
 

 

Abstract—The iterative process of data mining comprises of 

three major steps: pre-data mining, mining, and post-data 

mining. Pre-data mining is the preparation of data to be in a 

suitable format and contain a minimal but sufficient subset of 

relevant features. The mining step concerns the application of 

appropriate learning method to the well prepared data. Post-

data mining step evaluates and employs the learning results.  

This research studies the post-data mining processing. Most 

data mining systems finish their processing at the knowledge 

presentation of the mining step. Our work, on the contrary, 

extends further the post-data mining processing to the level of 

knowledge deployment. This paper illustrates the knowledge 

deployment step in which its input is the induced knowledge, in 

the formalism of traditional classification rules. These rules are 

then evaluated and filtered on the basis of coverage 

measurement. High coverage rules are transformed into 

decision rules to be used by the inference engine of the expert 

system. The coupling of induced decision rules into the expert 

system shell is designed to be an automatic process. The 

accuracy of recommendation given by the expert system is 

evaluated and compared to other classification systems and the 

real diagnosis given by medical doctors. The experimental 

results confirm the high accuracy of our expert system and the 

induced knowledge base.  

 
Index Terms—Decision rules, Automatic knowledge base 

creation, Expert system inference engine, Logic-based system 

 

I. INTRODUCTION 

ATA mining is a novel intelligent technology of the 

late decades aiming at automatic discovery of novel 

and useful knowledge from large repositories of data. Most 

data mining systems fulfill this main purpose by discovering 

a lot of potential knowledge. Unfortunately, the discovered 

knowledge is also abundant, especially in a specific task of 

association rule mining [2], [4], [6], [13]. Actionable and 

useful knowledge is hardly to pinpoint and extract from a 

large stack of redundant, irrelevant, and sometimes obvious 

and uninteresting information.  
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Interestingness is one important research issue since the 

beginning of the data mining as a new discipline [6], [10], 

[12], [14]. Piatetsky-Shapiro and Matheus [10] developed 

the KEFIR system to be used with the health insurance 

system. Interestingness of this system focuses on the 

deviation of the induced knowledge from its norm. 

Silberschatz and Tuzhilin [12] proposed a different criterion 

of evaluating interestingness. They considered the 

probabilistic belief as a main measurement. Other metrics 

that can be employed as interestingness measurement of the 

induced knowledge include coverage, confidence, strength, 

significance, simplicity, unexpectedness, and actionability 

[7], [10], [11]. Among these metrics, unexpectedness and 

actionability are the most difficult criteria to be evaluated 

systematically due to their subjective nature. 

Most researchers deal with the interestingness problem 

during the mining step. One practical technique is to use the 

pruning method [3], [11] to reduce the number of induced 

knowledge. Another technique is the application of prior or 

domain knowledge during the mining step [5], [8], [9] in 

order to select only useful and relevant knowledge. 

Although the techniques of pruning and applying domain 

knowledge can reduce the number of discovered 

knowledge, their main purpose is for the performance 

improvement of learning method rather than to evaluate and 

filter the discovered knowledge. The recent work of 

Adomavicius and Tuzhilin [1] proposed the validation 

technique after the mining step to select relevant knowledge. 

Our work is also in the category of filtering knowledge 

after the mining step. Therefore, the proposed techniques 

can be considered as a post-data mining processing. We 

employ the coverage criterion as a basis for transforming the 

induced knowledge into the probably useful information for 

the recommendation system. We also extend the data 

mining process towards a tight coupling of the knowledge 

base system. The practicality aspect of our system is 

demonstrated through the expert system that can provide 

some useful recommendation to the general users. 

II. KNOWLEDGE EVALUATION AND INTEGRATION METHOD 

The proposed post-data mining processing technique is a 

final part of our SUT-Miner research project. The project 

aims at designing and developing a complete data mining 

system that can convey the induced knowledge to the 

systems that employ such knowledge. The framework of the 

SUT-Miner system is given in Fig.1. The system is 

composed of three main parts: Pre-DM, DM, and Post-DM. 

