
How Probability Weighting Affects Inventory
Management with Supply Disruptions

Junlin Chen♭, Han Zhao, Xiaobo Zhao

Abstract—There are many evidences that people tend to
overweight low-probability events and underweight high-
probability events. This risk attitude is generally expressed
as an inverse-S shaped weighting function. This paper
considers a risk-averse inventory manager who operates
a continuous-review inventory system subject to supply
disruption risk. Both Zero-Inventory-Order (ZIO) and
Non-ZIO policies are considered. Based on the studies
of [1], [2], [3], we provide an Economy Order Quantity
under Disruption (EOQD) model with consideration of the
inverse-S shaped weighting function. We conduct numeri-
cal studies to investigate the impacts of weighting function
on optimal decisions and system costs. Our results show
that with ZIO policy, ordering more may not be efficient
for a risk-averse inventory manager to mitigate supply
disruption risk; whereas with Non-ZIO policy, ordering
less but more frequently is suggested to be applied.

Index Terms—supply disruption, EOQD, inventory,
weighting function.

I. INTRODUCTION

SUPPLY disruptions may be caused by diverse rea-
sons including nature disasters, equipment failures

or damaged facilities, during which a supplier cannot
fulfill customer orders and then influence flows of the
whole supply chain.

Numerous literature study about inventory systems
with disruptions. Parlar and Berkin[1], Berk and Arreola-
Risa [2] first introduce disruptions into Economy Order
Quantity (EOQ) model, which is labeled by Economy
Order Quantity under Disruption (EOQD) model. They
examine an inventory system with lost sales, where the
supply status may be up and down. The durations for
both up and down statuses are assumed to be expo-
nentially distributed. The optimal order quantities are
determined by minimizing the expected cost per unit
time. An extension work of [3] considers an EOQD
model with back orders and developed models for single,
two, and multiple suppliers. Gürler and Parlar [4] allow
the duration of up/down periods as Erlang-k interfailure
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times/general repair times. Qi et al.[5] consider both the
supplier and the retailer are subject to disruptions. A
disruption to the supplier results in an unavailable supply,
and a disruption to the retailer destroys the inventory at
the retailer. Because it is not possible to develop closed
form solutions to EOQD models, Snyder [6] develops an
approximation to EOQD model in an inventory system
with lost sales, that is the inventory is managed by Zero-
Inventory-Order (ZIO) policy. Heimann and Waage [7]
relax the assumption of the positive re-order point r
and constructed an approximation to EOQD model in an
inventory system with back orders, that is the inventory
is managed by the non-ZIO policy.

Apart from EOQD models, supply disruption is
widely analyzed in other inventory models. For example,
Arreola-Risa and Decroix [8], Kalpakam and Sapna
[9] analyze an environment dependent (s, S) inventory
system to minimize the long-run expected cost. The
environment goes through available and unavailable pe-
riods according to a two-state Markov chain. Parlar
and Perry [10], and Mohebbi [11] formulate (R,Q)-
type models for supply disruptions within continuous-
review inventory systems with stochastic lead times
and stochastic demands. For a comprehensive review
of inventory models with supply disruptions, we refer
interested readers to [12].

This paper studies a continuous-review inventory sys-
tem with supply disruption risk. Both ZIO and Non-ZIO
inventory management policies are examined. Unlike the
the classical EOQD model, we consider the inventory
manager is not perfectly rational but with probabilistic
risk attitudes to vary within the probability interval. As
illustrated by prospect theory in [13], people tend to
overreact to small probability events, but underreact to
medium and large probabilities, on the basis of which,
the inventory manager in our system is likely to overes-
timate the hazard rate: the probability that the supplier is
unavailable when inventory level reaches reorder point.
Following [1], [2], [3], we theoretically presented EOQD
models with probabilistic risk attitudes of inventory
manager. Our numerical simulations demonstrate that for
the ZIO policy, a risk averse (overestimating the hazard
rate) inventory manager does not necessarily order a
larger quantities to mitigate supply disruption risk, the
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γ = 1, θ = 1(unweighted)

γ = 0.79, θ = 0.99

Fig. 1. A sample of two parameter weighting function (Prelec 1998)

optimal order quantity generated from a cost utility
function could be less than the counterpart generated
from a cost function. Whereas for the Non-ZIO policy,
a risk averse (overestimating the hazard rate) inventory
manager is suggested to order more frequently but with
less quantities. However, the risk attitude occurs cost,
especially for the ZIO policy. A risk averse inventory
manager always expends more than a risk natural inven-
tory manager.

