
Modelling and Verification of Compensating
Transactions using the Spin Tool

Kaiyu Wan, Hemangee K. Kapoor, Shirshendu Das, B. Raju, Tomas Krilavičius, and Ka Lok Man

Abstract—Complex transactions are part of the most com-
monly used systems. Substantial part of such transactions
are business transactions. Usually, they coordinate complex
interaction among multiple systems, so called Long Running
Transactions (LRT). Well known roll-back mechanism does
not suffice to handle faults in LRTs, therefore compensation
mechanisms are introduced. However, introduced structures
are rather complex and hard to be understood and handled.
Formal methods are well known tool for modelling, analysis
and synthesis of complex systems. In this paper we introduce
a work in progress, a technique that allows modelling LRTs
using Compensating CSP, then translating them to Promela
language and analysing using SPIN tool. We exemplify it using
Car Broker Service.

Index Terms—Long Running Transactions, Compensation
Mechanisms, CSP, Promela, SPIN

I. I NTRODUCTION

BUSINESS transactions typically involve coordination
and interaction between multiple partners. These trans-

actions involve hierarchies of activities and need to be
orchestrated. Business transactions need to deal with faults
that can arise in any stage of the transactions. In usual
database transactions, a roll-back mechanism is used to
handle faults in order to provide atomicity to a transaction.
However, for transactions that require long periods of time
to complete, also calledLong Running Transactions (LRT),
roll-back is not always possible. LRTs are usually interactive
(communication with several agents). Handling faults where
multiple partners are involved are both difficult and critical.
Due to their interactive nature, it is not possible to checkpoint
LRTs, e.g. a sent message cannot be unsent. In such cases, a
separate mechanism is required to handle faults. A possible
solution of the problem would be that the system designer
can provide a mechanism to compensate the actions that
cannot be undone automatically.

Compensationis defined as an action taken to recover from
error in business transactions or cope with a change of plan
[1]. Consider an example: a customer buys some items from
an on-line store. The store debits the customer’s account for
the payment of the items. Later the store realizes that one or
more items are not available at that time. So, to compensate
the customer, the store can credit the already debited amount

K. Wan is with the Department of Computer Science and Soft-
ware Engineering, Xian Jiaotong-Liverpool University, China. Email:
kaiyu.man@xjtlu.edu.cn

H. K. Kapoor, S. Das and B. Raju are with the Department of Computer
Science and Engineering, Indian Institute of Technology Guwahati, Assam,
India. E-mail:{hemangee, shirshendu, b.raju}@iitg.ernet.in

T. Krilavičius is with Faculty of Informatics, Vytautas Magnus University,
Kaunas, Lithuania and Baltic Institute of Advanced Technology, Lithuania.
E-mail:t.krilavicius@if.vdu.lt

K.L. Man is with Xi’an Jiaotong-Liverpool University - China, Myongji
University - South Korea and Baltic Institute of Advanced Technology,
Lithuania. E-mail:ka.man@xjtlu.edu.cn

and at the same time apologize to the customer, or the store
can take alternate actions, such as, arranging items from an
alternative source or asking the customer whether they want
a later delivery, etc. The scenario shows that the concept of
compensation is more general than traditional database roll-
back. Compensations are very important for handling failures
in long running transactions. Compensations are installedfor
every committed activity in a long-running transaction. Ifone
sub-transaction fails, then compensations of the committed
sub-transactions in the sequence are executed in reverse
order.

Web services technology provides a platform on which we
can develop distributed services. The interoperability among
these services is achieved by the standard protocols (WSDL
[2], SOAP [3]) that provide the ways to describe services,
to look for particular services and to access services. With
the emergence of web services, business transactions are
conducted using these services [4]. Web services provided
by various organizations can be inter-connected to implement
business collaborations, leading to composite web services.

Business collaborations require interactions driven by
explicit process models. Web services are distributed, in-
dependent processes which communicate with each other
through the exchange of messages. The coordination between
business processes is particularly crucial as it includes the
logic that makes a set of different software components
become a whole system. Hence it is not surprising that these
coordination models and languages have been the subject of
thorough formal study, with the goal of precisely describing
their semantics, proving their properties and deriving the
development of correct and effective implementations.

