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Abstract—We consider the stochastic joint replenishment
problem in which several items must be ordered in the face
of stochastic demand. Previous authors proposed multiple
heuristic policies for this economically-important problem. We
show that several such policies are not good approximations
to an optimal policy, since as some items grow more expensive
than others, the cost rate of the heuristic policy can grow
arbitrarily larger than that of an optimal policy. These policies
include the well-known RT policy, the P (s, S) policy, the
Q(s, S) policy and the recently-proposed (Q,S, T ) policy. To
compensate for this problem, we propose a QI(s, S) policy,
which is a generalization of the Q(s, S) policy, and in which
items are ordered if an expensive item is demanded or if
demand for other items reaches Q. Our numerical results
demonstrate that QI(s, S) policies do indeed overcome the
weakness of the other heuristics, and can cost less than the
Q(s, S) heuristic even when the ratio of the cost of expensive
items to other items is only a factor of three.

Index Terms—inventory: approximations / heuristics / multi-
item / policies; joint replenishment.

I. INTRODUCTION

Most real-world supply chains face the stochastic joint
replenishment problem (SJRP), where several items must be
ordered to trade-off the costs of ordering, holding inventory
and backlogging, in the face of stochastic demand. The
existence and structure of optimal policies for the SJRP is
well-established [1] and algorithms for computing optimal
policies have been proposed [2]. However, these algorithms
are not practical for more than 4 or 5 items as their
cost grows exponentially with the number of items, yet in
reality, inventories often consist of over 100 types of item.
Therefore heuristic policies are used in practice.

To avoid extra costs from using a poor policy, it is
important to understand how well such heuristic policies
might perform. Yet such policies have only been evaluated
on test problems with a limited range of manually-specified
parameters [3] and compared with lower bounds on the cost
rate of an optimal policy. With such an evaluation it is not
possible to guarantee that such policies will perform well
in all instance of the SJRP. Indeed, this paper shows that
the cost rates of several heuristic policies can be arbitrarily
larger than the cost rate of an optimal policy.

First we formally state the problem (Section 2). After
describing existing heuristics (Section 3), we prove that even
for two-item settings with independent Poisson demand, the
ratio of the cost rate of an optimal policy from the given
class of heuristics to the cost rate of an optimal policy can
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tend to infinity, as the parameters of the problem are varied
(Theorem 1, Section 4). The policies in question include
the well-known RT policy, the QS policy and the recently-
proposed (Q,S, T ) policy. We also show that the cost rate
of P (s, S) and Q(s, S) policies relative to an optimal policy
tends to infinity as the number of items is increased. These
observations motivate us to suggest a way of partitioning the
items to reduce the cost in pathalogical cases, resulting in a
new policy which we call the QI(s, S) policy (Section 5).
The QI(s, S) policy generalizes the Q(s, S) policy, so it
is always possible to find a QI(s, S) policy that performs
as well as a Q(s, S) policy. Finally, we demonstrate the
advantage of the QI(s, S) policy over Q(s, S) policies
numerically (Section 5) and show that they succeed in
overcoming the weaknesses of the other heuristics.

II. THE STOCHASTIC JOINT REPLENISHMENT PROBLEM
(SJRP)

A stochastic joint replenishment problem (SJRP) is given
by a tuple 〈n, d, k, ki, hi, pi〉. The number of item types
is n ∈ Z+. The total amount of item i demanded up to
time t ∈ R+ is the increasing random process di(t). Major
ordering cost k ∈ R+ is incurred per order in addition to a
minor order setup cost of ki for each item i that is ordered.
The penalty cost rate for item i is pi(xi) when the inventory
position of item i is xi, and the holding cost rate is hi(xi),
where pi : R→ R+ and hi : R→ R+.

A policy π for a SJRP is given by a tuple 〈Sπ, Tπ〉. The
n-vector Sπ(x) ∈ Rn is called the order-up-to point and
has the interpretation that just after each order, the inventory
position of item i is Sπ,i(x) if the inventory position just
before the order is x. The policy orders at a random time
Tπ which may depend on the time t since the last order
and on the realization of the demand d up to time Tπ . Time
interval [0, Tπ) is called a cycle. The cost rate vπ of policy
π is the mean total cost per cycle divided by the mean time
per cycle

vπ :=
EKπ + EHπ + EPπ

ETπ
(1)

Kπ := k +

n∑
i=1

1Sπ,i(x(Tπ)) 6=xi(Tπ)ki (2)

Hπ :=

∫ Tπ

0

n∑
i=1

hi(Sπ,i − di(t))dt (3)

Pπ :=

∫ Tπ

0

n∑
i=1

pi(Sπ,i − di(t))dt (4)

where Kπ, Hπ, Pπ are the mean ordering, holding and
penalty cost accumulated in a cycle and the indicator
function 1A for proposition A is one if A is true and zero
otherwise.



The objective of the SJRP is to minimize cost rate vπ
with respect to the policy π.

