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Abstract—This paper presents a self-checking 

implementation for adder schemes using the dual duplication 

code. To prove the efficiency of the proposed method, the 

circuit is simulated in double pass transistor CMOS at 32nm 

technology and some transient faults are voluntarily injected in 

the layout of the circuit. This fully differential implementation 

requires only 20 transistors which mean that the proposed 

design involves 28.57% saving in transistor count compared to 

the implementation using standard CMOS technology.  

 
Index Terms—full adder, double pass transistor technology, 

self-checking, faults 

I. INTRODUCTION 

Addition is one of the fundamental arithmetic operations. 

It is used extensively in many VLSI systems such as 

microprocessors and application specific DSP architecture. 

In addition to its main task, which is adding two numbers, it 

is the nucleus of many other useful operations such as, 

subtraction, multiplication, address calculation, etc [1, 2]. 

As a result, design of a high-performance full-adder is very 

useful and important [3, 4, 5-6] to ameliorate the 

performance of overall modules. This is the reason of many 

researchers trying to present different logics of 1-bit full 

adder [7-8]. 

The most conventional one is complementary CMOS full 

adder (C-CMOS) [9]. It is based on regular CMOS structure 

with pull-up and pull-down transistors and has 28 transistors. 

Another conventional adder is the Complementary Pass-

Transistor Logic (CPL) [10, 11, 12] with swing restoration 

which uses 32 transistors. CPL produces many intermediate 

nodes and their complement to make the outputs. The basic 
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difference between the pass transistor logic and the 

complementary CMOS logic styles is that the source side of 

the pass logic transistor network is connected to some input 

signals instead of the power lines [13, 14]. A Transmission 

Gate Full-Adder (TGA) presented in [15] contains 20 

transistors. 

Double pass transistor full adder cell has 48 transistors 

and operation of this cell is based on the double pass 

transistor logic in which both NMOS and PMOS logic 

networks are used [16]. 

On the other hand, the design of a faster and highly 

reliable adder is of major importance. Thus, much effort has 

been invested in the research that has led to faster and more 

efficient ways to perform this operation [17, 18]. 

Fault tolerance allows a reliable system operation in the 

presence of errors [19, 20]. While classical fault tolerant 

architectures such as triple modular redundancy (TMR) are 

very costly, self-checking circuits provide an interesting 

alternative [21, 22]. Self-checking circuits consist of a 

functional unit encoded by means of an error detecting code 

and are continuously verified by the checker [23]. Typically, 

computed results are verified by using a self-checking 

design technique, primarily because the self-checking 

property allows both transient/intermittent and permanent 

faults to be detected, thus preventing data contamination.  

That is why from the very early developments of fault 

tolerant computers, an important amount of effort had been 

done on designing self-checking arithmetic units. The first 

ones are based on arithmetic residue codes [24-25]. Then a 

parity prediction scheme has been proposed in [26] and [27]. 

A Berger code prediction scheme has been also developed in 

[28], and more recently self-checking fully differential 

design has been proposed [29].  

In this paper, we present a self-checking full adder based 

on two-rail encoding scheme. To prove the efficiency of the 

proposed method, the circuit is simulated in double pass 

transistor CMOS 32nm technology and some transient faults 

are voluntary injected in the layout of the circuit. The 

proposed design involves 28.57% saving in transistor count 

compared to standard CMOS technology.  

The paper is organized as follows. In Section II, we 

describe the proposed design. Section III shows the 

simulation results in 32nm double pass transistor process 

technology. Conclusions are given in Section VI.  
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II. PROPOSED DESIGN 

The blooming development of Computer Science has led 

to the growth of Integrated Circuit (IC) devices. Most of the 

Very Large Scale IC (VLSI) applications, such as digital-

signal processing and microprocessors, use arithmetic 

operations extensively [30]. In addition, among these widely 

used operations, subtraction and multiplication are most 

commonly applied. The 1-bit full adder is the building block 

of these operation modules. 

A full adder is a three-input two-output block, where the 

inputs are the two bits to be summed: a and b, and the carry 

input bit (Cin), which derives from the calculations of the 

previous digits. The outputs are the result of the sum 

operation, Sum, and the resulting value of the carry output 

bit (Cout) [31]. 

Many full adders have been designed and published in 

literature. They are built upon different logic styles [32].  

In this paper, we present a self-checking full adder based 

on the double pass transistor technology. 

A. Double pass-transistor logic (DPL) 

The basic difference of pass transistor logic compared to 

the CMOS logic style is that the source side of the logic 

transistor networks is connected to some input signals 

instead of the power lines. In the Double Pass Transistor 

Logic (DPL) style [33, 34, 35], both NMOS and PMOS 

logic networks are used in parallel.  