Pre-DM is the first part responsible for data preparation, 

whereas DM is a subsequent step of mining for knowledge.  
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Fig. 1 Framework of the SUT-Miner system 

 

Evaluating and selecting relevant and useful knowledge is 

the last part of the SUT-Miner system and also the main 

focus of this paper. We design the Post-DM part to consist 

of two main modules: knowledge evaluation, and 

knowledge integration and manipulation. The relationships 

of these two modules and other interfaces are given in Fig. 

2. 

The design of knowledge evaluation module (Fig. 3) is 

based on the decision-tree induction method [11] because 

the structure of induced tree is appropriate for generating 

reasoning and explanation in the expert system shell. The 

induced knowledge is in a formalism of decision rules 

incorporated with probabilistic values. This value is 

intended to be used as the degree of potential applicability 

of each decision rule. The probabilistic values are indeed the 

coverage values of decision rules. 

 

Fig.2 Conceptual design of post-DM modules 

Algorithm 1  Knowledge evaluation 

    Input: a data model as decision tree with node and edge 

structures 

    Output: a set of probabilistic decision rules ranking in 

descending order 

(1)  Display GUI to get a dataset name and a minimum 

probability value  

(2)  Traverse tree from a root node to each leaf node 

         (2.1)  Collect edge information and count number of 

data instances 

         (2.2)  Compute probability as a proportion 

                   (number of instances at leaf node) / (total 

data instances in a data set) 

     (2.3)  Assert a rule containing a triplet  

                  <attribute-value pair, class, probability value>  

into temporary KB 

(3)   Sort rules in the KB in descending order according to 

the rules‟ probability 

(4)   Remove rules that have probability less than the 

specified threshold 

(5) Assert selected rules into the KB and return KB as an 

output 
 

Fig.3 Knowledge evaluation algorithm 

 

The output of algorithm in Fig.3 is the induced 

knowledge represented as decision rules. These rules are 

then transformed by algorithm 2 (Fig. 4) to be expert rules 

and consulting rules of the expert system. The expert rules 

are to be used by the inference engine for giving 

recommendation to general users. Consulting rules are for 

reasoning and giving explanation when requested by the 

users. Both expert and consulting rules are stored in a 

knowledge base file. 

We implement the integrated data mining engine and the 

expert system shell with the logic-based system, therefore 

the expert and consulting rules are encoded as Horn clauses. 
 

Algorithm 2  Knowledge integration and manipulation 

 Input: a set of probabilistic decision rules stored in KB 

 Output: a set of rules to be used by an expert system shell 

(1)  For each probabilistic decision rule 

       (1.1)   Scan information in the If-part and the Then-part 

       (1.2)   Generate head of expert rule from the Then-part 

                      type(Then-part, probability value) :- 

  (1.3)   Generate body of expert rule from the If-part  

                :- atrribute_name1(value), …,  

attribute_nameN(value). 

  (1.4)    Write expert rule in a file, knb-file 

(2)  For each data attribute 

       (2.1)   Generate head of consulting rule 

                         attribute_name(X) :- 

   (2.2)   Generate body of consulting rule 

                        :- menuask( attribute_name, X, [list of 

attribute values] ). 

(3)  Assert consulting rules into the knb-file and return KB 

as an output 

Fig.4 Knowledge integration and manipulation algorithm 



 

III. IMPLEMENTATION 

A. Knowledge Induction 

The first part of our implementation is the knowledge 

induction, which is the decision tree learning. The 

implementation is based on the logic-based system using the 

SWI Prolog (www.swi-prolog.org). The advantage of such 

logic-based system is that the input data, program coding, 

and output are all taking the same form, that is, Horn 

clauses. 

For the purpose of demonstration, we use a small dataset 

named lens data from the UCI repository (available at 

http://archive.ics.uci.edu/ml/). The dataset contains 24 

instances of patients under examination for proprietary of 

wearing contact lenses. The dataset in a format of Horn 

clauses are shown in Fig.5.  

 

%% Data lens 

%     attributes: names and their possible values 

attribute(age, [young, pre_presbyopic, presbyopic]). 

attribute(spectacle, [myope, hypermetrope]). 

attribute(astigmatism, [no, yes]). 

attribute(tear, [reduced, normal]). 

attribute(class, [ yes, no]). 