Formal techniques proved their usefulness in quite a few
areas, e.g. automotive industry [5], electronics [6], [7],in-
dustrial devices control [8], medical devices control [9],[10],
[11]. Process calculi are models or languages for concurrent
and distributed interactive systems. They have also been used
for modelling interactions in latency insensitive SoC inter-
connects [12]. It has been advocated in [13], [14] that process
algebras provide a complete and satisfactory assistance tothe
whole process of web services development. Being simple,
abstract, and formally defined, process algebras make it
easier to formally specify the message exchange between
web services and to reason about the specified systems.
Transactions and calculi have met in recent years both for
formalizing protocols as well as adding transaction features
to process calculi [15], [16], [17], [18].

Inspired by the growing interest in transaction processing
using web services, in this paper we propose a technique for
modelling business process in cCSP, then translating them
into Promela language [19] and analysing the model in SPIN
tool [20]. We introduce and informal translation from the
cCSP to Promela, and leave formal description for the future



research. We exemplify the process with a business web
service called Car Broker Web Service [21].

In section II we concisely overview existing results. Then
we present cCSP (section III-A) and Promela/SPIN (sec-
tion III-B). In section IV we discuss translation of cCSP
model to Promela, then exemplify it in section V-A with the
Car Broker Web Service. We finalize paper with conclusions
(section VI).

II. RELATED WORK

Several research issues, both theoretical and practical, are
raised by web services. Some of the issues are to specify web
services by a formally defined expressive language, to com-
pose them, and to ensure their correctness; formal methods
provide an adequate support to address these issues [15].
Recently, many XML-based process modelling languages
such as WSCI [22], BPML [23], WSFL [24], XLANG
[25] have emerged that capture the logic of composite web
services. These languages also provide primitives for the
definition of business transactions.

Fu et al. [26] propose a method that uses the SPIN model-
checking tool. The SPIN [20] tool takes PROMELA (Process
or Protocol Meta Language)[19] as the input language and
verifies its LTL (Linear Temporal Logic) [27] properties. In-
teractions of the peers (participating individual web services)
of a composite web service are modeled as conversations
and LTL is used for expressing the properties of these
conversations.

Several proposals have been made in recent years to give a
formal definition to compensable processes by using process
calculi. These proposals can be roughly divided into two
categories. In one category, suitable process algebras are
designed from scratch in the spirit of orchestration languages,
e.g., BPEL4WS. Some of them can be found in [28], [29],
[30]. In another category, process calculi like theπ-calculus
[31], [32] and the join-calculus [33] are extended to describe
the interaction patterns of the services where, each service
declares the ways to be engaged in a larger process.

III. C OMPENSATINGCSP (CCSP)AND SPIN

A. Compensating CSP (cCSP)

Transaction processing and process algebra inspired the
development of process algebra cCSP [34], [35], [30]. A
subset of the original cCSP is considered in this paper, which
includes most of the operators, as summarized in Table I.
Similar to CSP, processes in cCSP can engage in atomic
events and can be composed using sequential, choice and
parallel composition operators. The processes are categorised
into two types: (i) standard; and (ii) compensable: which
have a separate set of actions to be executed upon failure of
a transaction. VariablesP,Q, . . . are used for standard pro-
cesses andPP,QQ, . . . are used for compensable processes.

Input on channela and output on channelb can be de-
scribed asP?a andQ!b respectively. The operators different
from CSP are discussed below. In case of failures in long
running transactions, we need support to raise interrupt and
handle the interrupt. TheTHROWaction is used to raise and
interrupt and theYIELD is used to handle it. For example,
(P ;Y IELD;Q) is willing to yield to an interrupt in between
the execution ofP , andQ.

A compensable process is constructed using a pair
(P ÷ Q), whereP is the forward behaviour used to model
normal execution, andQ is the associated compensation de-
signed to compensate actions executed inP . The sequential
composition is defined in such a way, that actions done in
P are accumulated and will be executed in reverse order
in case composition needs to be aborted and compensated.
By enclosing a compensable processPP inside a trans-
action block [PP ], we get a complete transaction, where
the transaction block is also a standard process. Successful
completion ofPP represents successful completion of the
block. But, when the forward behavior ofPP throws an
interrupt, the compensations are executed inside the block,
and the interrupt is not observable from outside the block.

