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Abstract—In this paper, the Virtual Reference Feedback
Tuning is applied to the control of the dissolved oxygen and
substrate concentration output in an Activated Sludge Process
(ASP) based wastewater treatment using an Internal Model
Control structure. This data-driven methodology was found to
be easy to implement and gave excellent results when compared
to a two degrees of freedom continuous time PI controller, but
with the advantage of using only data taken directly from an
experiment in open-loop and skipping the modeling step.

Index Terms—Wastewater Treatment Plant, Activated Sludge
Process, Data-Driven Control, Virtual Reference Feedback Tun-
ing, Feedforward control.

I. INTRODUCTION

WASTE Water Treatment Plants (WWTP) are an im-

portant case of study within the process control area,

while an active research area that involves other disciplines

as for example chemistry, biology, and instrumentation.

Nowadays, the correct treatment of wastewater is critical in

all cities due to environmental and human health reasons.

That is why the constraint on the level of pollution of the

treated water before discharging it into the receiving waters,

is becoming more stringent while it is also necessary to

maintain low cost of operations and high efficiency [1], [2].

Among the types of WWTP, the Activated Sludge Process

(ASP) is one of the most popular methods to biologically

remove organic components, nitrogen and phosphorus from

the treated water [3]. From the automatic control perspective

it has been a widely case of study, for example in [4]

a parameter and state non-linear estimator is used in an

adaptive linearizing control of the dissolved oxygen and

substrate concentration of an ASP but under the assumption

that only the dissolved oxygen is available for measurement.

In [5], several multivariable PI control method are applied to

the ASP by linearizing the nonlinear model and the results

are presented, as well as the combination of some of these

methods. In [6], predictive control is used to maintain a low

concentration of substrate at the output by controlling the

dissolved oxygen using the dilution rate. The internal model

of the predictive control is a three layer neural network. In [7]

the control of the substrate concentration is achieve using an

estimation based on the dissolved oxygen measurements, a

dynamic controller that cope with the change in reference and
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a PID controller that corrects the steady state error produced

by the use of a linearized model in the first controller. In [8]

a decentralized PI approach is presented to show that simple

well tuned PI controllers can achieve a similar performance

than more complex methodologies for the ASP case. In all

the cases, some sort of model (non-linear o linearized) is used

to computed the controller. In several cases it is supposed that

some parameters are known which may no be the case for a

real plant.

Modeling of ASP has been an important research area and

several models have appeared in the literature [9]. But from

the automatic control perspective, these models are very

complex to be used directly to compute a controller, and

therefore, a linearization step and possibly a reduction of the

model order is needed in order to find an adequate model

for control. In those cases, it is desirable to have a method

that computes a controller parameters directly from data

taken from the plant. It is exactly what data driven control

is about: an approach were experimental data is directly

used to find a controller, which, generally, is meant to mini-

mize some control performance criterion. Some of the most

remarkable methods within this control approach are the

Iterative Feedback Tuning (IFT) [10], [11], the Windsurfer

Approach [12], [13], the Correlation Approach [14], [15] and

the Virtual Reference Feedback Tuning (VRFT) [16]–[18].

The contribution of this work is to use the VRFT approach

with an IMC structure in order to be applied to an ASP

based WWTP for the tuning of discrete-time restricted-order

linear controller in a decentralized control topology. It was

found that this methodology provide excellent results, even

when compared with an standard two degrees of freedom PI

approach.

The rest of the paper is divided in two parts, in section II,

a short overview on VRFT is presented as well as the

mentioned extension to the IMC control. In section III

the results of the application of this data-driven method is

presented and compared with a two-degrees of freedom PI

controller. The conclusion are presented in section IV.

II. VIRTUAL REFERENCE FEEDBACK TUNING

EXTENSIONS

In this section, an overview on the VRFT is presented as

well as some results that extend the capacity of the VRFT

for different control strategies and structure of controllers is

presented.

A. Virtual Reference Feedback Tunning overview

The Virtual Reference Feedback Tuning (VRFT) is a one-

shot data-based method for the design of feedback con-

trollers. The original idea was presented in [16], and then

formalized by Lecchini, Campi, Savaresi and Guardabassi



Fig. 1. The VRFT set up. The dashed lines represent the “virtual” part of
the method

(see [17], [18]). In [17], the method is presented for the

tuning of a one degree of freedom feedback controller. If the

controller belongs to the controller class {C (z; θ)} given by

C(z; θ) = βT (z)θ, where β (z) = [β1 (z) · · ·βn (z)]
T

is a

known vector of transfer functions, and θ = [θ1 θ2 · · · θn]
T

is the vector of parameters, then the control objective is to

minimize the model-reference criterion given by:

