
 

  
Abstract―Osteoporosis is a major public health problem 

that can be quantified by low bone mineral density (BMD) 
measurements. Many association studies have analyzed the 
genotype frequencies of case and control groups to predict the 
susceptibility to the disease. An increasing number of studies 
have shown that the disease risk is associated with the 
co-occurrence of single nucleotide polymorphisms (SNPs). 
Hence, which necessitates a further analysis of SNP-SNP 
interaction combinations. However, using exhaustive search 
(ES) algorithms to calculate SNP combinations requires a large 
amount of time. To shorten the calculation time, we propose a 
chaotic particle swarm optimization (CPSO) method that uses 
the odds ratio (OR) to determine the disease susceptibility. PSO 
is applied to generate SNP combinations, with a maximal 
difference of occurrence between the case and control groups. 
The incorporated chaotic map introduces certainty, ergodicity 
and a stochastic property into PSO in order to improve the 
global convergence. This study uses a real-life dataset of 10 
SNPs with 113 individuals in control group and 184 individuals 
in case group. The estimated OR of the best SNP combination 
with genotypes is significantly higher than 1 (between 1.550 and 
2.309) for specific combinations of two to nine SNPs in the high 
risk group for osteoporosis (low BMD). 

 
Index Terms—Osteoporosis, bone mineral density, single 

nucleotide polymorphisms, chaotic particle swarm optimization, 
odds ratio 

I.    INTRODUCTION  

 any association studies indicate that the frequency 
with which genotype occur in case and control data is 

relevant to predict the susceptibility to a disease or a cancer, 
e.g., osteoporosis [1], breast cancer [2, 3], oral cancer [4, 5] 
etc. The risk of a disease or cancer is associated with the 
co-occurrence of sin-gle nucleotide polymorphisms (SNPs). 
Hence, determining these disease-causing SNPs and 
exploring SNP-SNP interactions (epistasis) have become an 
important objective [3, 6]. Recently, Phillips defined three 
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terms used to explain epistasis, namely compositional 
epistasis, statistical epistasis and functional epistasis [7]. 
Compositional epistasis blocks the effect of one allele by 
another at a different locus. Statistical epistasis constitutes a 
statistical deviation from the additive effects of two loci on 
the phenotype, and functional epistasis addresses molecular 
interactions [7-9]. 

SNPs are an abundant form of genetic variations amongst 
species. The association of SNPs, diseases and cancers, as 
well as their therapies and pharma-cogenomics, were studied 
and reviewed in previous literature. SNPs have been 
historically classified as commonly occurring (>1%) genetic 
variations in the general population [8, 10-12]. Many 
methods have been proposed to analyze SNP-SNP 
interactions in multiple SNP combinations, these include 
multifactor dimensionality reduction (MDR) [13], support 
vector machine (SVM) [14], polymorphism interaction 
analysis (PIA) [15], random jungle [16], machine learning 
[17], and others. The main difference between these methods 
lies in the computational time required and the quantitative 
measures used. The MDR method can detect high-order 
SNP-SNP interactions in case-control studies; however, it 
does not have a clear quantitative measure. Hence, Chung et 
al. improved MDR by adding the odds ratio (OR) to estimate 
SNPs combinations [18]. 

In this study, we used chaotic particle swarm optimization 
(CPSO) to explore SNP-SNP combinations. PSO is an 
automatically evolving algorithm derived from the natural 
evolution of the social behaviour of organisms [19, 20]. The 
advantages of PSO are its fast convergence and the fact that it 
requires relatively few parameters that need to be set. It also 
allows for an individual memory of the particles that can be 
used to compare information in a search process. Due to these 
advantages, PSO has been successfully applied in many 
fields, including operon [21] and CpG island prediction [22]. 
How-ever, the original PSO easily gets stuck in a local 
optimum. Hence, we added a chaos map to improve its 
performance. Chaotic systems use a chaotic map and an 
initial condition to generate an enormous number of 
sequences [23]. Different sequences can be changed easily by 
modifying the initial condition. Chaos is greatly sensitive to 
its initial conditions and its mapping is characterized by both 
certainty and randomness. Finally, the odds ratio (OR) is used 
to conveniently interpret the data of case-control studies. It is 
a common statistic that expresses the strength of association 
between an exposure and a disease [24]. 
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II.    METHODOLOGY 

A.  Data sets 
The dataset was obtained from Lin et al [25]. who 

conducted a bone mineral density association study for 
osteoporosis, the dataset includes 11 SNPs. Considering the 
dataset missing data, finally we select 10 SNPs based on 113 
subjects with a high BMD (control) and 184 subjects with a 
low BMD (case) dataset. Information relating to this dataset 
is shown in Table I. 