B. PROMELA and SPIN

PROMELA is the modelling language used in the Spin
tool. It is used to model the required interaction behaviour
and verify properties. The model consists of processes and
channels. Processes are independent entities which need to
be invoked using therun clause. Processes interact with
each other over message channels and/or globally declared
variables. Variables can be of types:bit, bool, byte,
array etc. For details of all data types see the PROMELA
manual in [19], [20].

The behavior of a process is defined by aproctypedecla-
ration and instantiated using therun command.

proctype A() { byte state; state = 3;}
init
{ run A(); }

The keywordatomic makes all the enclosed statements
to be executed as one indivisible unit, non-interleaved with
any other processes.

atomic{statements;}

Message channels are either input or output and carry data
between processes. For example, the channelmyout outputs
value of variablea, whereas the channelmyinput reads the
incoming value in the variableb.

chan myout = [2] of byte;
chan myinput = [0] of byte;
myout!a ;
myinput?b ;

The channel capacity can be given after its name. In the
above example, channelmyout has buffer capacity of 2
and the channelmyinput having capacity zero is used
for rendezvous communication. As cCSP uses rendezvous
communication, we have used similar channels in our model.

For control flow, theif statement does a selection be-
tween a set of options. If multiple options are enabled,
then any one is chosen at random. If none of the options
are enabled, then the statement blocks until some statement
becomes executable. In the following example, any one
option will get executed, depending on the condition.

if
:: (a != b) -> option1;
:: (a == b) -> option2;

fi

The most important statement of PROMELA that we used
in this paper is theunlessstatement

{ statements1 } unless { statements2 }

It starts execution instatements1. Before every state-
ment in statements1 is executed, it checks if the first



Standard Processes: Compensable Processes:
P,Q ::= A (atomic event)

|P ;Q (sequential composition)
|P2Q (choice)
|P ||XQ (parallel composition)
|SKIP (normal termination)
|THROW (throw an interrupt)
|Y IELD (yield to an interrupt)
|P ⊲ Q (interrupt handler)
|[PP ] (transaction block)

PP,QQ ::= P ÷Q (Compensation Pair)
|PP ;QQ
|PP2QQ
|PP ||XQQ
|SKIPP
|THROWW
|Y IELDD

TABLE I
LANGUAGE SYNTAX FOR CCSP

statement instatements2 can be executed. If yes, then
the control transfers tostatements2 else it continues
execution ofstatements1. If statements1 terminates,
statements2 is ignored.

IV. M ODELLING COMPENSATION OF CCSPIN

PROMELA

We propose a simple techniques for converting cCSP
models to Promela and analysing them using SPIN. In this
paper we just overview general principles of translation and
leave formal treatment for the future research.

Translation of thesimplecCSP process is rather straight-
forward and we do not discuss it here. Interesting part is
translation ofcompensableprocesses. We divide them into
two classes

1) single process in one transactional block,
2) multiple processes in one transactional block.

First, we will discuss a simpler case, and then we will
build on it and show how more complex translation can
be performed. Consider the following cCSP model of a
compensableprocess:
Proc = [R]

R = (((channel1?1;SKIPP)
2

(channel1?0;THROWW))÷ Compensation Actions)
R receives input fromchannel1and if input is0, it raises
an interrupt to startCompensation Actions. The PROMELA
implementation ofR will be:
byte doCompansate=0; // Global variable
proctype R()
{ byte value; /*local variable*/

{ //**********FORWARD SECTION************
channel1?value; //Wait for input.
if
::(value==1)->printf("Success");
::(value==0)->doCompansate=1; // interrupt

fi }
unless
//*******COMPENSATION SECTION*************
{ doCompansate==1;
... //Compensation Actions. } }

The first statement incompensation section is a
blocked statement and it has to be enabled first, to run
Compensation Actions.