Pass transistor logic is attractive as fewer transistors are 

needed to implement important logic functions, smaller 

transistors and smaller capacitances are required, and it is 

faster than conventional CMOS. However, the pass 

transistor gates generate degraded signals, which slow down 

signal propagation. This situation will be more critical when 

the output signals should be propagated to next stage as is 

the case for the carry gate in ripple carry adder. 

To avoid this signal degradation, inverters are added in 

the outputs of the circuit. 

In Fig. 1, the schematic of the proposed static DPL logic 

circuit for a full adder is shown. 
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Fig. 1.  The proposed self-checking full adder 

Inverters are added to restore degraded signals generated 

by the differential SUM and carry gate. 

This fully differential implementation requires only 20 

transistors which mean that the proposed design involves 

28.57% saving in transistor count compared to standard 

CMOS technology.  

 

B. Self-checking design 

Self-checking circuits are increasingly becoming a 

suitable approach to the design of complex VLSI circuits, to 

cope with the growing difficulty of on-line and off-line 

testing [36]. They are class of circuits in which occurrence 

of fault can be determined by observation of the outputs of 

the circuits. 

Self-checking circuits are based on an appropriate coding 

of the inputs and outputs of the circuit. Code checkers are 

used to monitor whether the circuit responses are within the 

output code space. As long as this condition is fulfilled, the 

output is assumed to be correct. If the code checker reveals a 

non code word, an error is detected [37]. 

The checker determines whether the output of the circuit 

is a valid code word or not. It also detects a fault occurring 

within itself [38]. Double-rail checker is based on the dual 

duplication code as shown in Fig. 2. It compares two input 

words X and Y that should normally be complementary 

( y x ) and delivers a pair of outputs coded in dual-rail. 

 

 
 
Fig. 2.  Dual rail checker cell 

 

A self-testing dual-rail checker can be designed as a 

parity tree where each XOR gate is replaced by a dual rail 

checker cell. The resulting checker is also an easily testable 

circuit since only four code inputs are needed to test a dual 

rail checker of any length [39]. This checker is important in 

self-checking design since it can be used to check dual 

blocks (and duplicated blocks by inverting the outputs of 

one of them). However, its more significant use consists of 

the compaction of the error indication signals delivered by 

the various checkers of a complex self-checking circuit. 

Each checker delivers a pair of outputs coded in dual-rail. 

Thus, the dual-rail checker can compact the dual-rail pairs 

delivered by the various checkers of the system into a single 

dual-rail pair. This pair delivers the global error indication 

of the system. 

III. SIMULATION RESULTS 

The full adder circuit is implemented in full-custom 32nm 

DPL technology [40]. SPICE simulations of the circuit 

extracted from the layout, including parasitic, are used to 

demonstrate that this adder has an acceptable and expected 

electrical behaviour. 
The SPICE simulation of the differential full adder is as 

shown in Fig. 3. 
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Fig. 3.  Differential full adder. (a): Layout and  (b): Electrical simulation 
(SPICE) 

 

As it is shown in Fig. 3(b), the differential outputs are 
complementary which proves that the circuit is fault free. 

In order to verify the circuit’s capability                                                                                                                                                                                                      

with realistic circuit defects, we simulate the adder in the 

presence of faults. Faults are voluntarily and manually 

injected into the physical layout of the circuit. In this case, 

the fault is injected in the primary input: ( a a ). The 

SPICE simulations are shown in Fig. 4. 
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Fig. 4.  SPICE simulation of the adder in 32nm DPL technology with 

injection of primary fault (a a ) 

 
In order to show the importance of the dual rail checker 

in the detection of faults, we simulate a two bit of the full 
adder of Fig. 4.  

Fig. 5 gives an example of these simulations.  
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Fig. 5.  SPICE simulation of the 2 bits full adder in 32nm DPL technology 

with injection of a primary fault (a a ) 

 
The above simulations show that when the fault is 

injected into the primary input (a), the duplicated outputs 
sum (Sum1/Sumb1 and Sum2/Sumb2) and carry 
(Cout1/Coutb1 and Cout2/Coutb2) do not remain 
complementary so that checkers (Sum checker and/or carry 
checker) indicate a non valid code.  

In this case, the fault is detected by the outputs of the 
carry checker. We can see that fCout and fCoutb are not 
complementary and indicate a non valid code.  

 

IV. CONCLUSION 

 
In this paper, a self-checking full adder is proposed. The 

circuit is simulated using the double pass transistor logic. 
This technique involves 28.57% saving in transistor count 
compared to standard CMOS technology.  

The presence of faults in the proposed design is detected 

using a double rail checker. In the presence of any fault, a 

non-valid code word is provided as input to the checker 

yielding a non-valid output code word, hence the fault is 

detected. 
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