 
TABLE I.  

SNP INFORMATION FOR OSTEOPOROSIS ASSOCIATION STUDY 
Genotype 

1 2 3 SNP 
No 

Gene  
(SNP) Chr. 

Nca Nco Nca Nco Nca Nco
TT CT CC 1 TNFα-857 

rs1799724 6 16 29 43 32 125 52 
TT CT CC 

2 
TGFβ1-50

9 
rs1800469 

19 58 37 93 63 33 13 

CC CT TT 
3 

Osteocalci
n 

rs1800247 
1 18 8 84 44 82 61 

AA AG GG 4 TNFα-308 
rs1800629 6 5 4 33 21 146 88 

GG AG AA 
5 

PTH 
(BstB I) 
rs6254 

11 5 2 30 25 149 86 

AA AC CC 
6 

PTH 
 (Dra II) 
Rs6256 

11 4 3 41 18 139 92 

CC CT TT 
7 

HSP70 
hom 

rs2227956 
6 9 5 71 42 104 66 

GG AG AA 8 HSP70-2 
rs1061581 6 29 25 145 86 10 2 

CC CT TT 9 CTR 
rs1801197 7 127 84 55 27 2 2 

CC CT TT 10 BMP-4 
Rs17563 14 12 14 76 38 96 61 

No.:Number. Nca: Number of cases. Nco.:Number of controls. 

B.   Particle Swarm Optimization (PSO) 
Particle Swarm Optimization (PSO) is a population based 

stochastic optimization algorithm that simulates the social 
behavior of organisms [19, 20]. In PSO, each particle in the 
search space can be considered “an individual bird of a flock”; 
it moves its position based on its own knowledge and that of 
its neighbors. In other words, each particle uses its own 
memory and the knowledge of neighbors to find the best 
position (solution). In PSO, pbest is the best position of a 
particle amongst its own past iterations, as expressed by the 
highest fitness value. The best fitness value amongst all 
individual pbest values is called the global best (gbest). In 
each generation, the position and velocity of each par-ticle is 
updated based on its own pbest and gbest. The update 
equations are shown below: 

 where r1 and r2 are random numbers between (0, 1), and c1 
and c2 are acceleration constants set to 2. Velocities new

idv and 
old
idv denote the velocities of the new particle and the old 

particle, respectively. The positions new
idx and old

idx are the 
updated particle position and the current particle position, 

respectively. 
 An inertia weight w is used to control the balance between 
the global and local search. This weight is updated by the 
following equation: 

where wmax and wmin are set to 0.9 and 0.4, respectively. movei 
and movemax represent the current iteration number and the 
total number of iterations, respectively [20]. 

C. Chaos 
Chaos is greatly sensitive to its initial condi-tions. Small 

differences in initial conditions yield widely diverging 
outcomes (“butterfly effect”), which makes long-term 
predictions impossible [26]. Chaos is a deterministic, random 
process found in non-linear systems that are non-periodical 
and bounded [23]. Although it is perfectly deterministic in 
principle, its behavior is completely unpredictable in practice. 
In recent years, chaotic sequences have been widely applied 
in many fields, such as the chaotic optimization algorithm [27] 
and DNA computing [28]. Chaotic PSO not only enhances 
the multiplicity of particles, but also avoids particle trapping 
in a local optimum. Chaos can be de-scribed as a bounded 
nonlinear system with deter-ministic dynamic behavior that 
has ergodic and stochastic properties [23]. It is very sensitive 
to the initial conditions and the parameters used. In other 
word, cause and effect of chaos are not proportional to the 
small differences in the initial values. 

D. Chaotic Particle Swarm Optimization, CPSO 
In a PSO search process, each particle from a swarm 

represents a candidate solution. The individual best value 
(pbesti) is the position of the i-th particle with the highest 
fitness at a given iteration; the best position of all pbest value 
is called gbest. 

