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Abstract—Single Nucleotide Polymorphisms (SNPs) are
confirmed as a major factor in human genome polymagshisms,
and are found to be suitable as a genetic marker fadisease
characteristics. Determining the relationship betwen disease
complexity and SNPs requires complex genotyping folarge
SNP data sets, and is thus very expensive and labiotensive.
Tag-SNP selection is a useful technique for seleng the SNP
subset from the original dataset with minimal errors, thus
reducing the cost of genotyping. We propose a newathod that
combining strategy particle swarm optimization (SP®) and
Linkage Disequilibrium (LD) to select highly correlated SNPs.
We use this strategy in PSO to select more optimablutions and
replace less accurate particles. The method is demsirated
using the HapMap dataset through evaluating the
leave-one-out-cross-validation (LOOCV) and K-neards
neighbor (KNN) method. Experimental results show tht our
proposed method results in a smaller subset of tagNPs and
provides improved accuracy over PSO and other tag NP
selection methods.

Index Terms—Single Nucleotide Polymorphism, Particle
Swarm Optimization, Linkage Disequilibrium.

l. INTRODUCTION

S ingle nucleotide polymorphisms (SNPs) are singl
changed nucleotides in a human gene. They alsadcal

the third DNA genetic marker, and are defined asprt of
the nucleotide disparity between different groupishva
distribution percentage greater than one perceht IfL

which the genome is split into mutually exclusiviedks,
each with a haplotype block that defines 80 peraent
variation in the swarm. This decreases the vartglifi each
block resulting in a high degree of duplicate infiation in
the blocks. This problem can be improved upon bgiptaall
common haplotype SNPs in the block [7]. Lewontirakt
used linkage disequilibrium relationships betweenames
[8], with the numerical disequilibriuntd), calculated as the
level of similarity between the SNPs, thus detemgrSNP
relevance. For exampté>= 0.8 [9, 10], signifies relevance,
and this relevance is used to select SNPs. The e of
these methods for SNP selection are deduced frenShP
relevance with genetic disease.

We propose a strategy particle swarm optimizat&PSO)
to select tag SNPs. In the tag SNP selection pnoblge
search for the best SNP combination by increashey t
number of tag SNPs. We find that some SNP comloinati
appear in the best solution when the number ofSEs
increases but given its incapability of remembetimg best
solution in the next selection, general PSO maysrm@ame
SNP combinations in the next selection, thus redyci
accuracy. Therefore we integrate into PSO a strateggtain
the latest search results for an optimal solutind geplace
less accurate particle. The SBPSO computationalltsesu
demonstrate that the predictive ability of this mmeh is

uperior to PSO and other methods of tag SNP &abect
fhentioned in the literature.

II.  METHODOLOGY

humans, three billion single nucleotides containerov a Particle Swarm Optimization

fourteen million SNPs, with an average of two toeth
hundred single nucleotides producing an SNP. Thetenge
of SNPs can be used to quantify diversity in humgametics.

Proposed by Kennedy and Eberhart in 1995 [11], @arti
swarm optimization (PSO) simulates the social behasf
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Studying complex diseases and the connections batwe'9anisms. For example, it models the behaviorinfsbas
SNPs requires genotyping the genome, a very complEl€y randomly search for food in the search spéuven
process which can be very expensive for large SN® sbts. optimizing their search direction based on expeeeand
However, selecting a smaller useful subset of Siki?s the  information shared among group members. In theckear
original SNP set (i.e., the tag SNP selection mof)lcan space, the search for the location of each particle
reduce the cost of the genotyping process. calculate the fitness value by a designed functiarticles

Many methods exist for selecting tag SNPs, inclgdinare randomly generated and do not repeat througdtipteu
MLR tagging [2], STAMPA [3], RLRP [4] and SVM/STSA iterations to determine the optimal goal. Each fiema
[5]. Zhang et al. [6] proposed the genome body hléck considers particle speed and best fitness vahestj to date,
and the group searches for the best fithgbss() value to
date. This continues until the particle swarm fitlgs best
solution or reaches the termination condition.
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Pseudo code foPSO

For each particles

1

2 Initialize particle SNP, SNP, SNP; SNP, SNP, SNP, SNP; SNP,
3: Do . G| G| A | C 0 1 0 1
4: For each particle G T C G . o . )
5: Calculate fitness value

6: If the fitness is better thphest to date T | T | A A LI L I
7 Set the value as the ngivest C G T A 1 1 1 0
8: If the fitness is better thghest to date G T G A o 0 1 0
190 E ndsle:tot:]e value as the nm A Afttfr coniversion .

