
 

  
Abstract—Single Nucleotide Polymorphisms (SNPs) are 

confirmed as a major factor in human genome polymorphisms, 
and are found to be suitable as a genetic marker for disease 
characteristics. Determining the relationship between disease 
complexity and SNPs requires complex genotyping for large 
SNP data sets, and is thus very expensive and labor-intensive. 
Tag-SNP selection is a useful technique for selecting the SNP 
subset from the original dataset with minimal errors, thus 
reducing the cost of genotyping. We propose a new method that 
combining strategy particle swarm optimization (SPSO) and 
Linkage Disequilibrium (LD) to select highly correlated SNPs. 
We use this strategy in PSO to select more optimal solutions and 
replace less accurate particles. The method is demonstrated 
using the HapMap dataset through evaluating the 
leave-one-out-cross-validation (LOOCV) and K-nearest 
neighbor (KNN) method. Experimental results show that our 
proposed method results in a smaller subset of tag SNPs and 
provides improved accuracy over PSO and other tag SNP 
selection methods. 

 
Index Terms—Single Nucleotide Polymorphism, Particle 

Swarm Optimization, Linkage Disequilibrium. 
 

I.    INTRODUCTION  

 ingle nucleotide polymorphisms (SNPs) are single 
changed nucleotides in a human gene. They also called 

the third DNA genetic marker, and are defined as the part of 
the nucleotide disparity between different groups with a 
distribution percentage greater than one percent [1]. In 
humans, three billion single nucleotides contain over 
fourteen million SNPs, with an average of two to three 
hundred single nucleotides producing an SNP. The existence 
of SNPs can be used to quantify diversity in human genetics. 
Studying complex diseases and the connections between 
SNPs requires genotyping the genome, a very complex 
process which can be very expensive for large SNP data sets. 
However, selecting a smaller useful subset of SNPs from the 
original SNP set (i.e., the tag SNP selection problem) can 
reduce the cost of the genotyping process.  

Many methods exist for selecting tag SNPs, including 
MLR tagging [2], STAMPA [3], RLRP [4] and SVM/STSA 
[5]. Zhang et al. [6] proposed the genome body block, in 
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which the genome is split into mutually exclusive blocks, 
each with a haplotype block that defines 80 percent of 
variation in the swarm. This decreases the variability of each 
block resulting in a high degree of duplicate information in 
the blocks. This problem can be improved upon by placing all 
common haplotype SNPs in the block [7]. Lewontin et al. 
used linkage disequilibrium relationships between genomes 
[8], with the numerical disequilibrium (r2), calculated as the 
level of similarity between the SNPs, thus determining SNP 
relevance. For example r2 >= 0.8 [9, 10], signifies relevance, 
and this relevance is used to select SNPs. The advantages of 
these methods for SNP selection are deduced from the SNP 
relevance with genetic disease. 

We propose a strategy particle swarm optimization (SPSO) 
to select tag SNPs. In the tag SNP selection problem, we 
search for the best SNP combination by increasing the 
number of tag SNPs. We find that some SNP combinations 
appear in the best solution when the number of tag SNPs 
increases but given its incapability of remembering the best 
solution in the next selection, general PSO may miss some 
SNP combinations in the next selection, thus reducing 
accuracy. Therefore we integrate into PSO a strategy to retain 
the latest search results for an optimal solution and replace 
less accurate particle. The SBPSO computational results 
demonstrate that the predictive ability of this approach is 
superior to PSO and other methods of tag SNP selection 
mentioned in the literature. 