Changes in the acceleration coefficients c1 and c2 may pull 
the particles closer to the powered middle points of both 
pbesti and gbesti. Under original PSO conditions, the method 
easily gets trapped in a local search. If c1=0, a particle would 
lose its own recognition ability, which means particles would 
pool around gbesti more quickly. However, for large-scale 
problems, an algorithm with c1=0 would be much more likely 
to run into a local optimal solution. If c2 =0, particles would 
be deprived of their social cooperation ability, which means 
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Pseudo-code for PSO 
1. Begin 
2.  randomly initialize particles swarm 
3.   while (the stopping criterion is not met) 
4.    evaluate fitness of particles 
5.     for n = 1 to number of particles 
6.      find pbest 
7.      find gbest   
8.         for d=1 to number of dimension of particle 
9.         update the position of particles by Eq. (1)-(2) 
10.        next d 
11.    next n 
12.    update the inertia weight value by Eq.(3) 
13.   next generation until stopping criterion is met 
14. End 



 

that particles can not share the optimal solution with the 
swarm but keep moving along their individual paths [29]. We 
therefore added a chaos map to improve the performance of 
PSO. 

Chaotic particle swarm optimization (CPSO) adopts the 
use of chaotic maps to strengthen the solution quality of PSO. 
This increases the search capability of PSO. Since logistic 
maps are frequently used chaotic behavior maps and chaotic 
sequences can be quicky generated and easily stored, there is 
no need for storage of long sequences [30]. The parameters r1 
and r2 are modified by the logistic map based on the 
following equation. 

In Eq. (4), Cr(0) is generated randomly for each 
independent run, with Cr(0) not being equal to nin{0, 0.25, 0.5, 
0.75, 1} and k equal to 4. The driving parameter k of the 
logistic map controls the behavior of Cr(t). 

The velocity update equation for CPSO can thus be 
formulated as: 

In Eq. (5), Cr is a function based on the results of the 
logistic map with values between 0.0 and 1.0. 

 
Pseudo-code for CPSO 
1. Begin 
2.   randomly initialize particles swarm 
3.   while (the stopping criterion is not met) 
4.     evaluate fitness of particles 
5.     for n = 1 to number of particles 
6.      find pbest 
7.      find gbest   
8.       for d=1 to number of dimension of particle 
9.        update the position of particles by Eq. (1)-(2) 
10.      next d 
11.    next n 
12.    update the inertia weight value by Eq. (5) 
13.     if fitness of gbest is the same five times then 
14.      randomly select a half of particles swarm S 
15.      generate new particles C by Eq. (4 ) and replace S 
16.     end if 
17.   next generation until stopping criterion 
18. End 

E. Encoding 
The particle encoding is given by: 
Pi = (SNPi,j, Genotypei,j), i=1, 2… x,  j=1, 2,…, y 

SNPi,j represents an SNP that can be selected Genotypei,j 
represents the different possible genotype state selected 
(three states), and Fi represents the particle fitness value. In 
this study, the initial particles are randomly generated. 

For example, let P = (SNP1,5, Genotype3,3). SNP1 and SNP2 
are chosen in this particle. SNP12 and Genotype21 represent 
SNP1 with the second genotype, and SNP2 with the first 
genotype; the particle fitness value is 15.  

F. Initialization 
Initial particles are randomly generated in this study. For 

example, a P = (SNP1,5, Genotype3,3) is given. SNP1 and SNP-
5 are chosen in this particle. The SNP1,5 and Genotype3,3 
represent the SNP1 with the third genotype, and the SNP5 
with the third genotype. The results are represented as SNP1 
and SNP5 with the genotypes for [TNFα-857-CC] and 
[PTH(BstB I)-AA], respectively. 

G. Fitness Evaluation 
In this study, the maximum SNP combination difference 

between case and control groups is calculated. We divided 
the fitness calculation into two separate steps. First, the total 
numbers of SNP combinations in the control dataset and in 
the case dataset are calculated. Then Eq. (5) is used to 
determine the fitness value of each particle. The respective 
equation is shown below: 

where N represents the total number of combinations,  
All_control represents the total number of SNP interactions 
in the control group, and All_case represents the total number 
of SNP interactions in the case group. 

H. Parameter Settings 
Four different parameters need to be set in CPSO: the 

population size, the number of iterations, and the acceleration 
constants c1 and c2 of the update function. The population 
size in our study was set to 50, the number of iterations was 
set to 100, and c1 and c2 were set to 2 [20]. 

