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ABSTRACT - The norm of elastic constant tensor and the 
norms of the irreducible parts of the elastic constants of 
human mandible, human femora and human tibia and 
canine mandible and canine femora and bovine femur , 
bovine femur haversian and bovine femur plexiform are 
calculated. The relation of the scalar parts norms and the 
other parts norms and the anisotropy of these types of bones 
are presented. The norm ratios are used to study anisotropy 
of these types of bones. 

 

Index Terms: Mandible; Femora; Femur; Tibia; Anisotropy; 
Elastic Constants.  

 

 

I. INTRODUCTION 

The decomposition procedure and the decomposition of 
elastic constant tensor is given in [1] and in the appendix, 
also the definition of norm concept and the norm ratios and 
the relationship between the anisotropy and the norm ratios 
are given in [1] and in the appendix. As the ratio  becomes 
close to one the material becomes more isotropic, and as the 
ratios   and   become close to one the material becomes 
more anisotropic as explained in [1] and in the appendix. 

 

II. CALCULATIONS 

By using table 1, and the decomposition of the elastic 
constant tensor, we have calculated the norms and the norm 
ratios as shown in table2. 

Table 1, Elastic Constants (GPa), [2, 3 4, 5, and 6] 

Bone 
11c  22c  33c

 44c  55c
 66c

 12c
 13c

 23c
 

Human Mandible 18.0 20.2 27.6 6.23 5.61 4.52 9.98 10.1 10.7 

Human Femora 19.0 22.2 29.7 6.67 5.67 4.67 9.73 11.9 11.9 

Human Tibia 11.6 14.4 22.5 4.91 3.56 2.41 7.95 6.10 6.92 

Canine Mandible 15.9 18.8 27.1 4.63 4.12 3.81 8.33 9.79 9.79 

Canine Femora 16.2 17.1 15.9 2.51 2.73 2.72 10.9 11.5 11.5 

Bovine Femur 14.1 18.4 25.0 7.00 6.30 5.28 6.34 4.84 6.94 

Bovine Femur  Haversian 21.2 21.0 29.0 6.30 6.30 5.40 11.7 12.7 11.1 

Bovine Femur  Plexiform 22.4 25.0 35.0 8.20 7.10 6.10 14.0 15.8 13.6 

 

Table 2, the norms and norm ratios 

Bone sN  dN  nN  N  
N

N s
 

N

N d
 

N

N n
 

Human Mandible 46.347 7.115 0.902 46.8989 0.9882 0.1517 0.0192 

Human Femora 49.968 8.351 1.076 50.6726 0.9861 0.1648 0.0212 

Human Tibia 32.952 7.904 2.290 33.9637 0.9702 0.2327 0.0674 

Canine Mandible 42.280 8.135 2.889 43.1522 0.9798 0.1885 0.0669 

Canine Femora 39.951 0.848 0.544 39.9633 0.9997 0.0212 0.0136 

Bovine Femur 37.666 7.804 1.305 38.4876 0.9786 0.2028 0.0339 

Bovine Femur  Haversian 51.382 6.308 1.097 51.7795 0.9923 0.1218 0.0212 

Bovine Femur  Plexiform 60.841 9.442 1.539 61.5886 0.9879 0.1533 0.0250 
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III. CONCLUSION 

We can conclude from table 2, by considering the ratio 
N

Ns  

that the bone (Canine Femora) is the most isotropic one and 
the least anisotropic material because it has the smallest 

ratios of  
N

N d and
N

N n  among these types of bones, and 

the bone (Human Tibia) is the least isotropic one because it 

has the smallest ratio of  
N

Ns  and the most anisotropic 

material because it has the highest ratios of 
N

Nd  and 
N

Nn  

among these types of bones, and for Human bones 
mentioned above the most isotropic one is (Human 
Mandible) and most anisotropic is  (Human Tibia) and for 
Canine bones mentioned above the most isotropic one is 
(Canine Femora) and most anisotropic is  (Canine 
Mandible)  and for Bovine bones mentioned above the most 
isotropic one is (Bovine Femur  Haversian) and most 
anisotropic is  (Bovine Femur),  and by considering the 
value of N we found that the highest value is in the case of  
the bone (Bovine Femur  Plexiform)  so we can say that the  
bone (Bovine Femur  Plexiform) elastically is the strongest, 
and the lowest value of N  is in the case of the  bone 
(Human Tibia), so we can say that this type of bone is 
elastically the least strong. 

 

APPENDIX                                                                                                 

1. ELASTIC CONSTANT TENSOR DECOMPOSITION 

   The constitutive relation characterizing linear anisotropic 
solids is the generalized Hook’s law [7]: 

klijklij C   , klijklij S                          (1) 

Where ij  and kl are the symmetric second rank stress 

and strain tensors, respectively ijklC is the fourth-rank 

elastic stiffness tensor (here after we call it elastic constant 

tensor) and ijklS  is the elastic compliance tensor. There are 

three index symmetry restrictions on these tensors. These 
conditions are: 

jiklijkl CC  , ijlkijkl CC  , klijijkl CC              (2) 

Which the first equality comes from the symmetry of stress 
tensor, the second one from the symmetry of strain tensor, 
and the third one is due to the presence of a deformation 
potential. In general, a fourth-rank tensor has 81 elements. 
The index symmetry conditions (2) reduce this number to 
81. Consequently, for most asymmetric materials (triclinic 
symmetry) the elastic constant tensor has 21 independent 

components. Elastic compliance tensor ijklS  possesses the 

same symmetry properties as the elastic constant tensor 

ijklC  and their connection is given by [8]: 

klmnijkl SC =  jminjnim  
2

1
                         (3) 

Where ij  is the Kronecker delta. The Einstein summation 

convention over repeated indices is used and indices run 
from 1 to 3 unless otherwise stated [9].  