Many empirical experiments have proved the exis-
tence of people overweighting small probability and
underweighting medium and large probabilities so that
the weighting function is characterized by an inverse-S
shape, e.g., [13], [14], [15], [16], as shown in Figure
1. Etchart-Vincent [17] studies the shape of weighting
function under both small and large loss condition.
Mattosa et al. [18] certificate that only when the risk
aversion and loss aversion combined with weighting
function will they have obvious influence to the de-
cision maker. Gonzalez and Wu [19] conduct a study
that permits nonparametric estimation of an individual’s
value function and weighting function. They interpret
the shape and properties of the weighting function from
the psychological perspective. For parametric weighting
functions, see, [20], [21], [22], [23], who provide diverse
parametric weighting functions with two or three param-
eters to describe the functions’ shape and preference.

For applications of weighting functions, Ranjan and
Shogren [24] incorporate the weighting function into a
bargaining model to study the water market strategy.
Berling and Peters [25] analyze the weighting function
in a bargaining model with asymmetric information.
Schweitzer and Cachon [26] propose the fluctuant of
order quantity in the supply chain due to the prospect
theory. To our knowledge, the model constructed in this
paper has not been examined in the literature.
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Fig. 2. Inventory level and the status process with ZIO policy

The remaining sections of this paper are organized as
follows. In Section 2, we builds our model, and describe
the structural property of the hazard rate function. In
Section 3, we provide numerical studies, and in Section
4, we conclude the paper.

II. THE MODELS

We model the continuous-review inventory system
with an unreliable supplier using the economic order
quantity (EOQ) model with disruptions. In the system,
fixed ordering cost K per order, and holding cost h
per unit per time are incurred. The demand is constant
with rate D units per time. The unreliability of the
supplier represents that the supplier may shut down
for a certain period any time when it functions nor-
mally. The durations of both “UP”(functioning normally)
and “DOWN”(shut down) periods are exponentially dis-
tributed with rate λ and µ respectively. We consider
the EOQD problem (EOQ with disruptions) with ZIO
Policy and Non-ZIO policy respectively. For ZIO policy,
when the supplier is down, no order can be placed and
all demands observed until the beginning of the next
normal state are lost, with a stock out cost of π per unit.
For Non-ZIO policy, unit stock out costs π. When the
supplier is down, no order can be placed and all demands
observed until the beginning of the next normal state are
backordered. Figure 1 depicts a sample of the inventory
level process over time for ZIO policy, and for Non-ZIO
policy as in figure 3.

As constructed by [1] and [2], the average cost objec-
tive function with ZIO policy is given as follows

gz(q) =
K + hq2/2D + πDβ(q)/µ

q/D + β(q)/µ
, (1)

where
β(q) =

λ

λ+ µ
(1− e−(λ+µ)q/D). (2)
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Fig. 3. Inventory level and the status process with Non-ZIO policy

Here, β(q) is the probability that the supplier is
unavailable when the inventory level reaches reorder
point (zero in the ZIO case).

For EOQD model with Non-ZIO policy, [3] presented
the average cost objective function as follows

gn(q, r) =
(K + hq2/2D + hqr/D) + β(q)C(r)

q + β(q)D/µ
, (3)

where
β(q) =

λ

λ+ µ
(1− e−(λ+µ)q/D), (4)

and

C(r) =
D2

µ2
(
h

D
(µr/D − 1) + e−µr/D(πµ/D + h/D)).