II.     METHODOLOGY 

A.  Particle Swarm Optimization 

Proposed by Kennedy and Eberhart in 1995 [11], particle 
swarm optimization (PSO) simulates the social behavior of 
organisms. For example, it models the behavior of birds as 
they randomly search for food in the search space, then 
optimizing their search direction based on experience and 
information shared among group members. In the search 
space, the search for the location of each particle will 
calculate the fitness value by a designed function. Particles 
are randomly generated and do not repeat through multiple 
iterations to determine the optimal goal. Each iteration 
considers particle speed and best fitness value (pbest) to date, 
and the group searches for the best fitness (gbest) value to 
date. This continues until the particle swarm finds the best 
solution or reaches the termination condition. 
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Pseudo code for PSO 
1: For each particles 
2:     Initialize particle 
3: Do 
4:     For each particle 
5:         Calculate fitness value 
6:         If the fitness is better than pbest to date 
7:         Set the value as the new pbest 
8:         If the fitness is better than gbest to date 
9:         Set the value as the new gbest 
10:     End For 
11:     For each particle 
12:         Calculate particle velocity according to equation (1) 
13:         Update particle position according to equation (2) 
14:     End For 
15: While maximum iterations or find the best solution 

where, in dimension D, old
idx  is the current position of 

particle i, old
idv  is the current speed of particle i, new

idx  is the 

updated position of particle i, new
idv  is the updated speed of 

particle i, ( old
idid xP − ) is the distance between pbest and gbest, 

and ( old
idgd xP − ) is the distance between gbest and old

idx . 

B.   Strategy Particle Swarm Optimization 

This strategy allows PSO to retain the optimal solution 
which can then be used to replace low accuracy particles as 
the number of tag SNPs increases. The strategy calculates the 
new combination in the iteration limit.  

 

 
Figure 1. SPSO flow chart 

C.   Encoding 

The data is constructed of Adenine (A), Cytosine (C), 
Guanine (G) and Thymine (T). Thus we conduct the 
conversion of major and minor as shown in Fig. 2. 

 
Figure 2. Data set conversion 

 

D.   Linkage Disequilibrium 

Linkage disequilibrium (LD) describes the correlation 
between different SNPs impacted by chromosomal 
rearrangements. Figure 3 shows no chromosomal 
recombination occurring between SNP1 and SNP2. This 
phenomenon is referred to as  high LD, while an apparent 
chromosomal recombination between SNP1 and SNP5 is 
called low LD. Generally, low LD occurs more frequently 
when the distance between two SNPs is reduced. The LD test 
can determine the level of LD between the SNPs using r2, 
which is calculated as follows: 
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where PA and PB are two SNPs on the proportion of major 
single nucleotides, PAB is the proportion of a major single 
nucleotide for PA and PB, and D= PAB − PAPB.  
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Figure 3. Linkage disequilibrium calculation diagram 
 

The value calculated by Eq. (1) is between 0 and 1. The 
closer the value is to 1, the higher the LD between the two 
SNPs. Figure 3 shows the calculation of the LD level 
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2

15r  is the LD value of  SNP1 and SNP5 



 

between different SNPs. A value of r2>=0.8 indicates a high 
LD between two SNPs. LD is used to filter the data, and the 
five SNPs displayed in Fig. 3 are thus reduced to the three 
SNPs shown in Fig. 4. 

 

 
Figure 4. Filtered data 

E. Initialization 

This study uses decimal encoding to design particles. 
During initialization, half of the swarm particles are created 
based on LD, while the other half is randomly generated. At 
initialization, each particle’s tag SNP is unique, as shown in 
Fig. 5. 

 

 
Figure 5. Particle initialitation 

F. K-nearest neighbor 

The K-nearest-neighbor (K-NN) method was proposed by 
Fix and Hodges in 1951 [12]. In this study, all data were used 
as test data in the fitness evaluation, then classified according 
to the particles' SNP, and K-NN was used to select the K data 
nearest to the test data. These K data were used to produce the 
new data set following the majority decision diagram (as 
shown in Fig. 6). 

 
Figure 6. Majority decision diagram for K=3 

G. Fitness function 

In this study, the fitness function uses the 3-NN with 

leave-one-out-cross-validation (LOOCV) to obtain the 
correct number of each test data set by K-NN until all data 
have been tested. By summing the number of correct times of 
each data set, we obtain the fitness value by Eq. (4): 
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where P(Fi) is the fitness of each particle, Mtotal is total 
correct number, Dr is the column number of the data sets, Dc 
is the row number of the data sets, and Tr represents the 
selected tag SNP.  

