
 
 

 

  
Abstract—This paper proposes a new technique using 

discrete wavelet transform (DWT) and back-propagation 
neural network (BPNN) for fault classifications on 
underground cable. Simulations and the training process for the 
back-propagation neural network are performed using 
ATP/EMTP and MATLAB. The mother wavelet daubechies4 
(db4) is employed to decompose high frequency component 
from these signals. Positive sequence current signals are used in 
fault detection decision algorithm. The variations of first scale 
high frequency component that detect fault are used as an input 
for the training pattern. Various cases studies based on 
Thailand electricity distribution underground systems have 
been investigated so that the algorithm can be implemented. 
The results are shown that an average accuracy values obtained 
from BPNN can indicate the fault classification with 
satisfactory accuracy, and will be very useful in the 
development of a power system protection scheme.   
 

Index Terms—Wavelet Transform, Fault Classification, 
Underground Cable, Neural Network, ATP/EMTP.  
 

I. INTRODUCTION 
  In previous decade, several decision algorithms for fault 

classification and identification have been developed, then to 
be employed in the protective relays. However, most research 
works have only considered the fault diagnosis for overhead 
transmission systems [1-11], but not for underground 
distribution system. In a few years ago, the application of 
wavelet transform and other intelligent technologies are 
developed for the fault diagnosis in underground cable.  

The idea of application of wavelet transform to fault 
diagnosis is not new, and there is most research papers 
related to this idea [12-13]. In previous research works [13], 
by considering the pattern of the spectra, the comparison of 
the coefficients from first scale that can detect fault is 
considered. The division algorithm between the maximum 
coefficients of DWT at ¼ cycle of phase A, B, C is 
performed. For identifying the phase with fault appearance, 
the comparisons of the maximum ratio obtained from 
division algorithm have been performed so that the types of 
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fault can be analysed. Although, the wavelet transform is 
very effective in detecting transient signals generated by the 
faults but it may not be adequate to complete characterization. 
In recent years, the artificial intelligent has been rapidly 
developed and neural networks have been successfully 
applied in several fields [14-17]. Back-propagation neural 
network (BPNN) is the most well known and widely applied 
today, because it can solve almost all types of problems. 
Normally, the algorithm uses BPNN to indicate the proper 
decision. It is interesting to investigate an appropriate neural 
network, and implement it in newly-developed protection 
systems.  

Hence, the objective of this paper is to consider studies of 
the BPNN for the decision algorithm used to classify fault 
type in underground cable distribution system. The 
simulations, analysis and diagnosis are performed using 
ATP/EMTP and MATLAB on a PC Pentium IV 2.2 GHz 
3GB. It is noted that the DWT is employed in extracting the 
high frequency component contained in the fault currents, 
and the coefficients of the first scale from the DWT that can 
detect fault are investigated. The construction of the decision 
algorithm is detailed and implemented with various case 
studies based on Thailand electricity underground 
distribution systems.  

II. SIMULATION 
Artificial neural networks (ANN) are an attempt to 

simulate the human brain’s nonlinear and parallel 
processing capability for applications. ANNs, therefore, 
have necessitated learn relationships between cause and 
effect of data into orderly and informative patterns. As a 
result, ANNs require fault signal samples from simulations 
to training and test processes. The ATP/EMTP [18] is 
employed to simulate fault signals, at a sampling rate of 200 
kHz. The system employed in case studies is chosen based 
on the underground distribution system as illustrated in 
Figure 1. In addition, a cross-sectional view of a cable is 
shown in Figure 2. To avoid complexity, the fault resistance 
is assumed to be 10Ω. Fault patterns in the simulations are 
performed with various changes of system parameters as 
follows:  

- Fault types are single line to ground, double lines to 
ground, line to line and three-phase fault.   

- Fault locations are from 1 km to 5 km (each step = 1 
km) of the underground cable length measured from the 
sending end 

- Fault inception angles on the phase A  voltage 
waveform were varied from 0° to 150° with a step of 
30°   

Discrete Wavelet Transform and 
Back-propagation Neural Networks Algorithm 
for Fault Classification in Underground Cable 
S. Kaitwanidvilai, C. Pothisarn, C. Jettanasen, P. Chiradeja and A. Ngaopitakkul, Member, IAENG 



 
 

 

 

 
Figure 1.  The system used in simulation studies [19].  

