
Φ2(x) = v(x)− 2c(x) steered to a constant subcritical state
(d2, e2) ∈ Ω. To do this, first let δ > 0 be given. To work
with the Cauchy problem the initial state Φ must be defined
in an infinite domain. Thus we define explicitly the function
Φ̂ = (Φ̂1(x), Φ̂2(x)) as follows:

Φ̂1(x) =


d2, x ∈ (−∞,−δ),
d2 + f1(x), x ∈ [−δ, 0),
Φ1(x), x ∈ [0, L],
d2 + f1(L+ δ − x), x ∈ (L,L+ δ],
d2, x ∈ (L+ δ,∞],

and

Φ̂2(x) =


e2, x ∈ (−∞,−δ),
e2 + f2(x), x ∈ [−δ, 0),
Φ2(x), x ∈ [0, L],
e2 + f2(L+ δ − x), x ∈ (L,L+ δ],
e2, x ∈ (L+ δ,∞],

where

fi(x) = αi(x)

(
2x3

δ3
− x4

δ4

)
for i ∈ {1, 2} ,

with

α1(x) = Φ1(x)− d2 and α2(x) = Φ2(x)− e2.

Initially for the height of the fluid we define a nonconstant
C1-function as

ĥi(x) =


0.5, x ∈ (−∞,−δ),
β1(x), x ∈ [−δ, 0),
β2(x), x ∈ [0, L],
β3(x), x ∈ (L,L+ δ],
0.5, x ∈ (L+ δ,∞],

where

β1(x) =

(√
0.2(9.81)+

3γ1(x)

δ3

(
5

(x−5)2

2 − (x−5)3

3

))2

9.81 ,
β2(x) = (3 + cos(2πx)),

β3(x) =

(√
0.2(9.81)+

3γ2(x)

δ3

(
5

(25−x)2
2 − (25−x)3

3

))2

9.81 ,

with

γ1(x) = 2
(√

9.81(3 + cos(2π(x− 5))−
√

9.81(0.2)
)
,

γ2(x) = 2
(√

9.81(3 + cos(2π(25− x))−
√

9.81(0.2)
)
,

and we define the initial velocity as

V̂i(x) = 0.9(1.2 + cos(πx)), for all x ∈ R .

Numerically, we only consider the strip [−δ, L + δ] ×
[0, T1], where L = 10, δ = 5, and T1 > 0. The interval
[0, L] corresponds to the space interval [10, 20], the interval
[−δ, 0] corresponds to [5, 10] and the interval [L,L + δ] to
[20, 25].

Figures 1, 2, 3 correspond to the initial height, initial
velocity, and initial celerity of the fluid, which are all
continuously differentiable functions, respectively. Note that
we satisfy the conditions of Theorem 1 in [10], i.e., we
consider only the subcritical state of flow.

Fig. 4 shows the numerical existence of nonlinear bound-
ary controls that steer the de St. Venant system from an
initial velocity and an initial height (rightmost) defined above
towards a constant height of 0.5 (leftmost) with a constant
velocity of 1.98 in finite time T1.

Second, we verify numerically the existence of boundary
controls that steer the de St. Venant system from a given
steady subcritical state to an unsteady subcritical state in
finite time T2.

Example 2. Now, consider the steady subcritical state
(d2, e2) ∈ Ω. To direct it towards an unsteady subcritical
state Ψ(x) = (Ψ1(x),Ψ2(x)) ∈ Ω, where Ψ1(x) =
v(x) + 2c(x), and Ψ2(x) = v(x) − 2c(x), we work with
the Cauchy problem, i.e., we must extend the initial state in
an infinite domain. Define explicitly the function Ψ̂(x) =(

Ψ̂1(x), Ψ̂2(x)
)

as follows:

Ψ̂1(x) =

 Ψ11(x), x ∈ (−∞, 0),
d2, x ∈ [0, L],
Ψ12(x), x ∈ (L,∞],

and

Ψ̂2(x) =

 Ψ21(x), x ∈ (−∞, 0),
e2, x ∈ [0, L],
Ψ22(x), x ∈ (L,∞),

where Ψij(x) are given for i, j ∈ 1, 2.
Initially for the height of the fluid we define a C1-function

ĥi(x) =

 0.5(2 + cos(πx)), x ∈ (−∞, 0),
0.5, x ∈ [0, L],
0.5(2 + cos(πx)), x ∈ (L,∞),

and we define the initial velocity

V̂i(x) = 1.96, for all x ∈ R.

Again, numerically, we only consider the strip [−δ, L +
δ]× [0, T2], where L = 10, δ = 15, and T2 > 0. The interval



[0, L] corresponds to the space interval [15, 25], the interval
[−δ, 0] corresponds to [0, 15] and the interval [L,L + δ] to
[25, 40].

Figures 5, 6, 7 correspond to the initial height, initial
velocity, initial celerity of the fluid, which are all continu-
ously differentiable functions, respectively. Note also that we
satisfy the conditions of Theorem 1 in [10], i.e., we consider
only the subcritical state of flow.

Fig. 8 shows the numerical existence of boundary controls
that steer the de St. Venant system from a constant height
of 0.5 (rightmost) with a constant velocity of 1.98 towards
a varying height (leftmost) in finite time T2.

Combining the two numerical examples above, we have
shown numerically the existence of boundary controls that
steer the de St. Venant system from a given unsteady
state Φ ∈ C1([0, L],Ωε) towards another unsteady state
Ψ ∈ ([0, L],Ω) in finite time T ≥ T1 + T2.

Fig. 1. Fluid initial unsteady height.

Fig. 2. Fluid initial unsteady velocity.

Fig. 3. Fluid initial celerity.

Fig. 4. Fluid height (Unsteady subcritical state to steady state).

Fig. 5. Fluid initial height.

Fig. 6. Fluid initial velocity.

Fig. 7. Fluid initial celerity.



Fig. 8. Fluid height (Steady state to unsteady subcritical state).
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