H. Updating particle location and speed 

Particles update their locations using the inertia weight, 
previously speed, pbest, gbest, c1 and c2, as in Eq. (1) and Eq. 
(2). 

III.  RESULTS AND DISCUSSION 

A. Data set description 

Four published experimental SNP data sets were 
downloaded from HAPMAP (http://www.hapmap.org) for 
evaluation. 
A.) ENCODE Regions from HAPMAP 

We used regions ENr123 and EMm010 from two 
populations of the ENCODE project (2005): the Chinese and 
Japanese populations of Beijing (HCB) and the Japanese 
population of Tokyo (JPT) [13]. We used 90 genotypes of the 
parents for regions ENm013, ENr112 and ENr113 from 30 
CEPH family trios obtained from HapMap. The data was 
collected from chromosomes 7q21.13, 2p16.3 and 4q26. The 
number of SNPs genotyped in each region was 376, 439 and 
523, respectively. 
B.) Chromosome 5q31 

Data sets from Daly et al. (2001) [14] were derived from 
the 616 kilobase regions of human chromosome 5q31 from 
129 family trios. 
C.) Other Gene Regions from HAPMAP 

We used two sets of SNPs spanning the two genes STEAP 
and TRPM8 collected from 30 CEPH family trios. The 
number of SNPs in each region was 37 and 101, respectively. 

B. Parameter setting 

The termination condition of the SPSO in this study was 
300 iterations. Parameters of the particle swarm optimization 
algorithms were as follows: particle size 50, inertia weight 
0.9, maximum speed 6, and minimum speed 6. For the 
acceleration (learning) factors c1=c2=2. 

C. Results and discussion 

We introduce a PSO-based strategy, using K-NN and LD 
for the tag SNP selection problem. Tables I and II show the 
number of tag SNPs needed to achieve prediction accuracies 
of 80% to 99% for MLR [15] SVM/SATA [5], PSO, and 
SPSO methods. 



 

TABLE I 
NUMBER OF TAG SNPS IN EACH REGION OF THE MLR, PSO AND SPSO METHODS (LARGE DATA SET) 

 

These six data sets can be divided into two Tables.  Table I 
contains the three smaller data sets (STEAP, TRPM8 and 
5q31), and four methods were applied to test these data sets. 
When only one SNP was selected, the prediction accuracy of 
the proposed method reached 97%, 91% and 90%, 
respectively for STEAP, TRPM and 5q31, a clear 
improvement over  the SVM/STSA method. In our 
experiment, the proposed method outperformed SVM/STSA 
for equal numbers of tag SNPs.  

Table II presents the three larger data sets: ENm013, 
ENr112 and ENr113. Since no data was provided for the 
SVM/STSA method, only the SPSO, PSO and MLR-tagging 
methods were applied to these test data sets. The number of 
tag SNPs selected by the proposed method was much smaller 
than those selected for MLR-tagging. The prediction 
accuracy of the proposed method for thirty-one SNPs was 
99%, 93% and 95%, respectively for ENm013, ENr112 and 
ENr113.  

Tables III and IV show the average prediction accuracy for 
the regions ENr123 and ENm010 from two populations 
(Chinese and Japanese) obtained by four different methods, 

(MLR, STAMPA, PSO and SPSO), for fixed numbers of tag 
SNPs (2, 5, 10, 15, 20 and 25). The proposed method 
outperformed the average MLR and STANPA predictions for 
ENr123 and ENm010. In most cases the proposed method 
obtained the highest prediction accuracy.. Exceptions 
included tag SNP number 25 (MLR) for the ENm010 data set 
of the Chinese population, and tag numbers 20 and 25 (MLR) 
for the ENm010 data set of the Japanese population. 
However the differences in the accuracy obtained in these 
cases were marginal at about 0.3%. Tables III and IV also 
indicate that, given a small number of tag SNPs, the proposed 
method achieves prediction accuracy significantly better than 
that of the MLR and STAMPA methods, with MLR again 
outperforming STAMPA in both populations. With only two 
tag SNPs, the prediction accuracy of the proposed method 
reached 97% and was generally much higher than that 
obtained by the other methods. Selecting a higher number of 
tag SNPs increased the higher prediction accuracy for all 
three methods. Given a small number of tag SNPs, STAMPA 
returned the lowest the prediction accuracy of all the methods 
tested. 