11: For each particle SNP, contains GGTCG so G is major (0). T and C arc minor (1).
12: Calculate particle velocity according to equatiaj ( SNP; contains GTTGT so T is major (0). G is minor (1).

13: Update particle position according to etpraf2) And so forth the SNP, and SNP,.

14: End For

15 While maximum iterations or find the best solution Figure 2Data set conversion

D. Linkage Disequilibrium

Linkage disequilibrium (LD) describes the correlation
between different SNPs impacted by chromosomal
new _ yold 4\ new @ rearrangements. Figure 3 shows no chromosomal
Xd %d id recombination occurring between SNP1 and SNFhis

phenomenon is referred to as high LD, while an eppa

where, in dimension Dx2%? is the current position of -hromosomal recombination between SNihd SNR is
called low LD. Generally, low LD occurs more frequgnt
- o ] when the distance between two SNPs is reduced. ThedtD
updated position of particle vig* is the updated speed of .5 getermine the level of LD between the SNPs uging

particlei, (Ry —x3%) is the distance betwegbest andgbest, which is calculated as follows:

and (P —x3" ) is the distance betweebest and x3° .

Vi?i(:W =wx Vltt)jld + Cl x rl X (Pld - XiodId )+ CZ X r2 X (Pgd - Xi‘zild ) (l)

particlei, va¢ is the current speed of partiglexy" is the

D2
2 _
B. Srategy Particle Svarm Optimization = P,(1-P,)P,(1-P,)
This strategy allows PSO to retain the optimal sofut
which can then be used to replace low accuracycpestas whereP, andPg are two SNPs on the proportion of major

the number of tag SNPs increases. The strategylasuhe single nucleotidesP,s is the proportion of a major single

®3)

new combination in the iteration limit. nucleotide forP, andPg, andD= Ppg — PPs.
Sy e Lo bt o i Number | SNP, | SNP, | SNP, | SNP, | SNP
LD screening (two SNP) initiation umber 1 2 3 4 5
1 A T C T T
et the new best
Tag SNP combination by 2 A T C A T
number add collocation any number
of data dimensions 3 G C T T G
No 0 4 A T C T C
Termination teration limr ps a::dt © ‘.S:lcs:]j:uzhzr
ondition reached?, reached? lo:‘ation cach particle 5 A T C G C
Yes 6 A T C C C
: :
soulation 2 _ (PAB —P.Pg 2 _ (PAB — P\Pg

. (s_sxsjz (3_5X3JZ
Figure 1SPSO flow chart _\6 6 6) 4 -\6 6 6/ _,
51 5 1 5.1.3.3 ~
IxZ+Ex= IxIxEx=
6 6 6 6 6 6 6 6

C. Encoding
; ; i 1.2 isthe LD value of SNF, andSNF
The data is constructed of Adenine (A), Cytosine, (C) rﬁ is the LD valua of SNiDand SN|§

Guanine (G) and Thymine (T). Thus we conduct the

conversion of major and minor as shown in Fig. 2.
Figure 3Linkage disequilibrium calculation diagram

The value calculated by Eq. (1) is between 0 and &. Th
closer the value is to 1, the higher the LD betwihentwo
SNPs. Figure 3 shows the calculation of the LD level
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between different SNPs. A value 3$=0.8 indicates a high leave-one-out-cross-validation (LOOCV) to obtain the
LD between two SNPs. LD is used to filter the datal he correct number of each test data set by K-NN attitlata
five SNPs displayed in Fig. 3 are thus reducechothree have been tested. By summing the number of catirees of

SNPs shown in Fig. 4. each data set, we obtain the fithess value by Bg. (4
— Mtotal
Number | SNP, | SNP, | SNP, P(F)= x100% (4)
D xD_-T xD

1 A T T r c c
2 A A T where P(F) is the fitness of each particl®yy is total
3 G T G correct numbem; is the column number of the data séls,
4 A T C is the row number of the data sets, dndepresents the
5 A G C selected tag SNP.
6 A c c H. Updating particle location and speed

Particles update their locations using the inenteght,
previously speedbest, gbest, ¢, and g, as in Eq. (1) and Eq.
().