Here, β(q) is the probability that the supplier is
unavailable when the inventory level reaches the reorder
point r, and C(r) is the expected cost incurred from the
time when the inventory level reaches reorder point r
and the state is “DOWN” to the beginning of the next
“UP” state.

Then, we incorporate risk attitudes of the decision
maker into the EOQD models. As in Figure 1, prob-
ability weighting functions are concave on an initial
interval and convex beyond that, which implies that
small probabilities are overweighted while large ones
are underweighted. Moreover, the probability weighting
function are asymmetric with a inflection point at about
1/3 where people(firm) switches from overestimating low
probability to underestimating high probability. Follow-
ing [23], we use a two-parameter weighting function as

w(p) = e−θ(−lnp)γ (5)

where parameter θ mainly affects the inflection (refer-
ence) point, and parameter γ mainly affects the curva-
ture.

In our model, recall that β(q) is the critical probability
that the supplier is unavailable when the inventory level
reaches zero. It is likely that decision makers may
assign higher weights to the β(q), and make decisions
irrationally. Then, we incorporate the weighting function
in equation (5) into the average cost objective functions
for ZIO policy and Non-ZIO policy in equations (6) and
(7), and get

gZ(q) =
K + hq2/2D + πDw(q)/µ

q/D + w(q)/µ
, (6)

gN (q, r) =
(K + hq2/2D + hqr/D) + w(q)C(r)

q + w(q)D/µ
,

(7)
where

w(q) = e−θ(−ln λ
λ+µ (1−e−(λ+µ)q/D))γ . (8)

Here, gZ(q) is average cost objective function for ZIO
policy, and gN (q, r) is average cost objective function for
Non-ZIO policy. Then, we denote the order quantity by
q and the re-order point by r when the decision maker is
rational. And when the decision maker is irrational, those
are denoted by qw and rw. The optimal order quantities
and reorder points (for Non-ZIO policy) are obtained
at the minimizers of the cost objective functions. That
is gZ(q

∗
w) = minq≥0 gZ(q), gz(q

∗) = minq≥0 gz(q),
gN (qw

∗, rw
∗) = minq≥0,r∈R gN (q, r), gn(qw∗, rw

∗) =
minq≥0,r∈R gn(q, r).

The inverse-S shape of weighting function describes
that decision maker always tends to overweight the
possibility of low probability events while underweight
that of the high probability events. Since supply
disruptions rarely happen, our model is built with
the weighting function falling in the concave interval
(below the inflection point), in which the decision maker
overweights the disruption probability in the system.

Proposition 1: w(q) is increasingly concave in q with
q ≥ 0.

Proof:
Because demand rate D is deterministic, and with-

out loss of generality we take D = 1. Let X =
−θ(−ln λ

λ+µ (1 − e−(λ+µ)q))γ , then w(q) in (8) equals
to eX .

It is clear that the first derivation of w(q) on
q is eX · X ′, where X ′ = θr[(−ln λ

λ+µ (1 −
e−(λ+µ)q))r−1] (λ+µ)e−(λ+µ)q

λ
λ+µ (1−e(λ+µ)q)

.

Hence, eX ·X ′ ≥ 0 for q ≥ 0 and, by extension w(q)
increases for q ≥ 0.

Then, we prove the concavity part.
Taking the second derivation of w(q) on q,
w′′(q) = eX · X ′(X ′ + X ′′), where X ′′ = θr[(r −



1)(−ln λ
λ+µ (1 − e−(λ+µ)q))r−2][ (λ+µ)e−(λ+µ)q

λ
λ+µ (1−e(λ+µ)q)

]2 +

θr[(−ln λ
λ+µ (1 − e−(λ+µ)q))r−1] −λ(λ+µ)e−(λ+µ)q

( λ
λ+µ (1−e(λ+µ)q))2

.

