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Abstract—An important step in the genome-wide association burden. We propose randomly splitting the SNPs into subsets
study (GWAS) is the ranking of single nucleotide polymor- and fitting the RF model to each subset. The subranks for
phisms (SNPs). We propose a method based on the variableyhe gNPs are computed based on the variable importance
importance measure from the random forests model. SNPs in f h fitted RE. Th K for th fi .
the entire genome region are randomly divided into subsets. We .rom eac . ite - I'he rank for the entire genome region
then fit the random forests model to each subset to compute IS then defined based on these subranks. Moreover, to ensure
subranks for the SNPs. The ranks of the SNPs are defined basedthat the final ranking is independent of the splitting process,
on these subranks and then iteratively improved. We study the e introduce an iterative process that uses different random
impact of the parameters and show that our method performs - gjits of the SNPs. The numerical results indicate that our
well in comparison to popular existing methods. We apply our d . th Ki f SNPs: Section 3 f
method to select SNPs in a real-data study of the link between procg urg |mprqves e ranking o S; S?e ection s iora
SNPs and human fingerprint ridge counts. .detalled'dlscussmn of the results. The remal.nder'of the paper
Index Terms—Ensemble Trees, Genome-Wide Association !S organlzed as follows. The proposec_zl algprltfllm_ IS desg”b.ed
Study, Screening, SNP Ranking, Statistical Interaction . in Section Il. In _Sectlon_lll, an extenswe_snn_u ation study is
presented. Section IV discusses an application of our method
to real data pertaining to human fingerprint ridge counts.

|. INTRODUCTION Concluding remarks are given in Section V.
HE genome-wide association study (GWAS) is an at-

tempt to unravel the genetic basis of complex genetic I
diseases. Specifically, GWAS uses single nucleotide poly- o ]
morphisms (SNPs) as genetic markers because they are eas}#PPOS€ we have a sample consisting of a continuous
to type and abundant in the human genome. The goal Rff€NOtype and SNPs. L&} denote the phenotype of the
GWAS is to search for genetic factors that influence commdfy individual (i = 1,...,n) andY = (¥1,...,Y,). Let X,
complex traits and to characterize the effects of those factof§note the observed p-dimensional genotypic data (SNPs) for
[1] gave an overview of statistical approaches to GWAS. Ore i-th individual, andX = (X,,..., X.,). We consider a
of the steps in the analysis is to select informative SNPEJression problem, that is, for individuallet X; represent
usually based on certain association measures between fife vector of predictor variable values aiid its response.
SNPs and a phenotype. Incorporating screened SNPs bd8etipis section, we f|r§t give a brief review of random forests
on a preliminary ranking would be useful for the selectiofRF) and then describe our method.
and could be faster than an exhaustive search. Most studies
have used a univariate analysis to rank SNPs; howevar, Random Forests
the interactions between SNPs should be considered [Z]Generating the RF involves generating a set of classifi-
Tradition_al regression .methods can _dgal .W.ith interactio%souion or regression trees. A summary of the RF-generation
b.UI require an exhaqstlve search,_ so it IS _d|ff!cult 0 analy%ﬁ orithm is given below. In the first step, we randomly select
higher-order interactions. Recursive partitioning approachg roximately two-thirds of our sample. This is called the
have been used as an alternative to traditional regress §

i . - . ning sample (LS) since it is used to grow a tree. The
methods to detect the genetic loci and their interactions tf) %aining individuals constitute the out-of-bag (OOB) data
influence the aphenotypic outcome. For high-dimension '

d they are used to evaluate how well the tree applies to
structure.s S.UCh as GWAS’. random forests (RF, [3]) Oﬁ%rata that were not used to generate it. In the second step of
substantial improvements in accuracy over the use Ofﬂ% algorithm, we grow a tree based on the LS data. Instead
single tree. [4] and [5] provide reviews of the applicatio ’

. ot determining the best split among all potential predictors,
of RF to GWAS. RF also provides a natural approach f?/\r/e choose a random sample of these variables (one-third of

. fﬁe variables) to consider as potential splitting variables. Note

i X Ofat, in the context of RFs, no prune is implemented. Finally,
the application of the approach provides a general meastyi& repeat these steg@stimes. The resulting output is the

of the contribution of each potential predictor variable t?rees. We do not generate a final tree that can be interpreted

the observed variability in the trait under |nvest|gat|onasamodeI for the genotype-trait association. Instead, we use

Therefore, we propose a ranking method for SNPS_ba ?1% measures of variable importance described in the next
on RF that can subsequently be used for the screening %@%tion

selection. In the preliminary ranking of SNPs, the target Is
on the entire genome region, which has a few million SNPs. .
A direct fit of RF would therefore pose a large computation&. Variable Importance
A. Kawaguchi is with Biostatistics Center, Kurume University, 67 Asahi- We use measures of variable. importanpe to dete.rmine
machi, Kurume, Fukuoka 830-0011 Japan. which SNPs or sets of SNPs are important in the prediction.