Figure 4Filtered data

E. Initialization
This study uses decimal encoding to design particles [ll. RESULTS AND DISCUSSION
During initialization, half of the swarm particlese created
based on LD, while the other half is randomly geteetaAt A Data set description
initialization, each particle’s tag SNP is unigas,shown in Four published experimental SNP data sets were

Fig. 5. downloaded from HAPMAP (http://www.hapmap.org) for
evaluation.
SNPI SNP2 A.) ENCODE Regions from HAPMAP
lel‘ticlcl @_ D Particle and  particle We gsed regions ENri23 _and EMmO010 fr.0m two
Particle. 2% 36 } the SNP are repeated. so - POpulations of the ENCODE p__r_olect (2005): the Chireasa:
Particle. r<ill = iln‘l‘ml:;'nﬂ::*‘t me o Japanese populations of Beijing (HCB) and the Jegmn
’ ’ - population of Tokyo (JPT) [13]. We used 90 genotygfdbe
parents for regions ENm013, ENr112 and ENr113 from 30
SNPI SNP2 CEPH family trios obtained from HapMap. The data was
Particle, 17 57 collected from chromosomes 7q21.13, 2p16.3 and 4tj26
Particle, 23 36 Re-initialization of the number of SNPs genotyped in each region was 3/ %an8

particle .
Particle, 14 34>—/> 523, respectively.

Figure 5Particle initialitation B.) Chromosome 531
9 Data sets from Daly et al. (2001) [14] were derifexin

the 616 kilobase regions of human chromosome 58t f

F. K-nearest neighbor 129 family trios.

The K-nearest-neighbor (K-NN) method was proposed Hy.) Other Gene Regions from HAPMAP
Fix and Hodges in 1951 [12]. In this study, alladatere used ~ We used two sets of SNPs spanning the two genes STEAP
as test data in the fitness evaluation, then ¢ledsiccording and TRPM8 collected from 30 CEPH family trios. The
to the particles' SNP, and K-NN was used to sétecK data number of SNPs in each region was 37 and 101, cégply.
nearest to the test daFa. These K.da.tta were gmdd.uce the B parameter setti ng
new data set following the majority decision diagréas

shown in Fig. 6).
algorithms were as follows: particle size 50, iekteight
Data, m 0.9, maximum speed 6, and minimum speed 6. For the
] N ! ! 0 0 ! acceleration (learning) factorg=c,=2.

The termination condition of the SPSO in this stuhs
300 iterations. Parameters of the particle swartimipation

Data, 0
b, \Y [0 [0 [o]o] ! C.Results and discussion
‘?i.ﬁl‘i‘:fﬁi‘ We introduce a PSO-based strategy, using K-NN and LD
thefind ) for the tag SNP selection problem. Tables | anchéivg the
o v number of tag SNPs needed to achieve predictionracies
predicion g Lo o o e e | of 80% to 99% for MLR [15] SVM/SATA [5], PSO, and

Figure 6. Majority decision diagram for K=3 SPSO methods.

G. Fitnessfunction
In this study, the fithess function uses the 3-NiKhw
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NUMBER OF TAG SNPS IN EACH REGION OF JFI:EIBLLRE, :DSOAND SPSOMETHODS (LARGE DATA SET)
ata set STEAP(37) TRPMS(101) 5331(103)

Accuracy MLR | SVM PSO SPSO | MLR| SVM PSO SPSO | MLR SVM PSO SPSO
80 1 1 1 1 1 1 1 1 1 1 1 1
85 1 1 1 1 2 1 1 1 2 1 1 1
90 1 1 1 1 4 2 1 1 5 3 1 1
91 2 1 1 1 5 5 1 1 7 3 2 2
92 2 1 1 1 5 5 2 2 7 4 2 2
93 2 1 1 1 6 6 2 2 9 5 2 2
94 2 1 1 1 7 7 2 2 13 6 2 2
95 2 2 1 1 8 8 2 2 16 8 4 2
96 3 2 1 1 10 10 2 2 21 10 5 3
97 3 2 1 1 15 15 2 2 31 22 5 4
98 4 2 2 2 15 15 2 2 41 42 13 5
99 4 2 3 3 24 24 3 3 55 51 14 12