 

 
Figure 2. The configuration of cable in simulation studies 

 
The example of ATP/EMTP simulated fault signals is 

illustrated in Figure 3. This is a fault occurring in phase A to 
ground at 1 km measured from the sending bus as depicted 
in Figure 1. The fault signals generated using ATP/EMTP 
are interfaced to MATLAB for the fault detection algorithm. 
 

 
Figure 3. Example of ATP/EMTP simulated fault signals for AG fault at 
sending end. 

III. FAULT DETECTION ALGORITHM 
Fault detection decision algorithm [13] is processed using 

positive sequence current signal. The Clark’s transformation 
matrix is employed for calculating the positive sequence and 
zero sequence of currents. The mother wavelet daubechies4 
(db4) [4, 6-8, 13, 20] is employed to decompose high 
frequency components from the positive sequence current 
signals. Coefficients obtained using DWT of signals are 
squared so that the abrupt change in the spectra can be clearly 
found, and it is obviously seen that the coefficients of high 
frequency components, when fault occurs, have a sudden 
change compared with those before an occurrence of the 
faults as shown in Figure 4. The fault detection decision 
algorithm [4, 6, 13] has been proposed that if coefficients of 
any scales are changed around five times before an 
occurrence of the faults, there are faults occurring on 
transmission lines or underground cables.  
 

 
Figure 4. Wavelet transform from scale 1 to 5 for the positive sequence of 
current signal shown in Figure 3.  

 
From Figure 4, the coefficients in all scale of the wavelet 

transform are clearly changed then it presumes that these 
signals are fault condition. By performing many simulations, 
it has been found that the coefficient in scale 1 from DWT 
seems enough to indicate the fault inception on the single 
circuit transmission line. As a result, it is unnecessary to use 
other coefficients from higher scales in this algorithm. 
Moreover, and the coefficients in scale 1 from DWT are used  
later in training processes for the neural networks.  

IV. DECISION ALGORITHM AND RESULT 
From the simulated signals, DWT are applied to the 

quarter cycle of current waveforms after the fault inception. 
The coefficients of scale 1 obtained using the discrete 
wavelet transforms are used for training and test processes 
of the BPNN. A training process is performed using neural 
network toolboxes in MATLAB [21]. Before the training 
process, input data sets are normalized and divided into 300 
sets for training and 150 sets for tests. A structure of the 
BPNN consists of 4 neurons for the inputs and 1 neuron for 
the output. The inputs patterns are maximum values of 
DWT at ¼ cycle of phase A, B, C and zero sequence for 
post-fault current waveforms as shown in Figure 5. The 
output variables of the BPNN are designated as value range 
from 1 to 10 which corresponding to various types of fault 
as shown in Table 1. 
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Figure 5. Magnitude in scale 1 for post-fault all phase of current signal 
shown in Figure 3.  

 
Table 1 Output of ANNs for classifying the fault types 

Output of BPNN Classification of fault type Types of fault 
1 Phase A to ground fault AG 
2 Phase B to ground fault BG 
3 Phase C to ground fault CG 
4 Phase A,B to ground fault ABG 
5 Phase B,C to ground fault CAG 
6 Phase C,A to ground fault BCG 
7 Three phase fault ABC 
8 Phase A to phase B fault AB 
9 Phase C to phase A fault CA 

10 Phase B to phase C fault BC 
 

In this paper, BPNN consists of three layer of neurons 
[22] (Input, two-hidden, output) interconnected by weights 
as shown in Figure 6. The inputs are fully connected to first 
hidden layer, each hidden layer is fully connected to the 
next, and the last hidden layer is fully connected to the 
outputs layer. In addition, hyperbolic tangent sigmoid 
functions are used as an activation function in all hidden 
layers while linear function is used as an activation function 
in output layers. 

A training process for BPNN can be divided into three 
parts as follows [21, 22]: 

1. The feedforward input pattern, which has a propagation 
of data from the input layer to the hidden layer and finally to 
the output layer for calculating responses from input patterns 
illustrated in Equations 1 and 2. 