The sum of X ′ + X ′′ = θr[(−ln λ
λ+µ (1 −

e−(λ+µ)q))r−1] (λ+µ)e−(λ+µ)q

λ
λ+µ (1−e(λ+µ)q)

+θr[(r−1)(−ln λ
λ+µ (1−

e−(λ+µ)q))r−2][ (λ+µ)e−(λ+µ)q

λ
λ+µ (1−e(λ+µ)q)

]2.

For notational convenience, we let Y = −ln λ
λ+µ (1−

e−(λ+µ)q), then X ′ + X ′′ = θr(−Y ′Y r−1 + (r −
1)Y r−2(−Y ′)2+Y r−1(−Y ′)2 −λ

(λ+µ)e−(λ+µ)q ). Then, we
reduce the X ′ + X ′′ to θr(−Y ′)Y r−1( r−1

Y (−Y ′) +
−λ

λ
λ+µ (1−e−(λ+µ)q)

+ 1).

Therefore, if the term r−1
Y (−Y ′)+ −λ

λ
λ+µ (1−e−(λ+µ)q)

+1

is negative, we can obtain the second derivation of w(q)
is negative. It is clear that λ

λ+µ (1 − e−(λ+µ)q) ≤ λ,
hence, we have −λ

λ
λ+µ (1−e−(λ+µ)q)

+ 1 ≤ 0. Because r −
1 ≤ 0, we obtain that the the second derivation of w(q)
is negative and, we conclude that w(q) is increasingly
concave in q.

Berk and Arreola-Risa [2] demonstrate that the ob-
jective function g0(q) for ZIO policy is unimodal. For
the Non-ZIO policy, Palar and Berkin [3] do not provide
an analytical proof for the unimodality of g0(q, r), but
they use numerical tests to indicate that g0(q, r) may
be unimodal. When incorporating the weighting function
w(q), it is intractable for us to prove the unimodality of
the objective function gZ(q) in (1) and gN (q, r) in (7).
Therefore, in the following section, we apply numerical
studies to obtain optimal solutions and illustrate the
impacts of risk attitudes on the optimal order decisions
and system costs.

III. NUMERICAL SIMULATION

In this section, we describe numerical examples to
study the impacts of overestimation on the optimal
order quantities and system costs. Table I illustrates the
parameter values, where we set parameters of weighting
function as γ = 0.79, and θ = 0.99. These parameters
lead to the inflection point of the weighting function as
0.385, which is consistent with [13]’s estimation of 0.38
for losses. Note that, for the rational case, γ = 1, and
θ = 1.

For ZIO policy, Figure 4 illustrates the optimal order
quantities q∗ and q∗w for rational and overestimating
cases as a function of π varying from 10 to 20. It
is noted that both q∗ and q∗w increase in π, and q∗w
has a higher increasing speed than q. The intersection
point is at about π = 14. Intuitively, one may expect
to order more when overestimating the hazard rate (the
critical probability that the supplier is unavailable when
the inventory level reaches reorder point), meaning that
q∗ < q∗w when overestimating β. However, Figure 4

TABLE I
LIST OF PARAMETER VALUES

Parameter Symbol Value

Demand rate D 1

Holding cost rate h 10

Ordering cost K 10

Shortage cost/unit π 10-20

Up period mean 1/λ 4

Down period mean 1/µ 0.4

Probability Weighting Parameters γ 0.79

Probability Weighting Parameters θ 0.99
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Fig. 4. Optimal order quantities q∗ and q∗w as functions of π with
ZIO policy

confutes this argument clearly: q∗w < q∗ for π below
the intersection point.

For Non-ZIO policy, we describe the patterns of q∗

and q∗w in Figure 5, and the patterns of r∗ and r∗w in
Figure 6. It is noted that the q∗w’s curve is below the
q∗w’s curve, and the r∗w’s curve is above the r∗’s curve,
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Fig. 5. Optimal order quantities q∗ and q∗w as functions of π with
Non-ZIO policy
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Fig. 6. Optimal reorder point r∗ and r∗w as functions of π with
Non-ZIO policy

which implies that when overestimating the hazard rate,
the decisions become ordering more frequently but with
smaller amount. Moreover, when back orders are al-
lowed, r∗ and r∗w increases in π and q∗ and q∗w is not
sensitive to different values of π.

