

Abstract—The iterative process of data mining comprises of

three major steps: pre-data mining, mining, and post-data

mining. Pre-data mining is the preparation of data to be in a

suitable format and contain a minimal but sufficient subset of

relevant features. The mining step concerns the application of

appropriate learning method to the well prepared data. Post-

data mining step evaluates and employs the learning results.

This research studies the post-data mining processing. Most

data mining systems finish their processing at the knowledge

presentation of the mining step. Our work, on the contrary,

extends further the post-data mining processing to the level of

knowledge deployment. This paper illustrates the knowledge

deployment step in which its input is the induced knowledge, in

the formalism of traditional classification rules. These rules are

then evaluated and filtered on the basis of coverage

measurement. High coverage rules are transformed into

decision rules to be used by the inference engine of the expert

system. The coupling of induced decision rules into the expert

system shell is designed to be an automatic process. The

accuracy of recommendation given by the expert system is

evaluated and compared to other classification systems and the

real diagnosis given by medical doctors. The experimental

results confirm the high accuracy of our expert system and the

induced knowledge base.

Index Terms—Decision rules, Automatic knowledge base

creation, Expert system inference engine, Logic-based system

I. INTRODUCTION

ATA mining is a novel intelligent technology of the

late decades aiming at automatic discovery of novel

and useful knowledge from large repositories of data. Most

data mining systems fulfill this main purpose by discovering

a lot of potential knowledge. Unfortunately, the discovered

knowledge is also abundant, especially in a specific task of

association rule mining [2], [4], [6], [13]. Actionable and

useful knowledge is hardly to pinpoint and extract from a

large stack of redundant, irrelevant, and sometimes obvious

and uninteresting information.

Manuscript received December 13, 2010; revised January 20, 2011. This

work was supported in part by grants from the National Research Council

of Thailand (NRCT) and the Thailand Research Fund (TRF). The Data

Engineering and Knowledge Discovery (DEKD) Research Unit has been

continually supported by Suranaree University of Technology.

Nittaya Kerdprasop is the co-founder and principal researcher of the

DEKD research unit. She is also an associate professor at the school of

computer engineering, Suranaree University of Technology, 111 University

Avenue, Nakhon Ratchasima 30000, Thailand (phone: +66-(0)44-224432;

fax: +66-(0)44-224602; e-mail: nittaya@sut.ac.th).

Kittisak Kerdprasop is the director of DEKD research unit and the

associated professor of the school of computer engineering, Suranaree

University of Technology, 111 University Avenue, Nakhon Ratchasima

30000, Thailand (e-mail: kittisakThailand@gmail.com).

Interestingness is one important research issue since the

beginning of the data mining as a new discipline [6], [10],

[12], [14]. Piatetsky-Shapiro and Matheus [10] developed

the KEFIR system to be used with the health insurance

system. Interestingness of this system focuses on the

deviation of the induced knowledge from its norm.

Silberschatz and Tuzhilin [12] proposed a different criterion

of evaluating interestingness. They considered the

probabilistic belief as a main measurement. Other metrics

that can be employed as interestingness measurement of the

induced knowledge include coverage, confidence, strength,

significance, simplicity, unexpectedness, and actionability

[7], [10], [11]. Among these metrics, unexpectedness and

actionability are the most difficult criteria to be evaluated

systematically due to their subjective nature.

Most researchers deal with the interestingness problem

during the mining step. One practical technique is to use the

pruning method [3], [11] to reduce the number of induced

knowledge. Another technique is the application of prior or

domain knowledge during the mining step [5], [8], [9] in

order to select only useful and relevant knowledge.

Although the techniques of pruning and applying domain

knowledge can reduce the number of discovered

knowledge, their main purpose is for the performance

improvement of learning method rather than to evaluate and

filter the discovered knowledge. The recent work of

Adomavicius and Tuzhilin [1] proposed the validation

technique after the mining step to select relevant knowledge.

Our work is also in the category of filtering knowledge

after the mining step. Therefore, the proposed techniques

can be considered as a post-data mining processing. We

employ the coverage criterion as a basis for transforming the

induced knowledge into the probably useful information for

the recommendation system. We also extend the data

mining process towards a tight coupling of the knowledge

base system. The practicality aspect of our system is

demonstrated through the expert system that can provide

some useful recommendation to the general users.

II. KNOWLEDGE EVALUATION AND INTEGRATION METHOD

The proposed post-data mining processing technique is a

final part of our SUT-Miner research project. The project

aims at designing and developing a complete data mining

system that can convey the induced knowledge to the

systems that employ such knowledge. The framework of the

SUT-Miner system is given in Fig.1. The system is

composed of three main parts: Pre-DM, DM, and Post-DM.

