
 

  

Abstract—This paper presents a systematic design procedure 

to stabilize generalized Lorenz chaotic systems based on sliding 

mode control. In contrast to the previous works of sliding mode 

control, the concept of quasi sliding mode control is firstly 

introduced such that continuous control input is obtained to 

avoid chattering phenomenon. Furthermore, under the 

proposed control law, the system states can be stabilized and 

driven into an arbitrary and predictable neighborhood of zero. 

This method can also be easily extended to a general class of 

chaotic systems. 

 

Index Terms-- Quasi sliding mode control, chaos, 

generalized Lorenz chaotic systems, chattering 

phenomenon 

 

I. INTRODUCTION 

ver  the last two decades, since the pioneering work of Ott, 

Grebogi and Yorke [1], chaos control has become one of 

interesting issues in nonlinear systems. A chaotic system is a 

very special nonlinear dynamical system and it possesses 

several properties such as the sensitivity to initial conditions, 

as well as an irregular, unpredictable behavior and thereby 

confines the precise operation of physical systems, such as 

mechanical systems, biological systems and power converters, 

etc. Therefore, various effective methods have been proposed 

over the past decades to achieve the control and stabilization 

of chaotic systems, such as optimal control [2], the sliding 

method control [3-8], state feedback control [9, 10] and the 

backstepping design technique [11, 12], etc.. In a robust 

control system, sliding mode control (SMC) is frequently 

adopted because SMC can offer many inherent advantages, 

such as fast response, good transient performance and 

insensitive to variation in plant parameters or external 

disturbances. However, in the conventional SMC systems 

[3-8], ideal sliding mode only exists with infinite frequency 

switching operation. From practical point of view, thus 

control input is impossible to implement and will cause the 

undesired chattering phenomenon. 

Motivated by the aforesaid, this study aims to present a 

control scheme to suppress chaos for generalized Lorenz 

chaotic systems based on SMC. In contrast to the previous 

works of SMC, the concept of quasi sliding mode control 

(QSMC) is first introduced such that a continuous control 

input is obtained to avoid chattering phenomenon as 

frequently in the conventional sliding mode control systems. 

Furthermore, under the proposed control law, the system  
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states can be stabilized and driven into an arbitrary and 

predictable neighborhood of zero. Finally, an illustrative 

example is presented to demonstrate the effectiveness of the 

proposed QSMC scheme. 

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION 

In this section, we consider the chaos suppression of a 

generalized Lorenz chaotic system (GLCS) via a QSMC. 

II.1 Generalized Lorenz chaotic systems 

We consider the following GLCS: 
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where [ ] 3

321 )()()()( Rtxtxtxtx
T

∈=  is state vector, 

[ ]Txxx 302010
is the initial value vector, and k is the system 

parameter with 10 <≤ k . The dynamics of this system has 

been extensively studied in [13] for a space range of the 

amplitude of the term k and displays chaotic behavior for each 

10 <≤ k . Figures 1(a)-(d) show the chaotic motion of system 

(1) for 2.0=k  with initial condition of 

[ ] [ ]TT
xxx  5.0   1   1 302010 　= . In the following, we will 

consider the chaos suppression of the GLCS and give an 

explicit and simple procedure to establish a QSMC to achieve 

the control goal.  

II.2 Problem formulation 

Consider the GLCS as shown in (1), to control the system 

effectively, we introduce a control input u  to the differential 

equation of state 
2x . By adding this input, the equation of the 

controlled system can be expressed by 
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The goal of this study is to design a QSMC such that the 

resulting state of system can be driven to predictable and 

desired bounds, i.e. 

3,2,1,lim =≤
∞→
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t

γ               (3) 
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where 0≥iγ  are predictable constants depending on the 

parameter chosen in the QSMC, which will be stated later. 

In consequence, to achieve this control goal for the GLCS, 

there exist two major phases. First, it needs to select an 

appropriate switching surface for the system such that the 

quasi sliding motion on the manifold can result in 

ii
t

e γ≤
∞→

lim , 3,2,1=i . Second, it needs to determine a 

QSMC such that the existence of the quasi sliding manifold 

can be guaranteed.  

 

III. SWITCHING SURFACE DESIGN AND DEFINITION OF QUASI 

SLIDING MANIFOLD 

To complete the above two phases, a switching surface is 

defined as follows: 

)()()( 12 tcxtxts +=               (4) 

where Rs ∈  and 1−>c  is a chosen constant. Therefore, the 

following dynamics of )(1 tx in (2) can be obtained as  
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29

25
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Before continuing to discuss the response of state 
1x , we 

give the definition of quasi sliding manifold as follows. 

 

Definition 1: The system is said to be in the quasi sliding 

manifold if there exists 0>Qδ  and 0>Qt
 such that any 

solution )(⋅x  of controlled system (2) satisfies 
Qts δ≤)( , for 

all 
Qtt ≥ . 