Consequently, when overestimating the hazard rate,
the order quantities do not necessarily become higher
compared to the rational case for ZIO policy and, for
Non-ZIO policy, irrational decision makers is likely
to order smaller quantities but with higher frequency
compared to rational decision makers.

Then, we introduce numerical examples to illustrate
the impacts of weighting function on system costs.
Recall that q∗w,r∗w are obtained at minimizers of utility
functions gZ(qw), gN (qw, rw), (Here, denoted by q∗w is
the optimal order quantity for gZ(qw) when optimizing
gZ(qw), and is the optimal order quantity for gN (qw)
when optimizing gN (qw).) We calculate the cost function
gz(q

∗
w) and compared with the rational minimizer of

gz(q
∗), the resulting difference of gz(q

∗
w) − gz(q

∗) is
used to measure the extra cost incurred by the weighting
function in ZIO case. Similarly, we use a ratio of
gn(q

∗
w,r∗w)

gn(q∗,r∗)
to measure the extra cost incurred by the

weighting function in Non-ZIO case.
Figures 7 and 8 depict the results. As π increases from

10, the difference gz(q
∗
w) − gz(q

∗) decreases to zero at
point of π = 14, then becomes increasing. For Non-ZIO
policy, the ratio gn(q

∗
w,r∗w)

gn(q∗,r∗)
decreases as π increases from

10. Despite the sensitivity of costs for ZIO and Non-
ZIO policies on π, figures 7 and 8 clearly indicate that
overestimation of the hazard rate would cause a higher
cost for both ZIO and Non-ZIO policies.

We typically illustrate the impacts of weighting func-
tion on optimal decisions and system costs using a
sensitivity analysis of single parameter π. Thus, clear
diagrams are helpful to show the results. To interpret

10 12 14 16 18 20

0

10

x 10
−5

π

D
iff

er
en

ce
o
f
g z

(q
∗ w
)

a
n
d

g z
(q

∗
)

Fig. 7. Difference of costs: gz(q∗w)−gz(q∗) as a function of π with
ZIO policy
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policy

TABLE II
LIST OF PARAMETER VALUES

Parameter Symbol Value
Demand rate D 1,100,1000

Holding cost rate h 10
Ordering cost K 1,10,100,1000

Shortage cost/unit π 1,10,100,1000
Up period mean 1/λ 0.1, 0.25, 0.5, 1, 2

Down period mean 1/µ 10, 1, 0.5, 0.25, 0.1
Probability Weighting Parameters γ 0.79
Probability Weighting Parameters θ 0.99

the impacts more generally, we performed a numerical
analysis on a test bed of 1200 cases. The parameters
were selected to cover a broad range (see Table II). We
observed the following properties:

1) For ZIO policy, q∗w − q∗ to be positive or negative
is dependent;

2) For Non-ZIO policy, q∗w is smaller than q∗, r∗w is
larger than r∗;



3) gz(q
∗
w) ≥ gz(q

∗) and gn(q
∗
w, r

∗
w) ≥ gn(q

∗, r∗),
which implies that a risk averse inventory manager
expends more cost with either ZIO and Non-ZIO policy.

IV. CONCLUSION

We consider a risk-averse decision maker who op-
erates a continuous-review inventory system subject to
supply disruption risk, based on EOQD models with
ZIO and Non-ZIO inventory policies. We introduce an
inverse-S shaped weighting function into the model
construction. Through numerical simulation, we provide
managerial suggestions to the risk averse decision maker.
As for future research, it would be a challenging work to
characterize closed form optimal solutions to the EOQD
models. Furthermore, the decision maker’s risk attitude
can also be examined in inventory systems with two or
multi-suppliers.
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