V. WEB SERVICE MODEL

Car Broker Model is used in [21], where the author used
it as a case study for cCSP. Our Car Broker Model will
be slightly different from his proposed model but most of
the properties are common. The car broker web service
negotiates car purchases for buyers and arranges loans for
these. The car broker uses two separate web services: a

Supplier to find a suitable quote for the requested car model
and aLender to arrange loans. Each web service can operate
separately and can be used in other web services. In the
following sections, we describe all three web services. We
abstract several details from our description, e.g., how a
supplier finds suitable quote for a car model, how a broker
selects a quote from several available quotes, how a lender
decides to select a loan request, the details a buyer request
etc. The behavior of the web service is depicted in Figure 1.

Fig. 1. Architectural view of the Car Broker Web Service

A. Broker Web Service

We model the car broker using the processBroker . It
provides online support to customers to negotiate car pur-
chases and arranges loans for these. A buyer provides a need
for a car model. The broker first uses its business partner
Supplier to find the best possible quote for the requested
model and then uses another business partnerLoanStar to
arrange a loan for the buyer for the selected quote. The
buyer is also notified about the quote and the necessary
arrangements for the loan. BothLoanStar and theBuyer
can cause an interrupt to be invoked. A loan can be refused
due to a failure in the loan assessment and a customer can
reject the loan and quoted offer. In both cases, there is a need
to run the compensation, where the car might have already
been ordered, or the loan has already been offered.

The first step of the transaction is to receive an order from
the buyer. The compensation mechanism in our model is
little different than as mentioned in [21]. We will explain
it after defining all the web service models. For now just
consider that a compensationCompensateBroker, will be
called if interrupt occurs.M is used to represent the finite
set of car models ranged over bym. After receiving the order
(buyerOrder), it is then passed to the processProcessOrder
to perform the rest of the transaction. After receiving an
order for a car from theBuyer, the Broker first requests
the Supplier for available quotes (brokerRFQ) and then



Broker ∼= ((buyerOrder?m : M ;ProcessOrder(m))
÷ CompensateBroker)

ProcessOrder(m) ∼= brokerRFQ.m; supQuote?q : FQ;
2c∈q • (SendOrder(c)||Loan(a)

||SendQuote(c))
SendOrder(c) ∼= (brokerOrder.c÷ CancleSendOrder)

Loan(a) ∼= (brokerReqLoan.a : Amt÷ CancleLoan);
(loanStarReply?accept; SKIPP
2 loanStarReply?reject;THROWW )

SendQuote(c) ∼= brokerQuote.c; (buyerAck?accept;SKIPP
2 buyerAck?reject;THROWW )

CompensateBroker ∼= SKIPP
CancleSendOrder ∼= SKIPP

CancleLoan ∼= SKIPP

selects a quote from the received quotes (supQuote). We
abstract away from the details of how decisions are made.
The Broker then arranges a loan for the quoted car by
requesting a loan fromLoanStar. The amount of loan to
be requested is decided from the selected quote and then
passed to the processLoan. It requests loan fromLoanStar
and it can be either accepted or rejected. In the case where
the loan is accepted, it is assumed that the loan provider
starts its processing to arrange the loan. If the loan cannot
be provided then an interrupt is thrown to cancel the actions
that already took place. The buyer is also notified of the
quote for the selected car (fromSendQuote(c)). TheBroker
receives an acknowledgment (buyerAck) from theBuyer for
either accepting or rejecting the quote. In case of rejection,
an interruption is thrown to cancel the transaction and run the
appropriate compensation. The processesSendQuote, Loan
and SendOrder do not have any synchronization between
them and they interleave with each other. An interrupt thrown
from either theBuyer or theLoanStar can occur before or
after ordering the car to theSupplier. In either case, the
compensation mechanism takes care of it and the proper
compensations will run.

B. Buyer Web Service

Buyer web service starts the whole process by expressing
his need for a car to theBroker web service. Initially
Buyer will send a request (buyerOrder) to theBroker and
waits for a quote from theBroker . The Broker will collect
the quote (the complete processing ofBroker is already
explained) and send it to theBuyer(brokerQuote). After
receiving the Quote fromBroker , Buyer can either accept it
or reject it. In both situationsBuyer must inform the broker
about his decision (buyerAck). Buyer also has an associated
compensation action calledCompensateBuyerto cancel his
order in case of exception occurred.