 

( )( )211,111,222 ** bbpiwflwfa ++= ,    (1) 

( )322,33 */ balwfpo ANN += .      (2) 
 

where,   
p is the input vector of ANNs 
iw1,1 is the weights between input and the first hidden layer 
lw2,1 is the weights between the first and the second hidden 

layers 
lw3,2 is the weights between the second hidden layer and 

output layers 
b1, b2 are the bias in the first and the second hidden layers 

respectively 
b3 is the bias in output layers 
f1, f2 are the activation functions (Hyperbolic tangent 

sigmoid function: tanh) 
f3 is the activation function (Linear function) 

 
2. The back-propagation for the associated error between 

outputs of neural networks and target outputs; the error is fed 
to all neurons in the next lower layer, and also used to an 
adjustment of weights and bias.     

3. The adjustment of the weights and bias by 
Levenberg-Marquardt (trainlm). This process is aimed to try 
to match between the calculated outputs and the target 
outputs. Mean absolute percentage error (MAPE) as an index 
for efficiency determination of the BPNN is computed by 
using Equation 3. 
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where, n is the number of test sets. 

 
During training process [22], the weight and biases are 

adjusted by Levenberg-Marquardt (trainlm), and there are 
20,000 iterations in order to compute the best value of 
MAPE. The number of neurons in both hidden layers is 
increased before repeating the cycle of the training process. 
The training procedure is stopped when reaching the final 
number of neurons for the first hidden layer or the MAPE of 
test sets is less than 0.5%. The training process can be 
summarized as a flowchart shown in Figure 7 while results 
from the training process can be shown in Table 2 and Figure 
8. 
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Figure 6 Back-propagation with two hidden layers 
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Figure 7. Flowchart for the training process. 

 

 
After the training process, the decision algorithm is 

employed in order to classify the fault in the underground 
distribution line. Case studies are varied so that the decision 
algorithm capability can be verified. The total numbers of 
the case studies are 150. Various case studies are performed 
with various types of faults including the variation of fault 
inception angles and locations in underground cable. In 
addition, the results obtained from the comparison of 
average accuracy between decision algorithm using BPNN 
and decision algorithm using the comparison of the 
coefficients DWT, developed by Apisit et al [13] are shown 
in Table 3. The results are shown that the average accuracy 
of fault classification from the decision algorithm proposed 
in this paper is highly satisfactory. This is an improvement 
of the fault classification which is detected using the 
coefficient comparison technique developed by Apisit et al 
[13]. 
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Figure 8. Result of BP training process.  

V. CONCLUSION 
 A technique using discrete wavelet transform in 
combination with BPNN in order to classify of fault type in 
underground distribution system has been proposed. 
Daubechies4 (db4) is employed as mother wavelet in order to 
decompose high frequency components from fault signals. 
The maximum values from the first scale at ¼ cycle of phase 
A, B, C and zero sequence of post-fault current signals 
obtained by the discrete wavelet transforms have been used 
as an input for the training process of the BPNN in a decision 
algorithm. Various case studies have been studied including 
the variation of fault inception angles and fault types. It is 
shown that combination of wavelet transform and BP neural 
networks is a powerful tool owing to its satisfactory results as 
shown in Table 3. The further work will be the improvement 
of the algorithm so that locations of fault along the structure 
of distribution system can be identified.     
 
 



 
 

 

 
 

TABLE 2 RESULTS AND MAPE OF BPNN 
Number neuron in 

hidden 1-2 2-1 3-2 4-3 5-6 6-5 7-6 8-7 9-8 10-9 11-10 

MAPE of Training 22.5633 15.9789 15.442 12.6769 8.8342 7.9732 3.641 3.1025 2.5039 1.8509 
MAPE of Test 22.6091 15.683 14.6266 10.9441 7.2112 6.8812 3.7931 2.8659 2.3646 2.1981 

Training time (minute) 1.24 1.3 1.47 2.07 2.28 3.12 4.06 5.08 6.21 8.24 
 

Table 3 Percentage average accuracy for fault types 
Fault Classification Classification of the fault 

types 
Number of 

Case Studies Wavelet and BP coefficient comparison 
technique  [13] 

Single line to ground fault 45 100.00% 80.00% 
Double line to ground fault 45 100.00% 80.00% 

Line to line fault 45 100.00% 100.00% 
Three phase fault 15 93.33% 100.00% 

Average 98.33% 90.00% 
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