 
TABLE II 

Number of tag SNPs in each region of the MLR, PSO and SPSO methods (large data set) 
ENm013(376) ENr112(439) ENr113(523) Data set 

 
Accuracy% MLR PSO SPSO MLR PSO SPSO MLR PSO SPSO 

80 2 2 2 6 2 2 4 2 2 

85 3 2 2 9 2 2 5 3 3 

90 6 2 2 14 6 6 10 4 4 

91 6 3 3 16 7 7 11 4 4 

92 7 3 3 18 8 8 13 5 5 

93 8 3 3 20 10 9 15 5 5 

94 9 3 4 24 16 15 18 7 7 

95 9 4 5 33 40 25 40 9 8 

96 11 5 5 63 78 70 55 49 11 

97 15 7 7 95 163 143 80 86 22 

98 22 11 8 126 242 214 104 203 137 

99 254 223 31 187 340 276 200 311 234 

 
 

STEAP(37) TRPM8(101) 5q31(103) Data set 
 

Accuracy% MLR  SVM PSO SPSO MLR SVM PSO SPSO MLR SVM PSO SPSO 

80 1 1 1 1 1 1 1 1 1 1 1 1 

85 1 1 1 1 2 1 1 1 2 1 1 1 

90 1 1 1 1 4 2 1 1 5 3 1 1 

91 2 1 1 1 5 5 1 1 7 3 2 2 

92 2 1 1 1 5 5 2 2 7 4 2 2 

93 2 1 1 1 6 6 2 2 9 5 2 2 

94 2 1 1 1 7 7 2 2 13 6 2 2 

95 2 2 1 1 8 8 2 2 16 8 4 2 

96 3 2 1 1 10 10 2 2 21 10 5 3 

97 3 2 1 1 15 15 2 2 31 22 5 4 

98 4 2 2 2 15 15 2 2 41 42 13 5 

99 4 2 3 3 24 24 3 3 55 51 14 12 



 

TABLE III 
COMPARSION OF ACCURACY OBTAINED BY MLR, STAMPA, PSO AND SPSO FOR A FIXED NUMBER OF TAG SNPS (2, 5, 10, 15, 20, 25) FOR REGIONS ENR123 

AND ENM010 FROM TWO POPULATIONS (CHINESE). 
Accuracy(%) for Han Chinese 

Number 
ENr123 (63) ENm010 (105) 

Tag SNP MLR STAMPA PSO SPSO MLR STAMPA PSO SPSO 

2 80.3 74.4 97.7 97.8 81.4 79.2 97.3 97.3 

5 92.8 90.3 98.9 99.1 93.8 90.9 98.8 98.8 

10 98.1 93.7 99.7 99.8 98.0 95.3 99.1 99.2 

15 99.2 95.2 99.7 100.0 99.4 96.8 99.1 99.5 

20 99.8 96.0 99.9 100.0 99.8 98.1 99.3 99.6 

25 99.9 96.9 100 100.0 100.0 98.6 99.4 99.6 

average 95.0 91.1 99.3 99.5 95.4 93.2 98.8 99.0 
 

TABLE IV 
COMPARSION OF ACCURACY OBTAINED BY MLR, STAMPA, PSO AND SPSO FOR A FIXED NUMBER OF TAG SNPS (2, 5, 10, 15, 20, 25) FOR REGIONS ENR123 

AND ENM010 FROM TWO POPULATIONS (JAPANESE ). 
Accuracy (%) for Japanese 

Number 
ENr123 (63) ENm010 (105) 