Buyer ∼= ((buyerOrder.m : M ; brokerQuote?q : Q;
(buyerAck.accept2buyerAck.reject);
SKIPP )÷ CompensateBuyer)

CompensateBuyer ∼= SKIPP

C. Lender Web Service

We assume a lender web serviceLoanStar, that offers
loans to online customers. A customer submits a request
for an amount to be loaned along with other required
information. LoanStar first checks the loan amount and
if the amount is 10,000 or more, thenLoanStar asks its
business partnerAssessor to thoroughly assess the loan.

After a detailed assessment of the loan,Assessorcan either
approve the loan or reject the loan. A full assessment is
costly, so if the loan amount is less than 10,000, then we
assume that theLoanStar will directly grant the loan.

LoanStar ∼= (brokerReqLoan?a : Amt;Process(a))
÷CancelLoan

Process(a) ∼= ChkAmt.a; ((Below.a; loanStarReply.accept)
2(Over.a ;Assessor(a)))

Assessor(a) ∼= ChkRisk.a; ((Low.a; loanStarReply.accept)
2(High.a; loanStarReply.accept))

CancelLoan ∼= SKIPP

At the top level, the transaction is defined as a se-
quence of two processes. First, it receives a loan order
(brokerReqLoan) from theBroker and then processes the
loan. After the request is received from theBroker , the
requested amount is passed to the process calledProcessto
take the necessary steps before arranging the requested loan.
It first checks the loan amount in order to determine the type
of evaluation that it needs to perform before accepting the
loan. We define a processChkAmt which checks the loan
amount in the order to determine whether the amount is over
or below the given limit, which is in this case 10,000. Here,
ChkAmt , Blow andOver abstract away the details of how
the checking has been done. If the loan amount is less than
10,000, thenProcesswill grant the loan by sendingaccept
via loanStarReply. If the risk is high then control is passed
to Assessorto perform a full assessment. On the other hand,
if the amount is higher than or equal to 10,000, thenAssessor
will start its assessment immediately. After performing a full
assessment and depending on the outcome,Assessoreither
accepts or rejects the requested loan. In the example, we
abstract the details of the behavior ofAssessor. It can be
modeled as a separate web service or as a part of the lender
web services. The associated compensation action here is
called CompensateLoanand will be run if any exception
occurred.

D. Supplier Web Service

It sends a set of quotes (supQuote) to the Broker after
receiving a request for quotes (brokerRFQ) from Broker .
We have not explained the detail quotes selection procedure
here. We assumed that theSupplier will nondeterministically
select one set of quotes (q) from the multi-set of quotes (FQ).
After sending the quotes to theBroker it will wait for the
Broker for ordering a car mentioned in the quotes. It has
associated compensation action calledCompensateSupplier
to cancel the order in case of exception occurred.

Supplier ∼= (brokerRFQ?m : M ; supQuote?q : FQ;
(brokerOrder?c);SKIPP )

÷ CompensateSupplier
CompensateSupplier ∼= SKIPP

E. The whole car broker system

After defining each web services separately, now we are
going to define the whole car broker web system. The cCSP
description of this model is given below: We have enclosed

SYSTEM ∼= ([Buyer||Broker ||Supplier||LoanStar])



all the web service processes into a single transactional block
(see section III-A). Hence all the processes can automatically
yield the interrupt thrown by any of them to run the corre-
sponding compensation actions.

F. Accomplishing Compensation

As mentioned in section V-A that theBroker will throw an
exception if theBuyer rejects the quote or if theLoanStar
rejects the loan. Since all the above cCSP processes (Broker ,
Buyer, Supplier andLoanStar) are running in parallel and
comes under one single transactional block, the interrupt
thrown byBroker can be automatically yielded by the other
processes. So, wheneverBroker throws some interrupt it
will be yielded by all the processes (includingBroker ) and
starts their individual associated compensation action. The
purpose of compensation sub-process in each process is to
revert back all of its updates. We are assuming that each
web service maintain enough log records, so that they can
revert their own updates in case of transaction failure. Since
the compensation actions of each processes are all internal
actions we are ignoring them by just assuming aSKIP .