%     data 

instance(1, class=no, [age=young, spectacle=myope,  

    astigmatism=no, tear=reduced]). 

instance(2, class=yes, [age=young, spectacle=myope,  

    astigmatism=no, tear=normal]). 

instance(3, class=no, [age=young, spectacle=myope,  

    astigmatism=yes, tear=reduced]). 

instance(4, class=yes, [age=young, spectacle=myope,  

    astigmatism=no, tear=normal]). 

Fig. 5 Examples of data instances represented as Horn clauses  

 

The steps in our main module of knowledge induction are 

given in Fig.6. The module „mainDT‟ is to be called with 

the specified parameter „Min‟. This parameter is the 

probability threshold that programmers or users have to 

identify. It is the metric for pruning the final results of 

knowledge induction. Any decision rules with probability 

values less than this threshold will not be included in the 

knowledge base. The running result of this module 

displayed as a tree structure is given in Fig. 7, whereas the 

final result displayed as decision rules is in Fig. 8. 

 

mainDT(Min) :-   

        init(AllAttr, EdgeList),    % initialize node and edge info 

        getnode(N),                  % get node ID 

        create_edge(N, AllAttr, EdgeList),    % create tree 

        addAllKnowledge,        % generate decision rules 

        selectRule(Min, Res),     % select top rules 

        tell('1.knb'),           % write selected decision rules to file 

        writeHeadF,           % transform to expert rules (head)  

        maplist(createRule1, Res),  

        nl, writeTailF,       % generate body of expert rules 

        told,                    % write expert rules to file and close it 

        writeln(endProcess). 

Fig.6 Main module in a knowledge induction program 

 
Fig.7 Discovered knowledge displayed as tree structures 

 

 

0.5 >> [tear=reduced] >> no,  
0.166667 >> [tear=normal, age=young] >> yes,  
0.0833333 >> [tear=normal, age=pre_presbyopic,  

                     spectacle=myope] >> yes 

Fig.8 Running result of lens dataset with the probability threshold 

of 0.001 

B. Knowledge Integration to the Expert System Engine 

The second part of our implementation is the automatic 

generation of knowledge base and the inference engine of 

the expert system. Structure of our simple expert system is 

graphically shown in Fig. 9. The module to be used by the 

users is the „menuask‟ module. Inference engine performs 

load and solve actions for loading the knowledge base into 

the working memory and solving the questions ask by the 

users, respectively.  

 
Fig.9 Structure of the expert system shell 



 

The working storage performs action related to reasoning 

and giving explanation to the users. The knowledge base 

contains two kinds of rules: the expert rules and consulting 

rules. These rules are automatically transformed from the 

induced knowledge. The implementation of modules to 

generate expert rules is given in Fig. 10, whereas the 

modules for generating consulting rules are in Fig. 11. 

 

writeHeadF :- 

   format('% 1.knb ~n% for expert shell. --- written 

 by Postprocess'), 

              format('~n% top_goal where the inference  

starts.~n'), 

              format('~ntop_goal(X,V) :- type(X,V).~n'). 

 

writeTailF:- 

              findall(_,(attribute(S,L), 

format('~n~w(X):-menuask(~w,X,~w).  

%generated menu',[S,S,L]))  ,_), 

             format('~n~n%end of automatic post process'). 

Fig.10 Modules for transforming induced knowledge into the 

expert rules 

 

transform1([X=V], [Res]) :-  

  atomic_list_concat([X,'(',V,')'], Res1), 

  term_to_atom(Res, Res1),!. 

 

transform1([X=V|T], [Res|T1]) :-  

  atomic_list_concat([X,'(',V,')'], Res1), 

  term_to_atom(Res, Res1), 

  transform1(T, T1). 

 

createRule1(I) :- I=Z>>X>>Y, 

  transform1(X, BodyL), 

  format('~ntype(~w,~w):-', [Y,Z]), 

  myformat(BodyL) , 

      write('  % generated rule'),!. 

 

myformat([X]) :- write(X), write('.'),!. 

myformat([H|T]) :- write(H), write(','), myformat(T). 

