
Variable Ranking by Random Forests Model for
Genome-Wide Association Study

Atsushi Kawaguchi

Abstract—An important step in the genome-wide association
study (GWAS) is the ranking of single nucleotide polymor-
phisms (SNPs). We propose a method based on the variable
importance measure from the random forests model. SNPs in
the entire genome region are randomly divided into subsets. We
then fit the random forests model to each subset to compute
subranks for the SNPs. The ranks of the SNPs are defined based
on these subranks and then iteratively improved. We study the
impact of the parameters and show that our method performs
well in comparison to popular existing methods. We apply our
method to select SNPs in a real-data study of the link between
SNPs and human fingerprint ridge counts.

Index Terms—Ensemble Trees, Genome-Wide Association
Study, Screening, SNP Ranking, Statistical Interaction .

I. I NTRODUCTION

T HE genome-wide association study (GWAS) is an at-
tempt to unravel the genetic basis of complex genetic

diseases. Specifically, GWAS uses single nucleotide poly-
morphisms (SNPs) as genetic markers because they are easy
to type and abundant in the human genome. The goal of
GWAS is to search for genetic factors that influence common
complex traits and to characterize the effects of those factors.
[1] gave an overview of statistical approaches to GWAS. One
of the steps in the analysis is to select informative SNPs,
usually based on certain association measures between the
SNPs and a phenotype. Incorporating screened SNPs based
on a preliminary ranking would be useful for the selection
and could be faster than an exhaustive search. Most studies
have used a univariate analysis to rank SNPs; however,
the interactions between SNPs should be considered [2].
Traditional regression methods can deal with interactions
but require an exhaustive search, so it is difficult to analyze
higher-order interactions. Recursive partitioning approaches
have been used as an alternative to traditional regression
methods to detect the genetic loci and their interactions that
influence the aphenotypic outcome. For high-dimensional
structures such as GWAS, random forests (RF, [3]) offer
substantial improvements in accuracy over the use of a
single tree. [4] and [5] provide reviews of the application
of RF to GWAS. RF also provides a natural approach for
handling collinearity among SNPs and the nonlinear effect
of SNPs. The measure of variable importance resulting from
the application of the approach provides a general measure
of the contribution of each potential predictor variable to
the observed variability in the trait under investigation.
Therefore, we propose a ranking method for SNPs based
on RF that can subsequently be used for the screening and
selection. In the preliminary ranking of SNPs, the target is
on the entire genome region, which has a few million SNPs.
A direct fit of RF would therefore pose a large computational
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burden. We propose randomly splitting the SNPs into subsets
and fitting the RF model to each subset. The subranks for
the SNPs are computed based on the variable importance
from each fitted RF. The rank for the entire genome region
is then defined based on these subranks. Moreover, to ensure
that the final ranking is independent of the splitting process,
we introduce an iterative process that uses different random
splits of the SNPs. The numerical results indicate that our
procedure improves the ranking of SNPs; see Section 3 for a
detailed discussion of the results. The remainder of the paper
is organized as follows. The proposed algorithm is described
in Section II. In Section III, an extensive simulation study is
presented. Section IV discusses an application of our method
to real data pertaining to human fingerprint ridge counts.
Concluding remarks are given in Section V.

II. M ETHOD

Suppose we have a sample consisting of a continuous
phenotype and SNPs. LetYi denote the phenotype of thei-
th individual (i = 1, . . . , n) andY = (Y1, . . . , Yn). Let Xi

denote the observed p-dimensional genotypic data (SNPs) for
the i-th individual, andX = (X1, . . . ,Xn). We consider a
regression problem, that is, for individuali, let Xi represent
the vector of predictor variable values andYi its response.
In this section, we first give a brief review of random forests
(RF) and then describe our method.

A. Random Forests

Generating the RF involves generating a set of classifi-
cation or regression trees. A summary of the RF-generation
algorithm is given below. In the first step, we randomly select
approximately two-thirds of our sample. This is called the
learning sample (LS) since it is used to grow a tree. The
remaining individuals constitute the out-of-bag (OOB) data,
and they are used to evaluate how well the tree applies to
data that were not used to generate it. In the second step of
the algorithm, we grow a tree based on the LS data. Instead
of determining the best split among all potential predictors,
we choose a random sample of these variables (one-third of
the variables) to consider as potential splitting variables. Note
that, in the context of RFs, no prune is implemented. Finally,
we repeat these stepsB times. The resulting output is theB
trees. We do not generate a final tree that can be interpreted
as a model for the genotype-trait association. Instead, we use
the measures of variable importance described in the next
section.

B. Variable Importance

We use measures of variable importance to determine
which SNPs or sets of SNPs are important in the prediction.



We define the variable importance as follows. LetVj(Xi)
denote the average response in treej andtij be an indicator
with value 1 when individuali is OOB for treej and 0
otherwise. LetX(A,j) = (X

(A,j)
1 , ...,X(A,j)

n ) be the vector
of predictor variables with the value of variableA randomly
permuted among the OOB observations for treej, andX(A)

the set ofX(A,j) for all trees wheren is the total number
of individuals in the sample. The variable importance is
averaged over the trees of the forest; it is defined as:
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whereNj is the number of OOB individuals for treej, and
B is the number of trees.

C. Main Method

We now introduce our ranking method. We randomly split
the SNPs intom subsets of roughly equal size. Call this set
of SNPsGj (j = 1, 2, · · · ,m). We fit a random forests to
each subsetGj , and compute the variable importance and the
OOB error (OOBerrj) for each fitted random forests model.
We rank the SNPs according to the VI to give the subrank.
Let R̃k denote the rank in the subset for thek-th SNP in the
j-th subset. The entire rank for thek-th SNP is defined as
the rank of each subset weighted by the OOB error from the
fitted RF in thej-th subset:

Rk = wjR̃k

wherewj = exp(OOBerrj/minℓ OOBerrℓ). This process
is repeatedK times (we setK=10). The entire ranks for the
individual SNPs found at each iteration are then averaged to
give the final rank.

