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Abstract— In this paper, perfect trajectory tracking of a 

non-holonomic Wheeled Mobile Robot (WMR) is developed. 

The Feedback Linearization (FL) methods may be used to 

make convergence of WMRs on desired position, and 

orientation trajectories. Due to the weak performances against 

exogenous signals, the FL controller is replaced by a Sliding 

Mode Controller (SMC). Using the SMC with a saturation 

term may not remove the high range chattering; therefore, a 

Mamdani-type Fuzzy Sliding Mode Controller (FSMC) is 

proposed to decrease the chattering effects. The superiority of 

the proposed pure and fuzzy SMCs to the recent FL method 

has been revealed through simulations. 

 
Index Terms—fuzzy, sliding mode controller, trajectory 

tracking, wheeled mobile robot 

 

I. INTRODUCTION 

heeled Mobile Robots (WMRs) play important tasks 

in shopping centers, hospitals and other industrial 

areas such as transportation, inspection, welding, 

painting, gluing, drawing and etc [1]. Due to increasing 

importance of WMRs in industry, they have been 

investigated by many authors in various applications. Most 

of the WMR controller systems in literature have been 

designed to a simple kind of mobile robots, whose center of 

mass is assumed coincide with the center of rotation. 

Therefore, most of the recent controllers may not be 

employed for industrial WMRs, which the robot’s center of 

mass is not placed on the center of rotation between two 

driving wheels. This paper is dealing with perfect trajectory 

tracking of mobile robots in which the center of mass 

doesn’t coincide with the center of rotation. So a more 

general kind of WMRs is considered to widen the 

applications [2]. 

Because of the nonlinear dynamics and non-holonomic 

constraints of the WMRs’ kinematics, the controller design 

is a difficult problem and there is not any routine 

methodology to solve this problem. Kinematic models of 

non-holonomic systems may be used as the base of path-

following feedback controllers. The models that include 

dynamic effects are required for other purposes, for 

instance, using torques as control inputs. 

In this paper a computed torque control is developed on 

the basis of the Feedback Linearization (FL) method. 
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However, this method is practical only when the dynamics 

of the robot is well known. In addition to the complexity of 

FL methods, the controller’s performance is highly limited 

due to persistent excitation condition, parameter 

uncertainties, external disturbances, measurement noises, 

and other inconsistencies affecting a real system. 

Furthermore, even if a nonlinear controller can be designed 

accurately based on the mathematical model, the controller 

may be too complicated to be implemented with software 

[2]. 

Robust sliding mode techniques have been considered 

recently to improve the performance of the nonlinear 

controllers [3], [4]. An ideal Sliding Mode Controller 

(SMC) using the PID sliding surface, provides system 

dynamics with an invariance property to uncertainties when 

the system dynamics is controlled. The SMC is robust with 

respect to uncertainties in the system and external 

disturbances [5]. However, this control methodology 

produces some drawbacks associated with a large control 

chattering. Most of these drawbacks have been tackled by 

many researchers through integration with different 

techniques in recent years [6]. One option to deal with high 

range of chattering has been introduced as using the 

saturation function as an alternative to the sign function in 

SMC. This can reduce the chattering limit but it cannot 

completely remove this phenomena.  

It is well known that the fuzzy set theory is arisen from 

the desire of linguistic description for complex systems and 

can be used to formulate and translate the human experience 

to an appropriately automatic control strategy [7]. Fuzzy 

logic, first proposed by Zadeh, has proven to be a strong tool 

for controlling nonlinear systems, [8], [9]. In this paper, 

using the knowledge and experiences of expert engineers, a 

Mamdani type Fuzzy SMC (FSMC) is proposed to make 

perfect tracking of position, orientation and velocity 

trajectories. Due to using triangular membership functions, a 

simple and robust controller against both uncertainties and 

exogenous disturbances is developed. Therefore, the 

chattering phenomenon has been decreased and the WMR 

path tracking performance has been improved significantly. 