I. Experimental Environment 
The proposed algorithm was run on an Intel(R) CPU, 2.5G 

Hz, 3.24 GB RAM, Microsoft Windows XP and 
jdk1.6.0_071.4.0 platform. 

J.  Performance Measuremen 
This study uses four common criteria to determine the 

prediction score [15]. The four criteria are shown in detail in 
Table II. 

 
TABLE II. 

 PREDICTION CRITERIA 
Description Formula  

Correct 
TNFPFNTP

TNTP
+++

+  
(7)

Sensitivity  
FNTP

TP
+

 (8)

Specificity 
TNFP

TN
+

 (9)

Odds Ratio 
FN*FP
TN*TP  

(10)

TP: true positives, TN: true negatives, FN : false negatives, FP false 
positives.  

K. Statistics  
The CPSO algorithm generates SNP an odds ratio and a 

95% confidence interval (CI) to evaluate each SNP 
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combination. Statistical analysis was carried out using 
http://statpages.org/ctab2x2.html. 

L. Odds ratios 
In recent years odds ratios (OR) have become widely used 

in epidemiology. OR is a common statistic expressing the 
strength of association between an exposure and a disease. 
Odds ratios allow convenient interpretation of case-control 
studies [31]. The odds ratio can reveal information regarding 
the effect of a certain genotype combination on the disease 
risk, since the quantitative value of the odds ratio represents 
the strength of association between the genotypes and 
disease. 

III. RESULT AND DISCUSSION 

Many studies have suggested that SNP–SNP interactions 
(epistasis) are very important [32, 33] because they can be 
helpful in investigating cancer and other types of disease [34, 
35, 36, 37]. At present, artificial intelligent algorithms are 
seldomly used to identify combinations of SNP-SNP 
interactions. While the literature has raised the prospects of 
SVM [14], MDR [13] and machine learning [17], there is 
room for improvement, especially with regard to a general 
lack of quantitative measurements. The proposed CPSO 
algorithm can easily identify SNP-SNP interactions and 
evaluate the BMD risk and the maximum difference between 
the case and control groups. 

When exhaustive search (ES) is used to calculate the 
interaction of SNPs, a fixed number of SNPs is used to find 
the optimal SNP interaction solution. The number of possible 
interactions is C(N,M)*3M=N!/[M! (N-M)!]*3M, where N is 
the number of SNPs or factors, and M is the selected 
prediction number of SNPs used to calculate the fitness value. 
Using the ES algorithm to calculate a large dataset requires a 
large amount of time. This time can be shortened with CPSO 
as it reduces the number of search items among a greater 
number of SNP combinations. 

A. Identification of best SNP-SNP interaction combinations 
with maximal difference between cases and controls 

We used CPSO to select the best combination of SNP-SNP 
interactions with a maximal difference between the case and 
control groups for BMD. Our analysis is based on 184 
control and 113 case subjects with a BMD risk. The SNP 
name, number of cases and number of controls, as well as 
other information is show in Table I. The best SNP-SNP 
interactions of 2-SNP combinations are shown in Table III. 
In it, the two specific SNPs combinations with their 
corresponding genotypes, namely SNPs (1, 5) with genotype 
3-3; [rs1799724-CC]- [rs6254-AA], showed the maximal 
difference, i.e., 62 between the All_control (39) and All _case 

(101) groups. Under the same criteria, we also used CPSO to 
identify 3-9- SNP combinations with the best performance. 
Results are shown in Table IV. Experimental results showed 
that the proposed CPSO method can handle a combination of 
multiple SNPs well, i.e., CPSO provided the highest level of 
performance for complex SNP interaction. 

B. Sensitivity, specificity, correlation coefficient, odds ratios 
and 95% CI ranks for osteoporosis 

Table IV shows the proportion of subjects with 
osteoporosis, with specific SNP combinations. For 
combinations of two to nine SNPs, the odds ratio values are 
higher than 1 (1.550-2.309). 

Simultaneously, the CC is between 0.391 to 0.589 in these 
SNP combinations. When the number of SNPs in the 
combinations was increased as described above, we found 
that combinations of two to nine SNPs all contained the two 
SNPs 1 and 5. This leads to the conclusion that the SNP (1, 5) 
combination in the dataset is the most important SNP 
combination. 