. METHOD
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. . . TABLE |
We define the variable importance as follows. L&(X;) THE MEAN OF THE RESULTING RANKING FOR50 TRUE SNPs
denote the average response in tfendt;; be an indicator (MULTIPLIED BY 10™%) FOR IMPACT OF PARAMETERS IN SIMULATION
with value 1 when individual is OOB for treej and 0 STupY

otherwise. LetXx (49 = (x(*9) X (49 pe the vector
of predictor variables with the value of variablerandomly
permuted among the OOB observations for tieand X (4

the set of X (A7) for all trees where is the total number
of individuals in the sample. The variable importance is
averaged over the trees of the forest; it is defined as:

fold size (nfold)
ntree 500 1000 2000 3000 5000
50 742 700 692 655 685
100 73.1 68.6 67.4 63.6 66.9
150 682 673 668 645 67.0

1S 1 & TERE : .
VI(A) = B Z A Z tij {Vj(Xl-) - V(X" )} data with the temporal response and the selected SNPs. Using
j=1""7 i=1 the fitted model, compute the predicted values from the SNPs
and treat these values as responses. The fitted RF model is
regarded as true complex structure between the SNPs and
the response. By repeating this process, we generated 10
simulation data sets.

where N; is the number of OOB individuals for treg and
B is the number of trees.

C. Main Method

We now introduce our ranking method. We randomly spli. |mpact of Parameters
g}%i’l‘:;'h;@:gbﬁtﬁ Ou?usgyﬁflu?;ﬁézoerh ?S:LIST;S t(s)et The parameters of our method are the fold size (nfold) and
i\ e . . the number of trees (ntree) in the RF model. We evaluated

each subsaf;, and compute the_ variable importance and ﬂ}%ese using the mean of the resulting ranking for 50 true
OOB error QO Berr;) for each fitted random forests model NPs: smaller means are better. If we had the true ranking
We rank the SNPs according to the VI to give the subran ' ) '

- . . ie mean would b€l +2+- - -+50) /50 = 25.5. We test nfold
Let R, denote the rank in the subset for theh SNP in the _ _
j-th subset. The entire rank for theth SNP is defined as , 500, 1000, 2000, 3000, and 5000 and ntree = 50, 100, and

X 150. Table | shows that the case where nfold = 3000 and ntree
t_he rank qf each subset wglghted by the OOB error from tr%'3100 has the smallest mean. The means are considerably
fitted RF in thej-th subset:

larger than the true value of 25.5 probably because our
Ry, = w;Ry, true contained some SNPs with a poor relationship to the

) _ response.
wherew; = exp(OOBerr;/ min, OOBerry). This process

is repeateds times (we setk'=10). The entire ranks for the

individual SNPs found at each iteration are then averaged(fc') Comparison ) o . ]
give the final rank. We compare our method with the original RF (direct fit

without splitting) with the ranking based on the variable
importance (namely, SNPs with high variable importance

[1l. SIMULATION STUDY . . . .
) ) ) are ranked highly). We also compare with a simple linear
We use a simulation study to analyze the impact of the essjon. As in Section I11-B, we evaluated the results using

parameters of our method and to provide a comparison Wi{f, nean of the computed ranking for 50 true SNPs: smaller
other ranking methods including the non-splitting (direqt peyter 1n our method, we used the parameters identified in
fit) method. We used SNPs from the International HapMaRe previous section (nfold = 3000 and ntree = 100). For the

project [6]. original RF, the number of trees was set to 50 since we could
not implement more with 8 GB of memory. Fig. 1 shows that
A. Data our method gave the smallest mean rank. Our method with
The HapMap genotype CEU samples (re|ea§gree = 50, as for the original RF, was also better than the
22) are available for download on the websit@ther two methods.
(http://hapmap.ncbi.nlm.nih.gov/downloads/).  Prior  to
inclusion, the individual samples and SNPs were subjected IV. REAL-DATA APPLICATION
to a rigorous quality control. Individual SNPs were required We now present an application of our method to real data.
to have a call rate> 95%, to have a minor allele frequencyWe used data from a study at the Department of Forensic
< 1%, and to be in Hardy-Weinberg equilibrium (g2 Medicine and Human Genetics at Kurume University. It
0.001). Missing SNPs were imputed. The data were qualitywestigated the relationship between the human fingerprint
controlled using PLINK v1.02 [7]. After this process, 6Qridge count and the genotype. We performed a quality control
samples and 2,275,723 SNPs remained. of the SNPs as described in Section IlI-A. There were
To generate response (phenotype) values with a compl82 patients in this study, and 333,510 SNPs were used in
structure, we applied the following steps. First, generate rahe analysis. We ranked the SNPs using the three methods
dom numbers following a normal distribution, say, temporgproposed, original, and simple linear regression) compared
responses. Next, randomly select 50 samples from the iB0the previous section. We iteratively fitted RF models, at
and fix these, and test the association between the temp@aath iteration building a new forest after discarding the SNPs
response and each individual SNP. Select the 5 SNPs with thi¢h the lowest ranks. We computed the OOB errors for each
strongest association and 10 neighborhoods for each, thanisdel. Fig. 2 shows that our method has the lowest number
the number of associated SNPs is 50. Now fit the RF to tloé OOB errors for all the sets of SNPs.
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Fig. 1. Comparison of different methods via simulation study. Horizontal IncNodePurity

line represents mean rank for true SNPs.

Fig. 3. Variable importance computed from RF model with 60 SNPs
selected by proposed method.
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variable representing the presence or absence of disease. The
size of the subgroup and the number of iterations should be

\ ‘ determined before the algorithm is applied. In our simulation,

s | a size of 3000 was optimal. On the other hand, the number

; of iterations was set to 10. More iterations would improve

the performance, but we believe that the improvement would

3 be small. In the future, the appropriate number of iterations

3 should be studied.

Ranking SNPs with high accuracy helps us to select
predictive SNPs, as shown in our real-data analysis. In
conclusion, our ranking method will help to construct a
new association scheme that better assesses the relationship
between genotype and phenotype.
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