 

Solving the differential equation (5) for 
1x  when  

Qtt ≥  

results in 
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As shown in Definition 1, when the system enters the quasi 

sliding manifold, one has 
Qts δ≤)(  for 

Qtt ≥ . Furthermore, 

since 1−>c  is determined to result in 01 >λ , the bound for 

state 
1x  can be obtained as  
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Eqn. (7) with 01 >λ  ensures that  
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Furthermore, by (4), the bound for )(2 tx , ∞→t  , can be also 

obtained as 
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Meanwhile, after
iix γ≤ , 2,1=i , solving the differential 

eqn. (2) for error state 
3x  results in  
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Obviously, the bounds of 3,2,1, =iiγ  are relative to 
Qδ . 

Therefore, to control the system with a smaller value of 
Qδ is 

important and the solution will be given in the following 

section. 

 

IV. QSMC DESIGN FOR THE QUASI SLIDING MANIFOLD 

Having established an appropriate switching surface and 

estimating the bounds of the states of system, this section aims 

to design an QSMC to drive the dynamics (2) into the quasi 

sliding manifold,
Qts δ≤)( . To ensure the occurrence of the 

quasi sliding manifold, the continuous QSMC is proposed as 

δ
η

+
−=

s

s
wtu )(             (11) 

where 1>w , 0>δ and 
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The proposed control scheme above will guarantee the 

quasi sliding mode motion for the system (2), and is proven in 

the following theorem. 

 

Theorem 1: Consider the system (2), if this system is 

controlled by )(tu  in (11). Then the system trajectory 

converges to the quasi sliding manifold, 
1

)(
−

=≤
w

w
ts Q

δ
δ . 

 

Proof of Theorem 1: Let the Lyapunov function of the 

system be 2

2

1
sV = , then taking the derivative of V  and 

introducing (4) (11), one has 
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Since δ
δ

δ
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+s

s , we have 
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Since 1>w has been chosen in the controller (11), (13) 

implies that 0<V&  whenever 
1

)(
−

=>
w

w
ts Q

δ
δ . That is to say 

that s  will converges to the region of 
1

)(
−

=≤
w

w
ts Q

δ
δ . 

Thus the proof is achieved completely. 

 

Remark 1: Since the QSMC in (11) is continuous, chattering 

is eliminated. 

 

Remark 2: In fact, δ is a design parameter, in QSMC (11) 

therefore, one can select a sufficient small value of δ  to 

make 
Qδ  as well as 3,2,1, =iiγ  arbitrarily bounded in the 

neighborhood of zero. 

 

Remark 3: From the above analysis, a procedure for the 

robust control of chaos in the GLCS is proposed as follows. 

Step 1: Select 1−>c  to ensure a stable quasi sliding manifold. 

Step 2: Obtain the switching function s  from eq. (4) and 

select the control parameters in eqn. (11). 

Step 3: Calculate the predictable error bounds 3,2,1, =iiγ  by 

eqs.(8)-(11) to estimate the performance  of control. 

Step4:  QSMC from eqn. (11). 

 

V. NUMERICAL EXAMPLE 

In this section, simulation results are presented to 

demonstrate and verify the effectiveness of the proposed 

QSMC scheme. The system parameter is chosen as 2.0=k . 

The initial states are 1)0(1 =x , 1)0(2 =x , 5.0)0(3 =x . 

According to step 1 in Remark 3, we select 11 −>=c  to result 

in a bounded quasi sliding manifold. Therefore, the switching 

function s  is  

12)( xxts +=                  (14) 

and the QSMC can be obtained as  

δ
η

+
−=

s

s
wtu )(                (15) 

with 12 >=w , 05.0=δ . 

By eqns. (8)-(10), we can predict that 1.0)( =≤ Qts δ  and 

the states are bounded by 175.0,025.0 21 == γγ , and 

0016.03 =γ .The simulation results are shown in Figures 2-4. 

Figure 2 and Figure 3 present, respectively, the corresponding 

)(ts  and state responses. The continuous QSMC control is 

shown in Figure 4.For the first five seconds, the system is 

uncontrolled and the trajectories are chaotic and the QSMC 

(15) become active at 5=t second and the system state can be 

bounded by 3,2,1, =iiγ  calculated above, as we predict. In 

particular, it is worthy of note that the chattering does not 

appear due to the continuous control input as shown in Figure 

4. 

VI. CONCLUSIONS 

In this paper, a quasi sliding mode control scheme for 

generalized Lorenz chaotic systems is studied. The concept of 

quasi sliding mode control has been introduced firstly to 

avoid chattering phenomenon as frequently in the 

conventional sliding mode control systems. Numerical 

simulations have verified the effectiveness of the proposed 

method.  
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Fig. 3.  (c). The state response of the controlled system. 

 

 
Fig. 4.  . The time response of continuous QSMC (15). 

 

 
Fig. 3.  (b). The state response of the controlled system. 
 

 
Fig. 3.  (a). The state response of the controlled system. 

 
Fig. 2.  The time response of switching function )(ts  

 
Fig. 1.  (a) Trajectories of  GLCS (b) Trajectories projected on the 

1x -
2x plane (c) Trajectories projected on the 

1x -
3x  plane (d) 

Trajectories projected on the 
2x -

3x  plane. 

 