These six data sets can be divided into two Tallleble | (MLR, STAMPA, PSO and SPSO), for fixed numbers of tag
contains the three smaller data sets (STEAP, TRPM8 a88lPs (2, 5, 10, 15, 20 and 25). The proposed method
5g31), and four methods were applied to test tlase sets. outperformed the average MLR and STANPA predictions f
When only one SNP was selected, the predictionracgwf ENr123 and ENmO010. In most cases the proposed method
the proposed method reached 97%, 91% and 90%¥htained the highest prediction accuracy.. Exception
respectively for STEAP, TRPM and 531, a cleamcludedtag SNP number 25 (MLR) for the ENmO010 data
improvement over the SVM/STSA method. In ouofthe Chinese population, and tag numbers 20 B{VER)
experiment, the proposed method outperformed SVMASTSor the ENmMO010 data set of the Japanese population.
for equal numbers of tag SNPs. However the differences in the accuracy obtaineth@se

Table 1l presents the three larger data sets: ENmOl&ses were marginal at about 0.3%. Tables Il an@dlbd
ENr112 and ENrl113. Since no data was provided for thedicate that, given a small number of tag SNRsptiloposed
SVM/STSA method, only the SPSO, PSO and MLR-taggingnethod achieves prediction accuracy significangdy than
methods were applied to these test data sets. Thberwf that of the MLR and STAMPA methods, with MLR again
tag SNPs selected by the proposed method was rmadies  outperforming STAMPA in both populations. With ortlyo
than those selected for MLR-tagging. The predictiotag SNPs, the prediction accuracy of the proposethaal
accuracy of the proposed method for thirty-one SMBSs reached 97% and was generally much higher than that
99%, 93% and 95%, respectively for ENm013, ENr112 ammbtained by the other methods. Selecting a highether of
ENr113. tag SNPs increased the higher prediction accuracyaff

Tables Il and IV show the average prediction accyfar  three methods. Given a small number of tag SNPsMHA
the regions ENrl123 and ENm010 from two populationgeturned the lowest the prediction accuracy dhallmethods
(Chinese and Japanese) obtained by four differetihaas, tested.

TABLE Il
Number of tag SNPs in each region of the MLR, PS@SIRSO methods (large data set)
ata set ENmO013(376) ENr112(439) ENr113(523)
Accuracy¥ MLR PSO SPSO MLR PSO SPSO MLR PSO SPSO
80 2 2 2 6 2 2 4 2 2
85 3 2 2 9 2 2 5 3 3
90 6 2 2 14 6 6 10 4 4
91 6 3 3 16 7 7 11 4 4
92 7 3 3 18 8 8 13 5 5
93 8 3 3 20 10 9 15 5 5
94 9 3 4 24 16 15 18 7 7
95 9 4 5 33 40 25 40 9 8
96 11 5 5 63 78 70 55 49 11
97 15 7 7 95 163 143 80 86 22
98 22 11 8 126 242 214 104 203 137
99 254 223 31 187 340 276 200 311 234
IMECS 2012
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TABLE IlI
COMPARSION OF ACCURACY OBTAINED BYMLR, STAMPA, PSOAND SPSOFOR A FIXED NUMBER OF TAGSNPs (2,5,10,15,20,25) FOR REGIONSENR123
AND ENMO10FROM TWO POPULATIONS CHINESE).

Accuracy(%) for Han Chinese
Number
ENr123 (63) ENmO010 (105)
Tag SNP MLR STAMPA PSO SPSO MLR STAMPA PSO SPSO
2 80.3 74.4 97.7 97.8 81.4 79.2 97.3 97.3
5 92.8 90.3 98.9 99.1 93.8 90.9 98.8 98.8
10 98.1 93.7 99.7 99.8 98.0 95.3 99.1 99.2
15 99.2 95.2 99.7 100.0 99.4 96.8 99.1 99.5
20 99.8 96.0 99.9 100.0 99.8 98.1 99.3 99.6
25 99.9 96.9 100 100.0 100.0 98.6 99.4 99.6
average 95.0 91.1 99.3 99.5 95.4 93.2 98.8 99.0
TABLE IV

COMPARSION OF ACCURACY OBTAINED BYMLR, STAMPA, PSOAND SPSCOFOR A FIXED NUMBER OF TAGSNPs (2, 5,10,15,20,25) FOR REGIONSENR123
AND ENMO10FROM TWO POPULATIONYJAPANESE).