Pre-DM is the first part responsible for data preparation,

whereas DM is a subsequent step of mining for knowledge.

Autonomous Integration of Induced Knowledge

into the Expert System Inference Engine

Nittaya Kerdprasop, Member, IAENG, and Kittisak Kerdprasop

D

Fig. 1 Framework of the SUT-Miner system

Evaluating and selecting relevant and useful knowledge is

the last part of the SUT-Miner system and also the main

focus of this paper. We design the Post-DM part to consist

of two main modules: knowledge evaluation, and

knowledge integration and manipulation. The relationships

of these two modules and other interfaces are given in Fig.

2.

The design of knowledge evaluation module (Fig. 3) is

based on the decision-tree induction method [11] because

the structure of induced tree is appropriate for generating

reasoning and explanation in the expert system shell. The

induced knowledge is in a formalism of decision rules

incorporated with probabilistic values. This value is

intended to be used as the degree of potential applicability

of each decision rule. The probabilistic values are indeed the

coverage values of decision rules.

Fig.2 Conceptual design of post-DM modules

Algorithm 1 Knowledge evaluation

 Input: a data model as decision tree with node and edge

structures

 Output: a set of probabilistic decision rules ranking in

descending order

(1) Display GUI to get a dataset name and a minimum

probability value

(2) Traverse tree from a root node to each leaf node

 (2.1) Collect edge information and count number of

data instances

 (2.2) Compute probability as a proportion

 (number of instances at leaf node) / (total

data instances in a data set)

 (2.3) Assert a rule containing a triplet

 <attribute-value pair, class, probability value>

into temporary KB

(3) Sort rules in the KB in descending order according to

the rules‟ probability

(4) Remove rules that have probability less than the

specified threshold

(5) Assert selected rules into the KB and return KB as an

output

Fig.3 Knowledge evaluation algorithm

The output of algorithm in Fig.3 is the induced

knowledge represented as decision rules. These rules are

then transformed by algorithm 2 (Fig. 4) to be expert rules

and consulting rules of the expert system. The expert rules

are to be used by the inference engine for giving

recommendation to general users. Consulting rules are for

reasoning and giving explanation when requested by the

users. Both expert and consulting rules are stored in a

knowledge base file.

We implement the integrated data mining engine and the

expert system shell with the logic-based system, therefore

the expert and consulting rules are encoded as Horn clauses.

Algorithm 2 Knowledge integration and manipulation

 Input: a set of probabilistic decision rules stored in KB

 Output: a set of rules to be used by an expert system shell

(1) For each probabilistic decision rule

 (1.1) Scan information in the If-part and the Then-part

 (1.2) Generate head of expert rule from the Then-part

 type(Then-part, probability value) :-

 (1.3) Generate body of expert rule from the If-part

 :- atrribute_name1(value), …,

attribute_nameN(value).

 (1.4) Write expert rule in a file, knb-file

(2) For each data attribute

 (2.1) Generate head of consulting rule

 attribute_name(X) :-

 (2.2) Generate body of consulting rule

 :- menuask(attribute_name, X, [list of

attribute values]).

(3) Assert consulting rules into the knb-file and return KB

as an output

Fig.4 Knowledge integration and manipulation algorithm

III. IMPLEMENTATION

A. Knowledge Induction

The first part of our implementation is the knowledge

induction, which is the decision tree learning. The

implementation is based on the logic-based system using the

SWI Prolog (www.swi-prolog.org). The advantage of such

logic-based system is that the input data, program coding,

and output are all taking the same form, that is, Horn

clauses.

For the purpose of demonstration, we use a small dataset

named lens data from the UCI repository (available at

http://archive.ics.uci.edu/ml/). The dataset contains 24

instances of patients under examination for proprietary of

wearing contact lenses. The dataset in a format of Horn

clauses are shown in Fig.5.

%% Data lens

% attributes: names and their possible values

attribute(age, [young, pre_presbyopic, presbyopic]).

attribute(spectacle, [myope, hypermetrope]).

attribute(astigmatism, [no, yes]).

attribute(tear, [reduced, normal]).

attribute(class, [yes, no]).

% data

instance(1, class=no, [age=young, spectacle=myope,

 astigmatism=no, tear=reduced]).

instance(2, class=yes, [age=young, spectacle=myope,

 astigmatism=no, tear=normal]).

instance(3, class=no, [age=young, spectacle=myope,

 astigmatism=yes, tear=reduced]).

instance(4, class=yes, [age=young, spectacle=myope,

 astigmatism=no, tear=normal]).