G. PROMELA Model for Car Broker Web Service

Our complete system is enclosed within one transactional
block as explained in section V-E. The detail explana-
tion about how to convert such type of cCSP model into
PROMELA is already discussed in section IV. Success of
a transaction is dependent on two conditions: (i) Buyer
accepts the quote and (ii) LoanStar grants the loan. Otherwise
transaction cannot succeed and compensation must run.

In our implementation we use two global variables
sqSuccess andlSuccess to represent the status of buyer
acceptance and loan grant respectively. Initially both assigned
to 0. Two subprocess of Broker will decide the success of
the transaction by setting the appropriate variables. If any
condition is not satisfied, the corresponding compensate vari-
able is set, in particular variablessqCompensate=1. and
lCompensate=1. If any one of the compensate variables
is 1, then the“unless” part of all the compensation processes
will become enabled and hence starts compensation. So for
each compositional process in our model, we define suc-
cess as:(lSuccess==1 && sqSuccess==1) and run com-
pensation if:(lCompensate==1 || sqCompensate==1)

Note that in our model every transaction will eventually
either succeed or fail. Hence, either of the above state will
eventually be true.

The sub-processLoan of the Broker process is shown
below. It sets the appropriate variables depending on the
decision of the loan agentLoanStar.
proctype Loan(int qL)
{

{ brokerReqLoan!qL;
loanStarReply?lresult;
if
:: lresult==1 -> // loan accepted

lSuccess=1;
:: lresult==0 -> // loan rejected

lCompensate=1;
fi;
if // Wait for success indication
:: (lSuccess==1 && sqSuccess==1)

-> loanSuccessful=1;
fi }

unless {
(lCompensate==1 || sqCompensate==1)

// run compensation
-> loanCancelled=1;
} }

TheSendQuote sub-process of theBroker process deals
with theBuyer and sets the appropriate variables depending
upon the Buyer’s decision.
proctype SendQuote(int qSQ)
{

{ brokerQuote!qSQ;
buyerAck?sqresult;
if
:: sqresult==1 -> // Buyer accepts quote

sqSuccess=1;
:: sqresult==0 -> // Buyer reject quote

sqCompensate=1;
fi;
... }

unless {
(lCompensate==1 || sqCompensate==1)
-> // Run compensation
... } }

1) Verification: We verified safety and liveness properties
for the model. The verification output for deadlock freedom
is given below.
(Spin Version 6.1.0 -- 4 May 2011)
Bit statespace search for:

never claim - (not selected)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 212 byte, depth reached 78, errors: 0
3791795 states, stored

21925798 states, matched
25717593 transitions (= stored+matched)

9 atomic steps

The verification output for liveness is given below. Liveness
is checked by showing the absence of acceptance cycles and
also non-progress cycles. The model was free of acceptance
cycles:
(Spin Version 6.1.0 -- 4 May 2011)
Bit statespace search for:

never claim - (not selected)
assertion violations +
acceptance cycles + (fairness disabled)
invalid end states +

State-vector 212 byte, depth reached 78, errors: 0
3774707 states, stored

21983418 states, matched
25758125 transitions (= stored+matched)

11 atomic steps

The model was free of non-progress cycles and it also
satisfied several LTL properties. Following is the output for
the propertyltl_0 along with freedom from non-progress
cycles.
(Spin Version 6.1.0 -- 4 May 2011)
Bit statespace search for:

never claim + (ltl_0)
assertion violations + (if within scope of claim)
non-progress cycles + (fairness disabled)
invalid end states - (disabled by never claim)

State-vector 224 byte, depth reached 145, errors: 0
3945154 states, stored

27937663 states, matched
31882817 transitions (= stored+matched)

7 atomic steps

The list of LTL properties satisfied by the model is given
below:

1) If quote is rejected by the buyer then all processes are
compensated.

2) If loan is rejected by LoanStar then all processes are
compensated.



ltl{ []( // ltl_0
(lCompensate==1) ->
<> (
(supplierCancelled==1)&&(brokerCancelled==1)&&
(buyerCancelled==1) &&
(sendOrderCancelled==1)&&
(sendQuoteCancelled==1)&&(loanCancelled==1)&&
(sendOrderCancelled==1)&&
(loanStarCancelled==1) &&
(assessorCancelled==1)&&(processCancelled==1)

) ) }

3) If quote is accepted by buyer and the loan is sanc-
tioned, then the processes are successful.