C. Analyzing combinations of SNP (1,5) in osteoporosis 
We analyzed the combination of SNP (1, 5) in 

osteoporosis. Related information is shown in Table V. In 
addition, A bar graph that illustrate the OR value is shown in 
Fig. 1. The data shows that SNP (1, 5) in Genotype 3-3 has a 
maximal difference between case and control values of 62 as 
determined by CPSO, and that the p-values (<0.05) are 
statistically significant. Although some other SNP 
combinations were also statistically significant, e.g., SNP(1,5) 
with genotype1-2, SNP(1,5) with genotype1-3 and SNP(1,5) 
with genotype2-3, their SNP combination risk was small than 
1. 

IV. CONCLUSION 

Evaluating a large number of SNPs associated with a 
disease requires a strategy for focusing on only selected 
complex interactions. In this study, CPSO was successfully 
used on complex SNP interactions and was shown to provide 
the best SNP-SNP interactions for predicting osteoporosis 
susceptibility. Based on the CPSO method, the OR was used 
as a quantitative measure of the BMD risk. The method can 
potentially be applied to SNP-SNP interactions (epistasis) for 
other association studies. In the future, we plan to combine 
other methods, such as extremal optimization and fuzzy 
theory, to test SNP-SNP interactions in related study. We 
believe that the proposed method can serve as a 
computationally and statistically useful tool in the coming era 
of large-scale interaction mapping in genome-wide 
case-control studies.  

TABLE III  
ESTIMATED BEST COMBINATIONS OF TWO SNPS ON THE OCCURRENCE OF LOW BONE MASS DENSITY 

 
 
 

Combined  
of two SNPs 

SNP 
Genotype 

Control no. 
/Case no. Diff. SN SP CC OR 95% CI p-value 

SNPs (1,5) Other 
3-3 

74/83 
39/101 62 0.549 0.655 0.589 2.309 1.383-3.862 0.001 

SNPs (1,8) Other 
3-2 

75/87 
38/97 59 0.527 0.664 0.579 2.201 1.316-3.687 0.002 

SNPs (1,4) Other 
3-3 

73/87 
40/97 57 0.527 0.646 0.572 2.035 1.222-3.394 0.004 

No. number, Diff.: Difference of control-breast cases, SN: sensitivity, SP: specificity, CC: CI: confidence interval, 
“Other” is the reference group. 



 

 
TABLE IV. 

 ESTIMATED BEST COMBINATIONS OF TWO TO NINE SNPS ON THE OCCURRENCE OF LOW BONE MASS DENSITY 

 
TABLE V. 

 ODDS RATIO (OR) FOR SNP INTERACTIONS (95% CI) IN SNP (1, 5) 
COMBINATIONS 
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Combined SNPs SNP 
Genotype 

Control no. 
/Case no. SN SP CC OR 95% CI p- 

value 

SNPs (1,5) 
Other 
3-3 

74/83 
39/101 

0.549 0.655 0.589 2.309 1.383-3.862 0.001 

SNPs (1,4,5) 
Other 
3-3-3 

83/106 
30/78 

0.424 0.735 0.542 2.036 1.187-3.503 0.006 

SNPs (1,4,5,8) 
Other 
3-3-3-2 

86/119 
27/65 

0.353 0.761 0.508 1.740 0.995-3.054 0.040 

SNPs (1,4,5,8,9) 
Other 
3-3-3-2-1 

96/139 
17/45 

0.245 0.850 0.475 1.828 0.950-3.549 0.057 

SNPs (1,4,5,6,8,9) 
Other 
3-3-3-3-2-1 

100/155 
13/29 

0.158 0.885 0.434 1.439 0.680-3.081 0.391 

SNPs (1,4,5,6,7,8,9) 
Other 
3-3-3-3-3-2-1 

107/167 
6/17 

0.092 0.947 0.418 1.815 0.647-5.336 0.268 

SNPs (1,3,4,5,6,7,8,9) 
Other 
3-3-3-3-3-3-2-1 

109/174 
4/10 

0.054 0.965 0.401 1.566 0.438-6.092 0.578 

SNPs (1,2,3,4,5,6,7,8,9) 
Other 
3-2-3-3-3-3-3-2-1 

111/179 
2/5 

0.027 0.982 0.391 1.550 0.261-11.749 0.713 

No. number, Diff.: Difference of control-breast cases, SN: sensitivity, SP: specificity, CC: Correct, CI: confidence interval; “Other” is the reference group.* 
Difference of control-breast cases 
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