     By applying the symmetry conditions (2) to the 
decomposition results obtained for a general fourth-rank 
tensor, the following reduction spectrum for the elastic 
constant tensor is obtained. It contains two scalars, two 
deviators, and one-nonor parts: 

     1;22;01;0
ijklijklijklijkl CCCC     

                                              1;42;2
ijklijkl CC        (4)                     

Where: 

 
ppqqklijijkl CC 

9

11;0  ,                        (5) 

   klijjkiljlikijklC  233
90

12;0   

                                               ppqqpqpq CC 3      (6) 

   ipkpjljpkpiliplpjkjplpikijkl CCCCC  
5

11;2  

                           pqpqjkiljlik C 
15

2
          (7) 

     ipjpijppklkplpklppijijkl CCCCC 45
7

1
45

7

12;2    

      ipkpikppjljplpjlppik CCCC 45
35

2
45

35

2
   

      iplpilppjkiplpjkppil CCCC 45
35

2
45

35

2
   

                              klijjlikiljk  522
105

2
  

                                           pqpqppqq CC 45         (8) 

  )(
3

11;4
iljkikjlijklijkl CCCC   

             jplpjlppikkplpklppij CCCC 22
21

1
   

                    iplpilppjkjpkpjkppil CCCC 22    



              ipkpikppjl CC 2  

  ipjpijppkl CC 2

   pqpqppqqjkiljlikklij CC 2
105

1
  (9) 

These parts are orthonormal to each other. Using Voigt’s 

notation [7] for ijklC , can be expressed in 6 by 6 reduced 

matrix notation, where the matrix coefficients c are 

connected with the tensor components ijklC  by the 

recalculation rules: 

ijklCc  ;      )6,....,1,6,....,1(   klij  

That is: 

111 , 222  , 333 , 43223 
51331  , 62112  . 

2. THE NORM CONCEPT 

Generalizing the concept of the modulus of a vector, norm 
of a Cartesian tensor (or the modulus of a tensor) is defined 
as the square root of the contracted product over all indices 
with itself: 

                                      

  2/1
..................... ijklijkl TTTN   

Denoting rank-n Cartesian ..........ijklT , by nT , the square of 

the norm is expressed as [10]: 

 
     

 
 
 

  
  

n qjn

qj
n

qj
nnn

qj

qj TTTTTTN
,,

,;2

,

;22  

This definition is consistent with the reduction of the tensor 
in tensor in Cartesian formulation when all the irreducible 
parts are embedded in the original rank-n tensor space. 

Since the norm of a Cartesian tensor is an invariant 
quantity, we suggest the following: 

 

Rule1. The norm of a Cartesian tensor may be used as a 
criterion for representing and comparing the overall effect 
of a certain property of the same or different symmetry. The 
larger the norm value, the more effective the property is. 

It is known that the anisotropy of the materials, i.e., the 
symmetry group of the material and the anisotropy of the 
measured property depicted in the same materials may be 
quite different. Obviously, the property, tensor must show, 
at least, the symmetry of the material. For example, a 
property, which is measured in a material, can almost be 
isotropic but the material symmetry group itself may have 
very few symmetry elements. We know that, for isotropic 
materials, the elastic compliance tensor has two irreducible 
parts, i.e., two scalar parts, so the norm of the elastic 
compliance tensor for isotropic materials depends only on 

the norm of the scalar parts, i.e. sNN  , Hence, the ratio 

1
N

Ns  for isotropic materials. For anisotropic materials, 

the elastic constant tensor additionally contains two 

deviator parts and one nonor part, so we can define 
N

Nd  

for the deviator irreducible parts and 
N

Nn  for nonor parts. 

Generalizing this to irreducible tensors up to rank four, we 

can define the following norm ratios: 
N

Ns  for scalar parts, 

N

Nv for vector parts, 
N

Nd  for deviator parts, 
N

Nsc  for 

septor parts, and 
N

Nn  for nonor parts. Norm ratios of 

different irreducible parts represent the anisotropy of that 
particular irreducible part they can also be used to 

asses the anisotropy degree of a material property as a 
whole, we suggest the following two more rules: 

 

Rule 2. When sN  is dominating among norms of 

irreducible parts: the closer the norm ratio 
N

Ns  is  to one, 

the closer the material property is isotropic. 

 

Rule3. When sN  is not dominating or not present, norms 

of the other irreducible parts can be used as a criterion. But 
in this case the situation is reverse; the  

larger the norm ratio value we have, the more anisotropic 
the material property is. 

The square of the norm of the elastic stiffness tensor (elastic 

constant tensor) mnC  is: 

      
mn mn

mnmn CCN
22;021;02

 

                22;221;22;01;0 .2   mn
mn

mn
mn

mnmn CCCC  

         21;42;21;2 .2  
mn

mn
mn

mnmn CCC                 (10) 
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