Due to the simple structure of the fuzzy controller, it may be 

implemented in real WMR systems which perform various 

tasks in industry. 

The rest of the paper is organized as follows. Section II 

describes dynamical modeling of WMR. Section III presents 

FL and sliding mode controllers. In section IV, FSMC is 

proposed. The performances of developed controllers are 

evaluated by simulation in section V. Section VI is devoted 

to discuss simulation result and concluding remarks. 
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II. DYNAMICAL MODELING 

The kinematic model of the WMR is shown in Fig. 1. The 

generalized coordinates are: ,X Y  the Cartesian coordinates 

of the center of mass of the WMR;   the robot orientation 

with respect to the axis X ; and x, y  the relative coordinates 

along the body axes of the WMR. 

The distance between two driving wheels along the body 

x-axis is 2b. The considered distance between the centers of 

rotation and mass of the WMR, a  leads to enlargement of 

the application range of the proposed methods to industrial, 

service and entertainment robots.  

The simple model of the nonholonomic WMR shows that 

the rear wheels are fixed parallel to the body and allowed to 

roll or spin but not slip. The WMR possesses a single 

universal wheel which is not a driving one and it is not 

included in the kinematic model. Kinematic equations of the 

WMR with respect to the center of mass are given as [2]:
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where, v  and   are the linear forward velocity of the 

WMR and its angular velocity around the vertical axis, 

respectively. The dynamics of the WMR has been obtained 

in the form of: 

( ) ( , )T M q q V q q Cq D                                               (4) 

where, 2RT   represents the input torque vector to the 

driving wheels; the inertia matrix, M  and the vector of 

centrifugal and coriolis torque, V  are functions of the state 

vector [ ]tq X Y  in which the superscript t denotes the 

transpose of a vector/ matrix; C  and D  are respectively, 

the dynamic friction coefficient and unknown but bounded 

noise/disturbance vector. 

The elements of ( )M q  and ( , )V q q  are given as [1]:
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Fig 1. The schematics of WMR 

 

III. SLIDING MODE CONTROLLER 

Considering the dynamic model (4) not affected by 

noise/disturbance input D, the feedback Linearization 

control law is developed as: 

( ) ( , )T M q U V q q Cq                                                (11)

t[ , ]d d p dU X Y k e k e                                                (12)

( ) ( ) ( )de t q t q t                                                              (13) 

The subscript d denotes the desired values of  ,   which 

are the components of vector  . The convergence rate of 

tracking errors e  and e  to zero may be adjusted with 

respect to the control gains 
dk  and pk . It has been shown 

by [2] that the FL control systems are sensitive to the 

exogenous disturbance/noise inputs and the modeling 

uncertainties which are bounded and can be simply 

considered as: 

     (14) 

The SMC which is proposed to overcome the problems of 

the FL method is designed based on the following PID 

sliding surface, s(t). 

( ) ( ) ( ) ( )p i d

d
s t K e t K e t dt K e t

dt
                              (15) 

where pK , dK  and 
iK  are the positive proportional, 

integral and derivative gains, respectively. Therefore the 

SMC is proposed in the following well known form:

( ( ))eq rT T K sign s t                                                          (16) 

where, the equivalent control term is obtained using the 

nominal dynamics model of the WMR which is free of 

uncertainties. However the second term as a reaching 

control torque leads to an acceptable tracking performance 

of the SMC in the presence of probable modeling 

uncertainties and unknown exogenous inputs which both are 

considered bounded. Using the SMC according to the block 

diagram of Fig. 2. the convergence of WMR tracking error 

e(t) to zero is obtained through holding it on the stable 

sliding surface. In this way, the tracking error can be moved 

along the sliding surface to the origin. To guarantee this, the 

time derivative of the following positive function should be 

a negative value. 
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Fig 2. The block diagram of SMC 
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Tacking the time derivative of V(t) gives: 

t( ) ( ) ( ), ( ) 0V t s t s t s t 
                            

                     (18)
 