Fig. 5 Examples of data instances represented as Horn clauses

The steps in our main module of knowledge induction are

given in Fig.6. The module „mainDT‟ is to be called with

the specified parameter „Min‟. This parameter is the

probability threshold that programmers or users have to

identify. It is the metric for pruning the final results of

knowledge induction. Any decision rules with probability

values less than this threshold will not be included in the

knowledge base. The running result of this module

displayed as a tree structure is given in Fig. 7, whereas the

final result displayed as decision rules is in Fig. 8.

mainDT(Min) :-

 init(AllAttr, EdgeList), % initialize node and edge info

 getnode(N), % get node ID

 create_edge(N, AllAttr, EdgeList), % create tree

 addAllKnowledge, % generate decision rules

 selectRule(Min, Res), % select top rules

 tell('1.knb'), % write selected decision rules to file

 writeHeadF, % transform to expert rules (head)

 maplist(createRule1, Res),

 nl, writeTailF, % generate body of expert rules

 told, % write expert rules to file and close it

 writeln(endProcess).

Fig.6 Main module in a knowledge induction program

Fig.7 Discovered knowledge displayed as tree structures

0.5 >> [tear=reduced] >> no,
0.166667 >> [tear=normal, age=young] >> yes,
0.0833333 >> [tear=normal, age=pre_presbyopic,

 spectacle=myope] >> yes

Fig.8 Running result of lens dataset with the probability threshold

of 0.001

B. Knowledge Integration to the Expert System Engine

The second part of our implementation is the automatic

generation of knowledge base and the inference engine of

the expert system. Structure of our simple expert system is

graphically shown in Fig. 9. The module to be used by the

users is the „menuask‟ module. Inference engine performs

load and solve actions for loading the knowledge base into

the working memory and solving the questions ask by the

users, respectively.

Fig.9 Structure of the expert system shell

The working storage performs action related to reasoning

and giving explanation to the users. The knowledge base

contains two kinds of rules: the expert rules and consulting

rules. These rules are automatically transformed from the

induced knowledge. The implementation of modules to

generate expert rules is given in Fig. 10, whereas the

modules for generating consulting rules are in Fig. 11.

writeHeadF :-

 format('% 1.knb ~n% for expert shell. --- written

 by Postprocess'),

 format('~n% top_goal where the inference

starts.~n'),

 format('~ntop_goal(X,V) :- type(X,V).~n').

writeTailF:-

 findall(_,(attribute(S,L),

format('~n~w(X):-menuask(~w,X,~w).

%generated menu',[S,S,L])) ,_),

 format('~n~n%end of automatic post process').

Fig.10 Modules for transforming induced knowledge into the

expert rules

transform1([X=V], [Res]) :-

 atomic_list_concat([X,'(',V,')'], Res1),

 term_to_atom(Res, Res1),!.

transform1([X=V|T], [Res|T1]) :-

 atomic_list_concat([X,'(',V,')'], Res1),

 term_to_atom(Res, Res1),

 transform1(T, T1).

createRule1(I) :- I=Z>>X>>Y,

 transform1(X, BodyL),

 format('~ntype(~w,~w):-', [Y,Z]),

 myformat(BodyL) ,

 write(' % generated rule'),!.

myformat([X]) :- write(X), write('.'),!.

myformat([H|T]) :- write(H), write(','), myformat(T).

Fig.11 Modules to transform decision rules to be consult rules

From the discovered knowledge:

0.5 >> [tear=reduced] >> no,
0.166667 >> [tear=normal, age=young] >> yes,
0.0833333 >> [tear=normal, age=pre_presbyopic,

 spectacle=myope] >> yes

The first rule states that if the patients have reduced tear

production rate, then they should not wear the contact

lenses. This rule has the probability of 0.5 to be applicable

to the future cases. The second rule advises the patients at

young age with normal tear production to be suitable for

wearing contact lenses with probabilistic applicability of

0.166667 to the future cases. The last rule also recommends

contact lens to the patients at the pre-presbyopic age with

normal tear production and myope prescription. The

probabilistic applicability of the last rule is 0.0833333. The

transformation results of these rules into the expert and

consulting rules of the knowledge base are given in Fig.12.