4) If no compensation request comes due to the buyer
rejecting the quote and for the loan amount if there is
low risk involved or the loan amount is less, then the
loan is sanctioned.
ltl{ [](
((lowRisk||lessLoanAmount)&&sqCompensate==0) ->
<> ( lSuccess==1))}

5) If there is no compensation request from LoanStar and
if the buyer accepts the quote, then the quote accepted
variable is set.
ltl{ [](
(buyerAccepts && lCompensate==0) ->
<> ( sqSuccess==1))}

VI. CONCLUSIONS

Modelling, analysis and implementation of complex busi-
ness transactions is not a trivial task. In this paper we
present a technique that could be helpful in solving this
problem. We propose to use cCSP for modelling of business
transactions, then to translate cCSP model to Promela and to
analyze it using SPIN. In such a way a language designed
for such processes can be used for modelling (cCSP) and
then, a well known and mature tool (SPIN) can be used
for analysis of the system. We have defined a procedure for
translating cCSP model to Promela language and exemplified
using realistic Car Broker example. The results seem very
promising. However, these results are just work in progress,
because it is necessary to define formal translation from
cCSP to Promela to be able to show how analysis results
translate back to cCSP model.

ACKNOWLEDGMENT

This paper is partially supported by Research Grant from
National Natural Science Foundation of China (61103029)
and the project VIZIT-1-TYR-003 (VP1-3.1-ŠMM-01-V-02-
001), Research Council of Lithuania.

REFERENCES

[1] J. Gray and A. Reuter,Transaction Processing : Concepts and Tech-
niques. Morgan Kaufmann Publishers, 1993.

[2] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web
services description language (wsdl) 1.1,” March 2001. [Online].
Available: http://www.w3.org/TR/wsdl

[3] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana, “Unraveling the web services web: An introductionto SOAP,
WSDL, and UDDI.” IEEE Internet Computing, vol. 6, pp. 86–93,
2002.

[4] M. Little, “Transactions and web services,”Commun. ACM, vol. 46,
pp. 49–54, October 2003.

[5] B. Gebremichael, T. T. Krilavičius, and Y. S. Usenko, “Aformal
model of a car periphery supervision system in UPPAAL,” in Proc.
of Workshop on Discrete Event Systems, sep 2004, pp. 433–438.

[6] H. K. Kapoor, “Formal modelling and verification of an asynchronous
dlx pipeline,” in The 4th Int, Conf. on ESoftware Engineering and
Formal Methods (SEFM), 2006, pp. 118–127.

[7] K. Man, T. Krilavičius, C. Chen, and H. Leung, “Application of bhave
toolset for systems control and mixed-signal design,” inProc. of the
Int. MultiConference of Engineers and Computer Scientists(IMECS),
Hongkong, March 2010.

[8] T. Krilavičius and V. Miliukas, “Functional modellingand analysis of
a distributed truck lifting system,” inThe 5th Int. Conf. on Electrical
and Control Technologies (ECT 2010), Kaunas, Lithuania, 2010, p. 6.

[9] T. Krilavičius, D. Vitkute-Adžgauskienė, and K.̌Sidlauskas, “Sim-
ulation of the radiation therapy system for respiratory movement
compensation,” inProc. of the 7th Int. Conf. Mechatronic Systems
and Materials (MSM 2011), Kaunas, Lithuania, July 2011.

[10] T. Krilavičius and K. Man, “Timed model of the radiation therapy
system with respiratory motion compensation,” inThe 6th Int, Conf.
on Electrical and Control Technologies (ECT 2011), Lith., 2011, p. 6.

[11] K. Man, T. Krilavičius, K. Wan, D. Hughes, and K. Lee, “Modeling
and analysis of radiation therapy system with respiratory compensation
using Uppaal,” inProc. of the 9th IEEE Int. Symp. on Parallel and
Distributed Processing with Application (ISPA 2011), Korea, 2011.