Replacing s  using (23) results in: 
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Using (15),
 
q is given as: 

 
1 1

1 1

( ) ( ) ( )

( ) [( ) ( ) ]

q M M T M M V V q

M M V V C C q D

 

 

      

    
              (20) 

M M  is the nonsingular inertial matrix under bounded 

uncertainties; therefore (20) is simplified as: 

1 1 1 1( ) ( ) ( )q M M T V V C C q D                    (21) 

where, the subscript 1 denotes the new version of 

corresponding matrices in (14).  
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The time derivative of (15) results in: 
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The equivalent control torque is obtained through 

converging solution of ( )s t  for the nominal model in which 

1D and all   of (24) are zero. 
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Replacing (25) in (23) leads to
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where, the norm operator gives the largest magnitude of the 

eigenvalues of a matrix. 
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The stability of the SMC (16) requires that 0Ts s  . 

Therefore the switching control term is obtained as: 
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The performance of the SMC (16) strictly depends on the 

reaching control gain   which should be designed with 

respect to the upper bound of the uncertainties. The high the 

upper bound of uncertainties the high switching gains 

should be considered. However, a large switching gain 

increases the chattering range while a small one cannot 

satisfy the stability conditions. The desire of reducing the 

chattering phenomena led to the idea for replacing the sign 

function with a saturation function which may not remove 

the chattering phenomena significantly. Therefore, a fuzzy 

sliding mode control signal is introduced to accelerate the 

reaching phase and to reduce the chattering while 

maintaining the sliding behavior. 

 

IV. FUZZY SLIDING MODE CONTROLLER 

Mamdani type fuzzy reaching control term is proposed to 

have the following form: 

( ) ( )r f fu t K u t                                                               (32) 

where    is the normalizing factor. The output fuzzy 

variable,    is continuously adjusted using an if-then rule 

base with respect to both s and s  ( s ). The configuration 

of FSMC is shown in Fig. 3. 

Using the expertise in design of sliding-mode controllers, 

a large switching gain will force the state trajectories to 

approach the sliding surface, 0s   rapidly; but at the same 

time, the chattering is excited. By increasing the tracking 

errors the value of s will increase; therefore, the switching 

gain should be correspondingly increased and vice versa. 

Furthermore, when the state trajectories deviate from the 

sliding surface, 0Ts s  , if the value of s is large, the 

switching gain should be increased to force the trajectories 

back, and vice versa. When the state trajectories are 

approaching the sliding surface, 0Ts s  ; therefore if the 

value of s is large the switching gain should be decreased in 

order to reduce chattering, and vice versa. 

By applying the normalized input variables      and      , 
the  FSMC law can be developed as: 

( ) ( ) ( )t eq ru t u t u t                                                          (33)  

The membership functions corresponding to the normalized 

input and output fuzzy sets of  ,    and    are presented in 

Fig. 4. In this Fig. P, N and Z stand for positive, 



 

 
Fig 3. The block diagram of FSMC  

negative and zero, while S, M, and B denote small, medium, 

and big, respectively. 

Corresponding to the seven membership functions for each 

input variable, 49 if-then rules of Table I are obtained using 

the expert engineering knowledge and experiences in the field 

of WMRs. 

V. SIMULATION RESULTS 

The effects of the proposed methods to improve the 

convergence of WMR to reference position and orientation 

trajectories are evaluated using software simulations. The 

following sample trajectories are used to produce the 

reference position and heading angle of the WMR in 

Cartesian coordinates.  
4 3 6 4 8 53 10 7 10 5 10

cos (3.9596 ) sin (50 )

sin (3.9596 ) cos (50 )

t t t
aR

X R
b

aR
Y R

b



   

   

       

 

 

                                     (34) 