Fig.11 Modules to transform decision rules to be consult rules 

 

From the discovered knowledge: 

0.5 >> [tear=reduced] >> no,  
0.166667 >> [tear=normal, age=young] >> yes,  
0.0833333 >> [tear=normal, age=pre_presbyopic,  

                     spectacle=myope] >> yes 

The first rule states that if the patients have reduced tear 

production rate, then they should not wear the contact 

lenses. This rule has the probability of 0.5 to be applicable 

to the future cases. The second rule advises the patients at 

young age with normal tear production to be suitable for 

wearing contact lenses with probabilistic applicability of 

0.166667 to the future cases. The last rule also recommends 

contact lens to the patients at the pre-presbyopic age with 

normal tear production and myope prescription. The 

probabilistic applicability of the last rule is 0.0833333. The 

transformation results of these rules into the expert and 

consulting rules of the knowledge base are given in Fig.12.  
 

 

Fig.12 Knowledge base of the expert system 

 

The module or predicate „top_goal‟ in Fig.12 is the top 

module of the knowledge base that the inference engine will 

use in the process of searching for an appropriate 

recommendation. The predicate „type‟ is an expert rule. The 

predicates „age‟, „spectacle‟, „astigmatism‟, „tear‟, and 

„class‟ are consulting rules. 

To demonstrate the use of our expert system, we give an 

example in Fig.13. Once the knowledge had been induced 

and the knowledge base of the system was generated, the 

expert system can be invoked through the interface of the 

SWI Prolog by calling the „expertshell‟ command. The 

prompt sign of the system is now changed to „expert-shell>‟ 

indicating that the system is ready for solving the users‟ 

questions. 

The first step of using the expert shell is to load the 

knowledge base into working memory. This is simply done 

through the command „load‟. The knowledge base file, 

which is 1.knb in this example, is then compiled. To start 

asking question, the users have to invoke the system with 

the „solve‟ command. 

The expert system then processes the recommendation 

steps through a series of interactive statements. In this 

example, the system asks for the patient‟s tear production 

rate and age. Then it recommends that this patient can wear 

contact lenses with probability value of 0.166667. If the 

users want to see the explanation, they can issue the 

command „why‟. 

 
Fig.13 Expert shell of the automatic created system 



 

IV. KNOWLEDGE BASE EVALUATION 

In this paper, we devise an automatic method to generate 

knowledge base of the expert system with the purpose that 

the discovered knowledge can be easily accessible and 

interpreted by novice users. Since the knowledge base is 

systematically created, rather than encoded by the domain 

experts, we have to test the accuracy of the recommendation 

results against the advice given by human experts. 

We had tested our system with the two different datasets: 

the post operative patients and the breast cancer recurrences. 

Both datasets are available through the UCI repository 

(http://archives.ics.uci.edu/ml/). For the post operative 

patient dataset, we use 70 instances as a training data for the 

knowledge induction module. The remaining 16 instances 

are to be used as a test set. The learning objective of post 

operative dataset is to give recommendation to medical 

professionals based on the patient‟s conditions after 

operation whether the patient should be sent to general ward 

for further observation or the patient is in good condition 

and be prepared to go home. The breast cancer recurrence 

training dataset contains 175 instances, whereas the test 

dataset contains 16 instances. The learning objective is to 

predict if the cured breast cancer could recur.  

The accuracy of recommendation given by our expert 

system is also compared with the classification results 

obtained from three different learning methods, that is, ID3 

(decision-tree induction algorithm), PRISM (rule induction 

algorithm), and neural network. Both recommendation and 

classification results are evaluated against the real diagnosis 

given by the medical doctors. The results of accuracy 

comparison on post operative patients and breast cancer 

recurrences datasets are given in Figs. 14 and 15, 

respectively. The detailed results on test datasets are also 

provided in Tables 1 and 2. 
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Fig. 14 Recommendation results on post-operative patients  
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Fig. 15 Recommendation results on breast cancer recurrences  