Accuracy (%) for Japanese
Number
ENr123 (63) ENmO10 (105)

Tag SNP MLR STAMPA PSO SPSO MLR STAMPA PSO SPSO
2 93.5 89.5 98.3 98.3 81.4 79.2 97.2 97.2
5 95.5 93.8 98.7 99.2 93.8 90.9 98.9 99.1
10 96.8 95.6 99.3 99.4 98.0 95.3 99.4 99.4
15 97.9 96.0 99.4 99.6 99.4 96.8 99.6 99.6
20 98.9 96.6 99.6 99.8 99.8 98.1 99.5 99.7
25 99.5 96.9 99.7 99.8 100.0 98.6 99.7 99.8

average 97.0 94.7 99.1 99.4 95.4 96.1 99.0 99.1

We propose a strategy particle swarm optimizat®S0)
which retains the best combination to increasegtradity of
the initial particle which is important in PSO f@lecting the
tag SNPs. In this study, the search number of Nig Sarts
from two SNPs and increases incrementally whernchéeay
the tag SNP. Our proposed strategy first uses oute to
find the best five combinations of two SNPs priorRSO
execution. Second, we use the best combination
individually collocate any number of data dimensicand
save the best five combinations, which then replaeavorst
five particles following initialization. Third, wherthe
particle search obtains a new combination with esgu
higher than the best five combinations, the newldnation
replaces the worst-performing of the best five ciorations.
This continues iteratively with the best five condtions
repeating until the termination conditions are mehe next
initialization.

As seen in Table Il, larger data sets obtain beé#sults.
However, the brute force test shows that the mabination
(two SNPs) collocating a number of data dimensicas
produce the most accurate combination in the rieration
(three SNPs). However, the fact that this did notuo
consistently for all data sets confirms the comess of our
theory.
toln the parameter settings, the particle goes thrdahgee
hundred times iterations in each re-initializatidn. each
iteration, if find the gbest is improved, the itéoa count is
reset to give the particle enough opportunitiefin a better
solution. The result tables shows that combining R&O
our strategy improves the original PSO search tesuthin
the same number of iterations and provides sligilyer
results than SVM/SATA, MLR and STAMPA, but is
sometimes inferior to MLR. For example, in the ladma
sets presented in Table I, an increase in MLR acgurethe

The proposed strategy can be used in tag SNP s#lectENr112 and ENrl13 data sets requires the SNP volome t

problem. The persistence of the initially-selecteDPS
combination through to the termination conditionymeduce
accuracy, but integrating the proposed strategy PSSO
allows PSO to remember the best solution and oltt@iter
particles after initialization. PSO also can improthe
shortcomings of the proposed strategy by partitiegement,
thus obtaining superior results. Incorporating ieposed
strategy increased total computing time by about &%,
following Eqg. (5), computing time will increase withe
amount of data in the operation.

_(@+n)xn
2

T ®)

gradually fall below that used in our proposed rodth
However, for 99% of the ENm013 samples, our proposed
method only requires 31 SNPs, which is considerédker
than are required by MLR. This may result in these tw
assessment methods obtaining higher accuracy sativam
other leading methods in particular data setsdudrall, our
proposed method provides the best results for mbshe
data sets.

IV. CONCLUSIONS

We present a novel approach to tag SNP predictced
on strategy particle swarm optimization (SPSO) eaid by
with K-nearest neighbor (K-NN). The experiment used
genotype information taken from the HapMap projactl
compared the proposed method with leading tag SNP

whereT is the calculation time andare the data dimensions. selection algoritth. The proposed method Conslytent
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identified tag SNPs with greater accuracy than SWMR

and STAMPA. A key concern was whether
improve the accuracy of PSO when using our propos

SPSO ¢

g4

strategy. Though the proposed method and PSO ottaine
somewhat similar results, the advantages of SP3f@nie
clear on more complex data sets, showing that tbpgsed
method outperforms PSO and other methods in th&hR
selection problem.
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