III. S IMULATION STUDY

We use a simulation study to analyze the impact of the
parameters of our method and to provide a comparison with
other ranking methods including the non-splitting (direct
fit) method. We used SNPs from the International HapMap
project [6].

A. Data

The HapMap genotype CEU samples (release
22) are available for download on the website
(http://hapmap.ncbi.nlm.nih.gov/downloads/). Prior to
inclusion, the individual samples and SNPs were subjected
to a rigorous quality control. Individual SNPs were required
to have a call rate≥ 95%, to have a minor allele frequency
< 1%, and to be in Hardy-Weinberg equilibrium (p<
0.001). Missing SNPs were imputed. The data were quality-
controlled using PLINK v1.02 [7]. After this process, 60
samples and 2,275,723 SNPs remained.

To generate response (phenotype) values with a complex
structure, we applied the following steps. First, generate ran-
dom numbers following a normal distribution, say, temporal
responses. Next, randomly select 50 samples from the 60
and fix these, and test the association between the temporal
response and each individual SNP. Select the 5 SNPs with the
strongest association and 10 neighborhoods for each, that is,
the number of associated SNPs is 50. Now fit the RF to the

TABLE I
THE MEAN OF THE RESULTING RANKING FOR50 TRUE SNPS

(MULTIPLIED BY 10−4) FOR IMPACT OF PARAMETERS IN SIMULATION

STUDY

fold size (nfold)

ntree 500 1000 2000 3000 5000

50 74.2 70.0 69.2 65.5 68.5

100 73.1 68.6 67.4 63.6 66.9

150 68.2 67.3 66.8 64.5 67.0

data with the temporal response and the selected SNPs. Using
the fitted model, compute the predicted values from the SNPs
and treat these values as responses. The fitted RF model is
regarded as true complex structure between the SNPs and
the response. By repeating this process, we generated 10
simulation data sets.

B. Impact of Parameters

The parameters of our method are the fold size (nfold) and
the number of trees (ntree) in the RF model. We evaluated
these using the mean of the resulting ranking for 50 true
SNPs; smaller means are better. If we had the true ranking,
the mean would be(1+2+· · ·+50)/50 = 25.5. We test nfold
= 500, 1000, 2000, 3000, and 5000 and ntree = 50, 100, and
150. Table I shows that the case where nfold = 3000 and ntree
= 100 has the smallest mean. The means are considerably
larger than the true value of 25.5 probably because our
true contained some SNPs with a poor relationship to the
response.

C. Comparison

We compare our method with the original RF (direct fit
without splitting) with the ranking based on the variable
importance (namely, SNPs with high variable importance
are ranked highly). We also compare with a simple linear
regression. As in Section III-B, we evaluated the results using
the mean of the computed ranking for 50 true SNPs; smaller
is better. In our method, we used the parameters identified in
the previous section (nfold = 3000 and ntree = 100). For the
original RF, the number of trees was set to 50 since we could
not implement more with 8 GB of memory. Fig. 1 shows that
our method gave the smallest mean rank. Our method with
ntree = 50, as for the original RF, was also better than the
other two methods.

IV. REAL-DATA APPLICATION

We now present an application of our method to real data.
We used data from a study at the Department of Forensic
Medicine and Human Genetics at Kurume University. It
investigated the relationship between the human fingerprint
ridge count and the genotype. We performed a quality control
of the SNPs as described in Section III-A. There were
182 patients in this study, and 333,510 SNPs were used in
the analysis. We ranked the SNPs using the three methods
(proposed, original, and simple linear regression) compared
in the previous section. We iteratively fitted RF models, at
each iteration building a new forest after discarding the SNPs
with the lowest ranks. We computed the OOB errors for each
model. Fig. 2 shows that our method has the lowest number
of OOB errors for all the sets of SNPs.
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Fig. 1. Comparison of different methods via simulation study. Horizontal
line represents mean rank for true SNPs.
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Fig. 2. OOB errors for each set of SNPs based on ranking from three
methods (1 = proposed, 2 = original RF, 3 = simple linear regression).
Vertical dashed line shows minimum from proposed method.

From the results for our method, we selected the 60 SNPs
with the highest ranks and the smallest OOB errors and
computed the variable importance from the fitted RF model.
Fig. 3 shows that rs1612154 was the most important SNP in
this analysis, followed by rs4130590 and rs2297602.

V. D ISCUSSION

We have proposed a new method for SNP ranking for
the genome-wide association study. We have compared our
method with conventional methods using simulated and real
data. Our method performed well in both cases.

The key features of our method are the division of the
SNPs into subgroups and the iterative rank update. We re-
quired the response to be continuous. Of course, the method
could be applied to a discrete variable such as a binary
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Fig. 3. Variable importance computed from RF model with 60 SNPs
selected by proposed method.

variable representing the presence or absence of disease. The
size of the subgroup and the number of iterations should be
determined before the algorithm is applied. In our simulation,
a size of 3000 was optimal. On the other hand, the number
of iterations was set to 10. More iterations would improve
the performance, but we believe that the improvement would
be small. In the future, the appropriate number of iterations
should be studied.

Ranking SNPs with high accuracy helps us to select
predictive SNPs, as shown in our real-data analysis. In
conclusion, our ranking method will help to construct a
new association scheme that better assesses the relationship
between genotype and phenotype.
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