Figs. 5 to 9 show the performance of the designed 

controllers in the absence of uncertainties and external 

disturbances. As shown in Fig. 5, using all of the controllers, 

the WMR has tracked the reference circular trajectory in a 

significant accuracy. It can be seen from Fig. 6 trough 8 that 

the FL controller shows a better tracking performance for 

both position and orientation trajectories compared to those 

of the sliding mode controllers. However, as shown in Fig. 8, 

the magnitude of the input torques to the driving wheels is 

significantly larger when the FL method has been used. Due 

to the natural conservativeness of the fuzzy systems, the 

FSMC has resulted in small tracking errors in comparison 

with that of the SMC. However, the importance of both 

fuzzy and pure SMCs is understood during affecting the 

WMR by modeling uncertainties and exogenous unknown 

but bounded inputs. The simulated performances of the FL 

and sliding mode controllers to trajectory tracking of the 

WMR under modeling uncertainties and Gaussian white 

noises have been shown in Figs. 10 through 14. According to 

Fig. 10, the FL controller is highly sensitive to measurement 

noises. However, the SMCs show a relatively high 

robustness against both uncertainties and measurement 

noises. From Fig. 11 through 13, a considerable small 

tracking error along both position and orientation trajectories 

are resulted using SMC and FSMC methods compared with 

the FL method. Furthermore, the FSMC has shown a more 

reliable trajectory tracking performance compared to the 

SMC. As the other superiority with respect to FL method, the 

SMC request small input torques of driving wheel. For 

instance, as it is shown in Fig. 14, the input torque to the 

right driving wheel of the WMR is considerably large due to 

using FL controller. However, the requested torques by the 

SMCs are bounded to a small upper level. 

TABLE I.  

FUZZY LOGIC CONTROLLER RULES 

s
s

 NB NM NS Z PS PM PB 

NB PB PB PM PM PS PS Z 

NM PB PM PM PS PS Z NS 

NS PM PM PS PS Z NS NS 

Z PM PS PS Z NS NS NM 

PS PS PS Z NS NS NM NM 

PM PS Z NS NS NM NM NB 

PL Z NS NS NM NM NB NB 

 

 
Figure 4. Membership function of input/output variables s, s and 

fu
 

 

VI. CONCLUSION  

In this paper, the SMCs have been designed to perform 

perfect trajectory tracking of a general kind of WMRs in 

which the center of mass is out of the center of rotation. The 

required input torques by the FL controller which uses a 

cartesian dynamic model of the WMR results in a superior 

tracking performance of position and velocity trajectories. 

However, during affecting the exogenous inputs and 

modeling uncertainties, the FL controller shows a weak 

tracking performance associated with high frequency errors. 

By use of a SMC associated with a PID sliding surface, the 

tracking performance of the WMR has been improved 

compared with that obtained using the FL controller. A 

Mamdani type FSMC has been proposed to further 

improving the tracking performance of WMR against the 

uncertainties and measurement noises. Unlike a pure fuzzy 

logic controller which is encountered to rule expanding 

problem, the FSMC uses 49 if-then rules in the rule base. 

Therefore it is more suitable for implementation in real 

WMR systems. 
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Fig 5. The tracked paths 

 
Fig 6. Tracking errors of X ( )dX X

 
 

 
 

 

 
 

 Fig 7. Tracking errors of Y ( )dY Y  

 

 
Fig 8. Input torque to the right wheel ( )RightT

 
 

 
Fig 9. Orientation error ( )d 

 
 

  

Fig 10. The tracked paths using: (a) FL; (b) dotted line for SMC and solid line for FSMC 



 

 

 
 

Fig 11. Tracking errors of X ( )dX X ; (a) FL; (b) dotted line for SMC and solid line for FSMC  

 

 
 

Fig 12. Tracking errors of Y ( )dY Y ; (a) FL; (b) dotted line for SMC and solid line for FSMC  

 

 
 

Fig 13. Orientation error ( )d  ; (a) FL; (b) dotted line for SMC and solid line for FSMC  

 

 
 

Fig 14. Input torque to the right wheel; (a) FL; (b) dotted line for SMC and solid line for FSMC 

 