Fig.12 Knowledge base of the expert system

The module or predicate „top_goal‟ in Fig.12 is the top

module of the knowledge base that the inference engine will

use in the process of searching for an appropriate

recommendation. The predicate „type‟ is an expert rule. The

predicates „age‟, „spectacle‟, „astigmatism‟, „tear‟, and

„class‟ are consulting rules.

To demonstrate the use of our expert system, we give an

example in Fig.13. Once the knowledge had been induced

and the knowledge base of the system was generated, the

expert system can be invoked through the interface of the

SWI Prolog by calling the „expertshell‟ command. The

prompt sign of the system is now changed to „expert-shell>‟

indicating that the system is ready for solving the users‟

questions.

The first step of using the expert shell is to load the

knowledge base into working memory. This is simply done

through the command „load‟. The knowledge base file,

which is 1.knb in this example, is then compiled. To start

asking question, the users have to invoke the system with

the „solve‟ command.

The expert system then processes the recommendation

steps through a series of interactive statements. In this

example, the system asks for the patient‟s tear production

rate and age. Then it recommends that this patient can wear

contact lenses with probability value of 0.166667. If the

users want to see the explanation, they can issue the

command „why‟.

Fig.13 Expert shell of the automatic created system

IV. KNOWLEDGE BASE EVALUATION

In this paper, we devise an automatic method to generate

knowledge base of the expert system with the purpose that

the discovered knowledge can be easily accessible and

interpreted by novice users. Since the knowledge base is

systematically created, rather than encoded by the domain

experts, we have to test the accuracy of the recommendation

results against the advice given by human experts.

We had tested our system with the two different datasets:

the post operative patients and the breast cancer recurrences.

Both datasets are available through the UCI repository

(http://archives.ics.uci.edu/ml/). For the post operative

patient dataset, we use 70 instances as a training data for the

knowledge induction module. The remaining 16 instances

are to be used as a test set. The learning objective of post

operative dataset is to give recommendation to medical

professionals based on the patient‟s conditions after

operation whether the patient should be sent to general ward

for further observation or the patient is in good condition

and be prepared to go home. The breast cancer recurrence

training dataset contains 175 instances, whereas the test

dataset contains 16 instances. The learning objective is to

predict if the cured breast cancer could recur.

The accuracy of recommendation given by our expert

system is also compared with the classification results

obtained from three different learning methods, that is, ID3

(decision-tree induction algorithm), PRISM (rule induction

algorithm), and neural network. Both recommendation and

classification results are evaluated against the real diagnosis

given by the medical doctors. The results of accuracy

comparison on post operative patients and breast cancer

recurrences datasets are given in Figs. 14 and 15,

respectively. The detailed results on test datasets are also

provided in Tables 1 and 2.

34

36

38

40

42

44

Expert

system

ID3 PRISM Neural

network

Error rate(%)

Fig. 14 Recommendation results on post-operative patients

0

20

40

60

80

Expert

system

ID3 PRISM Neural

netw ork

Error rate(%)

Fig. 15 Recommendation results on breast cancer recurrences

TABLE I

RECOMMENDATION AND CLASSIFICATION RESULTS FOR POST OPERATIVE

PATIENTS

Patient Doctor‟s

diagnosis

Recommendation & Classification Results

Expert

System

ID3 PRISM Neural

network

1 Ward Ward Ward Ward Ward

2 Ward Ward Ward Ward Ward

3 Ward Ward Un-

classified

Home Ward

4 Ward Home Home Home Home

5 Ward Ward Ward Un-

classified

Ward

6 Home Ward Ward Home Home

7 Ward Home Home Home Home

8 Ward Ward Ward Ward Ward

9 Home No

answer

Ward Ward Ward

10 Ward Home Home Home Home

11 Ward Ward Ward Un-

classified

Ward

12 Ward Ward Ward Ward Ward

13 Home Ward Ward Ward Ward

14 Ward Ward Ward Ward Ward

15 Ward Ward Ward Ward Ward

16 Home Ward Ward Ward Ward

TABLE II

RECOMMENDATION AND PREDICTION RESULTS OF BREAST CANCER

RECURRENCES

Patient Doctor‟s

diagnosis

Recommendation & Classification Results

Expert

System

ID3 PRISM Neural

network

1 No No Yes No Yes

2 No Yes Yes Yes Yes

3 Yes Yes No No No

4 Yes No

answer

No No Yes

5 No Yes Un-

classified

No No

6 No No

answer

Yes No No

7 Yes No No No No

8 No No Yes Yes No

9 Yes No No Yes No

10 No Yes No No Yes

11 No No No No No

12 No Yes Yes Yes Yes

13 Yes Yes No No Yes

14 No No

answer

No No No

15 No No Un-

classified

No Yes

16 Yes Yes Yes Yes Yes

It can be seen from the results that the expert system can

produce a quite high accurate recommendation. Its error rate

from both datasets is around 37.5%. The accuracy is even

lower than the neural network method in the breast cancer

recurrences dataset. This low error is due to the probabilistic

method that we apply to the knowledge induction step. Only

knowledge with high probabilistic value is selected and

subsequently transformed to be expert and consult rules in

the knowledge base.