JMR (θ) =

∥

∥

∥

∥

(

P (z)C(z; θ)

1 + P (z)C(z; θ)
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∥

∥

2
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Starting from a batch of open-loop data {u(t), y(t)}, a

“virtual” reference signal r̄(t) is computed in such a way

that, if the closed-loop system is feed with this virtual signal

and the controllers in the loop were the ideal controllers that

would achieve a predefined target transfer function, then the

input and output signals of the plant in closed-loop would be

the same than the batch of open-loop data. The output of the

controller should be equal to u(t) and then, this controller

can be found by identifying the transfer function which yields

the output u(t) when the input ē(t) = r̄(t)− y(t) is applied

to the input as depicted in Fig. 1.

The original VRFT algorithm, as presented by the authors

in [17], is as follows: Given a set of measured I/O data

{u(t), y(t)}t=1,...,N

1) Calculate:

• a virtual reference r̄(t) such that y(t) = M(z)r̄(t),
and

• the corresponding tracking error ē(t) = r̄ − y(t)

2) Filter the signals ē(t) and u(t) with a suitable filter

L(z):

ēL(t) = L(z)ē(t)

uL(t) = L(z)u(t)

3) Select the controller parameter vector, say, θ̂N , that

minimizes the following criterion:

JN
VR (θ) =

1

N

N
∑

t=1

(uL(t)− C(z; θ)ēL(t))
2

(2)

uL(t) and ēL(t) are the filter versions of the signals

u(t) and ē(t) useful to approximate the optimization

problem in (2) to the control criterion in (1). If

C(z; θ) = βT (z)θ, the criterion (2) can be given by

JN
VR (θ) =

1

N

N
∑

t=1

(

uL(t)− ϕT
L(t)θ

)2

(3)

Fig. 2. Standard Structure of the IMC. P̄ represents the plant model and
Q is the IMC controller

with ϕL(t) = β(z)ēL(t) and the parameter vector θ̂N
is given by

θ̂N =

[

N
∑

t=1

ϕL(t)ϕL(t)
T

]−1
N
∑

t=1

ϕL(t)uL(t) (4)

The authors, also showed that, the filter L(z) should be

the one that approximates the criterion (2) to (1). This filter

should be designed to accomplish the constraint:

|L|
2
= |1−M |

2
|M | |W |

2 1

Φu

(5)

where Φu is the spectral density of u(t)
The VRFT framework have been used in several applications

and even have been extended for the MIMO case and used

for PID tuning, for example see [19]–[23].

B. Internal Model Control using the Virtual Reference Feed-

back framework

Internal Model Control (IMC) is a popular control method

that incorporates the model of the process into the controller

[24]. The standard structure is depicted in Fig. 2. P (z)
represents the Plant, while P̄ (z) is its model. Q(z) is the

IMC controller. If the output of the model and the output

of the plant are the same, and there is no disturbance, the

control system behaves as if it was in open-loop. If this is

the case, to have perfect tracking, Q(z) must try to cancel

the dynamics of the plant. On the other hand, if there is a

mismatch between the plant and its model or if a disturbance

acts on the system, the feedback loop enters into play. This

characteristics leads to the well know property that an IMC

system would be nominally internally stable if Q(z) is stable,

in case the model is equal to the plant.

It is possible to find an IMC controller using the VRFT

framework without concerning about the modeling of the

system. In Fig. 3, the experimental setup for the VRFT

applied to the IMC topology is depicted. If the target

complementary sensitivity function is given by M(z), then

the virtual reference r̄(t) is computed as

r̄(t) = M−1(z)y(t) (6)

If the ideal controller were in the loop, then one would have

P̄ (z) = P (z) and the input to the controller Q(z, θ) would

be r̄(t) and its corresponding output would be u(t) in order

to have y(t) as the output of the closed-loop system. From

Fig 3, it can be found that the ideal controller would be given

by

Q0(z) = M(z)P (z)−1

P̄0(z) = M(z)Q0(z)
−1

(7)



Fig. 3. Disposition for the VRFT experiment using the IMC topology. The
dashed line represents the virtual signals and components.

P0(z) would be the ideal plant model that is derived from the

ideal controller. This basic idea leads to the following opti-

mization problem which gives the set of optimal parameters

θ∗ (in a least square sense):

min
θ

J(θ) = min
θ

N
∑

i=1

(u(i)−Q(z, θ)r̄(i))
2

(8)

Once Q(z, θ∗) has been determined, it is easy to compute

the approximation of the process model of the plant from

(7):

P̄ (z, θ) = M(z)Q(z, θ)−1 (9)

It is important to note that P̄ (z, θ) is seen just as an

“instrumental model”, that results from the determination of

the optimal controller. In fact, it is only a derived part of the

IMC controller that results from the optimization. Of course,

if a robust check is performed with the obtained controller,

this approximation of the plant can be used as if it were

the nominal model. Therefore, it can be stated that both the

controller and the nominal model are found at once using

this methodology.