[12] H. K. Kapoor, “Process algebraic view of latency-insensitive systems,”
IEEE Transactions on Computers, vol. 58, no. 7, pp. 931–944, 2009.

[13] L. G. Meredith and S. Bjorg, “Contracts and types,”Commun. ACM,
vol. 46, pp. 41–47, October 2003.

[14] G. Salaun, L. Bordeaux, and M. Schaerf, “Describing andreasoning
on web services using process algebra,” inProc. of IEEE Int. Conf,
on Web Services, july 2004, pp. 43 – 50.

[15] M. Berger and K. Honda, “The two-phase commitment protocol in an
extended pi-calculus.”Electr. Notes Theor. Comput. Sci., 2000.

[16] A. Black, V. Cremet, R. Guerraoui, and M. Odersky, “An equational
theory for transactions,” inIn Proc of FSTTCS. Springer, 2003, pp.
38–49.

[17] L. Bocchi, C. Laneve, and G. Zavattaro, “A calculus for long-running
transactions,” inFormal Methods for Open Object-Based Distributed
Systems, ser. LNCS, E. Najm, U. Nestmann, and P. Stevens, Eds.
Springer, 2003, vol. 2884, pp. 124–138.

[18] R. Bruni, C. Laneve, and U. Montanari, “Orchestrating transactions in
join calculus,” 2002.

[19] Promela manual. [Online]. Available:
http://spinroot.com/spin/Man/promela.html

[20] Basic spin manual. [Online]. Available:
http://spinroot.com/spin/Man/Manual.html

[21] S. H. Ripon, “Process algebraic support for web servicecomposition,”
SIGSOFT Softw. Eng. Notes, vol. 35, pp. 1–7, March 2010.

[22] “Web service choreography interface (wsci) 1.0,” August 2002.
[Online]. Available: http://www.w3.org/TR/wsci/

[23] “Business process modeling language (bpml).” [Online]. Available:
http://www.bpmi.org/

[24] F. Leymann, The web services flow language (WSFL1.0),
IBM Software Group, 2001. [Online]. Available: http://www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

[25] S.Thatte, XLANG: Web Services for Business Process
Design, Microsoft Corporation, 2001. [Online]. Available:
http://www.gotdotnet.com/team/xmlwsspecs/xlang-c/default.htm

[26] X. Fu, T. Bultan, and J. Su, “Analysis of interacting bpel web services,”
in Proc. of the 13th Int. Conf. on World Wide Web, 2004, pp. 621–630.

[27] B. Banieqbal, H. Barringer, and A. Pnueli, “Temporal logic in speci-
fication,” in LNCS. UK: Springer, 1989, pp. 8–10.

[28] R. Bruni, H. Melgratti, and U. Montanari, “Theoreticalfoundations
for compensations in flow composition languages,”SIGPLAN Not.,
vol. 40, pp. 209–220, January 2005.

[29] M. Butler and C. Ferreira, “A process compensation language,” in
Integrated Formal Methods, ser. LNCS, W. Grieskamp, T. Santen, and
B. Stoddart, Eds. Springer Berlin / Heidelberg, 2000, vol. 1945, pp.
61–76.

[30] M. Butler, C. Hoare, and C. Ferreira, “A trace semanticsfor long-
running transactions,” in25 Years of CSP, A. Abdallah, C. Jones, and
J. Sanders, Eds., vol. Lectur. Springer, October 2005, pp. 133–150.

[31] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes,
i,” Inf. Comput., vol. 100, pp. 1–40, September 1992.

[32] J. Parrow,Handbook of Process Algebra. Elsevier, 2001, ch. 8, pp.
479–543.

[33] C. Fournet and G. Gonthier, “The reflexive cham and the join-
calculus,” in In Proc. of the 23rd ACM Symp. on Principles of
Programming Languages. ACM Press, 1996, pp. 372–385.

[34] S. Ripon, “Extending and relating semantic models of
compensating csp,” Ph.D. dissertation, 2008. [Online]. Available:
http://eprints.ecs.soton.ac.uk/16584/

[35] S. H. Ripon and M. Butler, “Formalizing ccsp synchronous
semantics in pvs,” Society, p. 9, 2010. [Online]. Available:
http://arxiv.org/abs/1001.3464