TABLE I 

RECOMMENDATION AND CLASSIFICATION RESULTS FOR POST OPERATIVE 

PATIENTS 

Patient Doctor‟s 

diagnosis 

Recommendation & Classification Results 

Expert 

System 

ID3 PRISM Neural 

network 

1 Ward Ward Ward Ward Ward 

2 Ward Ward Ward Ward Ward 

3 Ward Ward Un-

classified 

Home Ward 

4 Ward Home Home Home Home 

5 Ward Ward Ward Un-

classified 

Ward 

6 Home Ward Ward Home Home 

7 Ward Home Home Home Home 

8 Ward Ward Ward Ward Ward 

9 Home No 

answer  

Ward Ward Ward 

10 Ward Home Home Home Home 

11 Ward Ward Ward Un-

classified 

Ward 

12 Ward Ward Ward Ward Ward 

13 Home Ward Ward Ward Ward 

14 Ward Ward Ward Ward Ward 

15 Ward Ward Ward Ward Ward 

16 Home Ward Ward Ward Ward 

 
TABLE II 

RECOMMENDATION AND PREDICTION RESULTS OF BREAST CANCER 

RECURRENCES 

Patient Doctor‟s 

diagnosis 

Recommendation & Classification Results 

Expert 

System 

ID3 PRISM Neural 

network 

1 No No Yes No Yes 

2 No Yes Yes Yes Yes 

3 Yes Yes No No No 

4 Yes No 

answer 

No No Yes 

5 No Yes Un-

classified 

No No 

6 No No 

answer 

Yes No No 

7 Yes No No No No 

8 No No Yes Yes No 

9 Yes No No Yes No 

10 No Yes No No Yes 

11 No No No No No 

12 No Yes Yes Yes Yes 

13 Yes Yes No No Yes 

14 No No 

answer 

No No No 

15 No No Un-

classified 

No Yes 

16 Yes Yes Yes Yes Yes 

 

It can be seen from the results that the expert system can 

produce a quite high accurate recommendation. Its error rate 

from both datasets is around 37.5%. The accuracy is even 

lower than the neural network method in the breast cancer 

recurrences dataset. This low error is due to the probabilistic 

method that we apply to the knowledge induction step. Only 

knowledge with high probabilistic value is selected and 

subsequently transformed to be expert and consult rules in 

the knowledge base. 



 

It can be noticed from the detailed classification and 

recommendation results that the false negative rate of our 

expert system is much lower than the other classification 

system. For these two specific domain datasets, false 

negative error is more critical than the false positive error. 

Therefore, our inductive expert system provides a safer 

recommendation to the medical practitioners. 

The models obtained from the decision tree induction 

(ID3, as well as our expert system) and the rule induction 

(PRISM) methods are incomplete. Thus, for some cases the 

models could not find appropriate recommendation or 

prediction. This situation does not happen to the model 

obtained from the neural network learning method. Model 

completeness is therefore an important issue for the 

improvement of our expert system. 

V. CONCLUSION 

Data mining is an intelligent data analysis method 

currently adopted by many enterprises and organizations. 

Most data mining systems, however, perform the mining 

steps up to the final stage of inducing and generating all the 

discovered knowledge. The subsequent steps of knowledge 

selection and turning the discovered knowledge into 

profitable actions are the responsibility of users that 

normally are the data mining experts. That means general 

and novice users should use these systems with difficulty. 

We thus propose the method to make data mining system 

be friendly to general users by integrating the system into 

the inference engine of the expert system. The discovered 

knowledge is then presented through the recommendation of 

the system. The amount of knowledge has been customized 

to be minimal via the probabilistic threshold during the 

knowledge induction phase. Our expert system integrated 

with the induced knowledge module is thus the approximate 

system. From the evaluation results, the accuracy of 

recommendation given by the system is acceptable. 

Therefore, the proposed method is promising for the 

implementation as a large system to be applicable to the real 

world data.  

We thus plan to extend our current research to the 

direction of implementing a real system, rather than the 

prototype as proposed in this paper. The user interface is to 

be adjusted to suit general users. The system is also to be 

evaluated by the human experts. The expert rules obtained 

from the induced knowledge are also to be modified to deal 

with exceptional cases. 
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