III. APPLICATION TO AN ASP BASED WWTP

In this section a practical example of the IMC-VRFT

method exposed above is presented. The plant considered

in this paper is the WWTP given in [25]. It comprises an

aerated tank where microorganisms act on organic matter by

biodegradation, and a settler where the solids are separated

from the wastewater and a proportional part is then recycled

to the aerator in order to maintain certain amount of biomass

in the system. The layout is shown in Fig. 4. For the complete

reference of the WWTP model and equations, please see [4],

[25], [26].

The component balance for the substrate, biomass, recy-

cled biomass and dissolved oxygen provide the following set

of non-linear differential equations:

Biomass X(0) = 217.79 mg/l
Substrate S(0) = 41.23 mg/l
Dissolved Oxygen DO(0) = 6.11 mg/l
Recycled Biomass Xr(0) = 435.58 mg/l
Influent Substrate Sin(0) = 200.00 mg/l
Influent Dissolved Oxygen DOin(0)= 0.50 mg/l

TABLE I
INITIAL CONDITIONS

β = 0.2 Kc = 2mg/l
r = 0.6 Ks = 100mg/l
α = 0.018 KDO = 0.5
Y = 0.65 DOs = 0.5mg/l
µmax = 0.15 h−1

TABLE II
KINETIC PARAMETERS

dX(t)

dt
= µ(t)X(t)−D(t)(1 + r)X(t)− rD(t)Xr(t)

(10)

dS(t)

dt
= −

µ(t)

Y
X(t)−D(t)(1 + r)S(t) +D(t)Sin

(11)

dDO(t)

dt
= −

Koµ(t)

Y
X(t)−D(t)(1 + r)DO(t)

+KLa(DOs −DO(t)) +DO(t)DOin (12)

dXr(t)

dt
= D(t)(1 + r)X(t)−D(t)(β + r)Xr(t) (13)

µ(t) = µmax

S(t)

kS + S(t)

DO(t)

kDO +DO(t)
(14)

KLa = αW (t) (15)

where X(t) - biomass, S(t) - substrate, DO(t) - dissolved

oxygen, DOs - maximum dissolved oxygen, Xr(t) - recycled

biomass, D(t) - dilution rate, W (t) - aeration rate, Sin and

DOin - substrate and dissolved oxygen concentrations in the

influent, Y - biomass yield factor, µ - biomass growth rate in

a Monod like form [27], µmax - maximum specific growth

rate, kS and kDO - saturation constants, KLa - oxygen mass

transfer coefficient, α - oxygen transfer rate, Ko - model

constant, r and β - ratio of recycled and waste flow to the

influent. The influent concentrations are set to Sin = 200
mg/l and DOin = 0.5 mg/l.

It is important to note that this equations are used only

to get data, as if it were a real plant in the simulation. The

equation were not considered for the controllers optimization.

The control strategy is a decentralized control as in [8]

where the multivariable process is treated as two separate
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Fig. 4. Wastewater Treatment Process
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Fig. 5. Control Strategy for the WWTP

single variable process and, it was shown that a simple

controller could perform as good as other more complicated

methodologies if the controller is well tuned. The strategy

is depicted in Fig. 5. With respect to the control problem

definition, it is considered that the dissolved oxygen, DO(t),
and substrate, S(t), are the controlled outputs of the plant

and that are measurable, whereas the dilution rate, D(t), and

aeration rate W (t) are the two manipulated variables. The

control of DO provides a method to maintain the necessary

amount of biomass in the system while controlling S gives

a way to keep the pollution at the effluent in an acceptable

level [4]. The initial conditions and kinetic parameters are

taken as in [8], [25] and presented in Table I and II.