It can be noticed from the detailed classification and

recommendation results that the false negative rate of our

expert system is much lower than the other classification

system. For these two specific domain datasets, false

negative error is more critical than the false positive error.

Therefore, our inductive expert system provides a safer

recommendation to the medical practitioners.

The models obtained from the decision tree induction

(ID3, as well as our expert system) and the rule induction

(PRISM) methods are incomplete. Thus, for some cases the

models could not find appropriate recommendation or

prediction. This situation does not happen to the model

obtained from the neural network learning method. Model

completeness is therefore an important issue for the

improvement of our expert system.

V. CONCLUSION

Data mining is an intelligent data analysis method

currently adopted by many enterprises and organizations.

Most data mining systems, however, perform the mining

steps up to the final stage of inducing and generating all the

discovered knowledge. The subsequent steps of knowledge

selection and turning the discovered knowledge into

profitable actions are the responsibility of users that

normally are the data mining experts. That means general

and novice users should use these systems with difficulty.

We thus propose the method to make data mining system

be friendly to general users by integrating the system into

the inference engine of the expert system. The discovered

knowledge is then presented through the recommendation of

the system. The amount of knowledge has been customized

to be minimal via the probabilistic threshold during the

knowledge induction phase. Our expert system integrated

with the induced knowledge module is thus the approximate

system. From the evaluation results, the accuracy of

recommendation given by the system is acceptable.

Therefore, the proposed method is promising for the

implementation as a large system to be applicable to the real

world data.

We thus plan to extend our current research to the

direction of implementing a real system, rather than the

prototype as proposed in this paper. The user interface is to

be adjusted to suit general users. The system is also to be

evaluated by the human experts. The expert rules obtained

from the induced knowledge are also to be modified to deal

with exceptional cases.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin, “Expert-driven validation of rule-

based user models in personalization applications,” Journal of Data

Mining and Knowledge Discovery, vol.5, no.1/2, pp.33-58, 2001.

[2] R.J. Bayardo, R. Agrawal, and D. Gunopulos, “Constraint-based rule

mining in large, dense databases,” in Proc. 15th Int. Conf. on Data

Engineering, March 1999.

[3] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Clasification and

Regression Tree. Belmont: Wadsworth, 1984.

[4] S. Brin, R. Motwani, J.D. Ullman, and S. Tsur, “Dynamic intemset

counting and implication rules for market basket data,” in Proc. ACM

SIGMOD Conf., 1997.

[5] P. Clark and S. Motwani, “Using qualitative models to guide

induction learning,” in Proc. Int. Conf. Machine Learning, 1993.

[6] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A.I.

Verkamo, “Finding interesting rules from large sets of discovered

association rules,” in Proc. 3rd Int. Conf. Information and Knowledge

Management, 1994.

[7] J. Major and J. Mangano, “Selecting among rules induced from a

hurricane database,” in Proc. AAAI Workshop on Knowledge

Discovery in Databases, 1993.

[8] J. Ortega and D. Fisher, “Flexibly exploiting prior knowledge in

empirical learning,”

[9] M. Pazzani and D. Kibler, “The utility of knowledge in inductive

learning,” Machine Learning, vol.9, 1992.

[10] G. Piatetsky-Shapiro and C.J. Matheus, “The interestingness of

deviations,” in Proc. AAAI Workshop on Knowledge Discovery in

Databases, 1994.

[11] J.R. Quinlan, C4.5: Program for Machine Learning. Morgan

Kaufmann, 1992.

[12] A. Silberschatz and A. Tuzhilin, “What makes pattern interesting in

knowledge discovery systems,” IEEE Transactions on Knowledge

and Data Engineering, vol.8, no.6, December 1996.

[13] E. Suzuki, “Autonomous discovery of reliable exception rules,” in

Proc. 3rd Int. Conf. KDD, 1997.

[14] K. Wang, S.H.W. Tay, and B. Liu, “Interestingness-based interval

merger for numeric association rules,” in Proc. 4th Int. Conf. KDD,

1998.