Tag SNP MLR STAMPA PSO SPSO MLR STAMPA PSO SPSO 

2 93.5 89.5 98.3 98.3 81.4 79.2 97.2 97.2 

5 95.5 93.8 98.7 99.2 93.8 90.9 98.9 99.1 

10 96.8 95.6 99.3 99.4 98.0 95.3 99.4 99.4 

15 97.9 96.0 99.4 99.6 99.4 96.8 99.6 99.6 

20 98.9 96.6 99.6 99.8 99.8 98.1 99.5 99.7 

25 99.5 96.9 99.7 99.8 100.0 98.6 99.7 99.8 

average 97.0 94.7 99.1 99.4 95.4 96.1 99.0 99.1 
 

We propose a strategy particle swarm optimization (SPSO) 
which retains the best combination to increase the quality of  
the initial particle which is important  in PSO for selecting the 
tag SNPs. In this study, the search number of tag SNP starts 
from two SNPs and increases incrementally when searching 
the tag SNP. Our proposed strategy first uses brute force to 
find the best five combinations of two SNPs prior to PSO 
execution. Second, we use the best combination to 
individually collocate any number of data dimensions and 
save the best five combinations, which then replace the worst 
five particles following initialization. Third, when the 
particle search obtains a new combination with accuracy 
higher than the best five combinations, the new combination 
replaces the worst-performing of the best five combinations. 
This continues iteratively with the best five combinations 
repeating until the termination conditions are met in the next 
initialization. 

The proposed strategy can be used in tag SNP selection 
problem. The persistence of the initially-selected SNP 
combination through to the termination condition may reduce 
accuracy, but integrating the proposed strategy into PSO 
allows PSO to remember the best solution and obtain better 
particles after initialization. PSO also can improve the 
shortcomings of the proposed strategy by particles movement, 
thus obtaining superior results. Incorporating the proposed 
strategy increased total computing time by about 5% and, 
following Eq. (5), computing time will increase with the 
amount of data in the operation. 

where T is the calculation time and n are the data dimensions. 

As seen in Table II, larger data sets obtain better results. 
However, the brute force test shows that the best combination 
(two SNPs) collocating a number of data dimensions can 
produce the most accurate combination in the next iteration 
(three SNPs). However, the fact that this did not occur 
consistently for all data sets confirms the correctness of our 
theory. 

In the parameter settings, the particle goes through three 
hundred times iterations in each re-initialization. In each 
iteration, if find the gbest is improved, the iteration count is 
reset to give the particle enough opportunities to find a better 
solution. The result tables shows that combining PSO with 
our strategy improves the original PSO search results within 
the same number of iterations and provides slightly better  
results than SVM/SATA, MLR and STAMPA, but is 
sometimes inferior to MLR. For example, in the large data 
sets presented in Table II, an increase in MLR accuracy in the 
ENr112 and ENr113 data sets requires the SNP volume to 
gradually fall below that used in our proposed method. 
However, for 99% of the ENm013 samples, our proposed 
method only requires 31 SNPs, which is considerably fewer 
than are required by MLR. This may result in these two 
assessment methods obtaining higher accuracy ratings than 
other leading methods in particular data sets but, overall, our 
proposed method provides the best results for most of the 
data sets. 

IV.    CONCLUSIONS 

We present a novel approach to tag SNP prediction based 
on strategy particle swarm optimization (SPSO) evaluated by 
with K-nearest neighbor (K-NN). The experiment used 
genotype information taken from the HapMap project and 
compared the proposed method with leading tag SNP 
selection algorithms. The proposed method consistently 
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identified tag SNPs with greater accuracy than SVM, MLR 
and STAMPA. A key concern was whether  SPSO can 
improve the accuracy of PSO when using our proposed 
strategy. Though the proposed method and PSO obtained 
somewhat similar results, the advantages of SPSO became 
clear on more complex data sets, showing that the proposed 
method outperforms PSO and other methods in the tag SNP 
selection problem. 
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