The settings of the VRFT controller are as follows: For

both control loops, the sampling time was selected as

Ts = 0.5min, the IMC controller Q(z) has the following

parameterization:

Q(z) =
α1 + α2z

−1 + α3z
−2

β1 + β2z−1 + β3z−2
(16)

the target transfer function for the DO loop is:

MDO(z) =
0.02357z−1

1− 0.9764z−1
(17)

which represents a first order transfer function with a con-

stant time of approximately 20min. For the S loop (controlled

by manipulating D(t)), the target closed-loop dynamics

is a first order transfer function with a constant time of

approximately 40min given by:

MS(z) =
0.01382z−1

1− 0.9862z−1
(18)

The input-output data was selected as an additive random

signal of 0 mean and variance 90 for the W (t) and variance

7.5e-4 for the D(t) around the operation points given in

Table I. As an example, the data used to find the Dissolved

Oxygen controller is depicted in Fig. 6. The resulting con-

trollers were found as:

QDO(z) =
40.69− 19.35z−1 − 19.65z−2

1− 0.4683z−1 − 0.4792z−2

QS(z) =
0.01236− 0.006155z−1 − 0.006158z−2

1− 0.4863z−1 − 0.4924z−2

(19)

The results of this controllers are compared to the two-

degrees of freedom, continuous time PI controller of [8].

Two different test were performed: a change in the references

and a disturbance on the influent substrate Sin where it is

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

Time (h)

A
e

ra
ti
o

n
 R

a
te

 (
m

3 /h
)

Data for the DO loop

0 200 400 600 800 1000 1200 1400 1600 1800 2000

5.9

6

6.1

6.2

6.3

Time (h)

D
is

s
o

lv
e

d
 O

x
y
g

e
n

 (
m

g
/l
)

Fig. 6. Data used for the determination of the controllers, above the aeration
rate as input and the dissolved oxygen as output.

considered that every 24h, an increase of 10% of the value

of Sin during 1h takes place.

For the change in reference (Sref (t) for the substrate con-

centration reference and DOref (t) for the dissolved oxygen

reference), the result is as given in Fig. 7. A step change

of 10mg/l is applied to Sref (t) at time t = 10h while

a step change of -2mg/l in DOref (t) is applied at time

t = 100h. The effect of one loop change in the other

loop, due to the process interaction, can be observed as

well. In Table III the values of the integral of the squared

errors (ISE) and the Total Variation (TV), which measures

the aggressiveness of the control effort, are presented. The

Integral of the Absolute Error (IAE) is also presented since

it reflects economic considerations of the performance of the

controller [28]. These criterion are computed as :

ISE =

∫ t

0

e(t)2 dt

IAE =

∫ t

0

|e(t)| dt

TV =

N
∑

i=1

|u(i)− u(i− 1)|

(20)

e(t) is the error signal (the reference minus the measured

output), and u(i) is the output of the controlled sampled

every hour and N is the total number of samples. In the

column “Reference Tracking” it can be seen that for the S

loop with the application of the IMC-VRFT controller the

ISE and the IAE are greatly reduced (near the 57% and 41%

respectively) but with almost the same TV. The DO loop

is also improved with respect to ISE, IAE and TV, as can

be also seen in Fig. 7, it is clear that the response of the

PI controller is much worse than the response of the IMC-

VRFT, which almost has no overshoot. In Fig. 8, the plot of

the control signals is presented for both the dilution rate and

the air flow rate.

For the disturbance in the substrate concentration of the

influent, the responses are presented in Fig. 9 and Fig. 10.

PI control is faster to control the disturbance Fig. 9a, but

the overshoot is larger. The response of the DO is greatly
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Reference tracking Disturbance rejection
S DO S DO

ISE
PI 77.23 2.94 12.05 0.0021

IMC-VRFT 32.85 0.64 5.56 6e-005

IAE
PI 19.47 3.68 22.92 0.37

IMC-VRFT 11.56 0.81 15.76 0.052

TV
PI 0.091 89.10 0.15 7.02

IMC-VRFT 0.083 67.33 0.15 4.69

TABLE III
COMPARISON OF THE RESULTS BETWEEN THE IMC-VRFT,

IMCFF-VRFT AND THE PID CONTROL
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Fig. 9. Response to a disturbance for both loops

improved with a reduction of almost 97% of ISE and 86%

for IMC-VRFT. It is clear that the IMC-VRFT methodology

fits perfectly well in the Dissolved Oxygen control in the

ASP, which has several implication in both performance and

cost.

IV. CONCLUSIONS

In this paper, the VRFT method has been studied and

extended to an IMC structure. It was successfully applied

to a WWTP process, substantially improving the results of a

continuous time two-degrees of freedom PI controller using

a restricted order discrete time controller in the case of the

reference tracking. It was found that, using this methodology
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Fig. 10. Control effort during the disturbance in the substrate concentration
of the influent

with a simple 4 parameter controller, the dissolved oxygen

control greatly improves for both reference tracking and dis-

turbance rejection. From the data-driven control perspective,

still it is needed some kind of guidelines, based entirely con

data, in such a way that the designer could be able to know

the limitations of the closed loop, and the best structure of

the controller, before performing the optimization.
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