III. EXISTING HEURISTICS

For the sake of internal consistency (regarding the sym-
bols s, T and P ), our nomenclature differs from some of the
existing literature, where our PS policy is called the RT
policy (yet the literature also refers to a P (s, S) policy),
our (Q,S, P ) policy is called the (Q,S, T ) policy (yet the
literature also refers to a Q(s, S) policy) and the can-order
policy is usually denoted by (s, c, S) where s plays the role
of our m and c plays the role of our s.

Existing policies can be defined in terms of an order-
up-to point S ∈ Rn. If yi(t) is the inventory position that
would be obtained in the absence of an order at time t,
then a policy is said to order an item i to S if it orders
amount Si−yi(t) of that item. Existing policies specify the
subset to order Is(t) with a parameter s ∈ Rn as the set
of items i whose inventory positions in the absence of an
order yi(t) would otherwise be less than or equal to si, that
is Is(t) := {i | yi(t) ≤ si, 1 ≤ i ≤ n}.

If the last order was at time τ , then existing policies can
be defined as follows.

DEFINITION 1. Let Q ∈ Z+, P ∈ R+ and m, s, S ∈ Rn be
any parameters.

1) PS policies [4] order all items to S when t− τ ≥ P .
2) P (s, S) policies [3], [5] order items Is(t) to S when

t− τ ≥ P .
3) QS policies [4], [6] order all items to S when Nd(t)−

Nd(τ) ≥ Q.
4) Q(s, S) policies [5], [7] order items Is(t) to S when

Nd(t)−Nd(τ) ≥ Q.
5) (Q,S, P ) policies [8] order all items to S when

Nd(t)−Nd(τ) ≥ Q or t− τ ≥ P .
6) Can-order policies [9], [10] order items Is(t) to S

when yi(t) ≤ mi for some 1 ≤ i ≤ n.

IV. EXAMPLE OF POOR PERFORMANCE

Our counterexample shows that (Q,S, P ) policies and
hence QS and PS policies are not constant-factor approx-
imations, even for two items, zero minor setup costs and
independent Poisson demand. Intuitively, if one item has
large holding and penalty cost rates, then P or Q should
be small so that demands for this item do not result in
large item costs. However, if a second item is demanded
frequently and ordering is costly, then a small P or Q
implies a high ordering cost rate. No choice of P and Q
provides a near-optimal tradeoff between these effects.

We use the following definitions. The demand processes
for items 1 and 2 are X(t) and Y (t) which are inde-
pendent Poisson processes with rates λX , λY and with
X(0) = Y (0) = 0. The cumulative demand process is
Z(t) := X(t) + Y (t). By the well-known properties of
Poisson processes, Z(t) is also a Poisson process with rate
λZ := λX + λY . The ordering time of a (Q,S, P ) policy
with P ∈ R+, Q ∈ Z+ is

T := min{P, inf{t | Z(t) ≥ Q}}. (5)

The following Lemma says that either the expected cycle
time of a (Q,S, P ) policy is short, or a significant propor-
tion of the cycle time is spent having non-zero demand for
item 1.

LEMMA 1. For any X(t), Y (t), P,Q as defined above

either ET <
2

λZ
P(Z(T ) > 0) (6)

or
E
∫ T
0
1X(t)>0dt

ET
≥ λX

2λZ
. (7)

Proof: We consider two cases that cover all possibili-
ties:

either ET < 2

∫ P

0

P(Z(t) = 0)dt

or ET ≥ 2

∫ P

0

P(Z(t) = 0)dt. (8)

In the first case, the fact that Z(t) is Poisson with rate
λZ gives

ET < 2

∫ P

0

P(Z(t) = 0)dt (9)

=
2

λZ

(
1− e−λZP

)
(10)

=
2

λZ
(1− P(Z(P ) = 0)) (11)

=
2

λZ
(1− P(Z(T ) = 0)) (12)

=
2

λZ
P(Z(T ) > 0) (13)

where the penultimate line follows since Z(P ) = 0 implies
that T = P by definition of T and the fact that Z(t) is
non-decreasing, and similarly Z(T ) = 0 also implies that
T = P .

In the second case, we first use the definition of T to
obtain

ET = E
∫ P

0

1Z(t)<Qdt (14)

=

Q−1∑
q=0

∫ P

0

P(Z(t) = q)dt. (15)

Now using the fact that X(t) given Z(t) = q has a binomial



distribution with parameters λX/λZ and q for any t we have

E
∫ T

0

1X(t)>0dt

= E
∫ P

0

1X(t)>0,Z(t)<Qdt (16)

=

Q−1∑
q=0

∫ P

0

P(X(t) > 0, Z(t) = q)dt (17)

≥
Q−1∑
q=1

∫ P

0

P(Z(t) = q)P(X(t) > 0 | Z(t) = q)dt

≥
Q−1∑
q=1

∫ P

0

P(Z(t) = q)P(X(t) > 0 | Z(t) = 1)dt

=

Q−1∑
q=1

∫ P

0

P(Z(t) = q)
λX
λZ

dt (18)

=
λX
λZ

(
ET −

∫ P

0

P(Z(t) = 0)dt

)
(19)

where the last line follows from (14).

Dividing (19) by ET and using the second case of (8)
gives

E
∫ T

0

1X(t)>0dt/ET

≥ λX
λZ

(
1−

∫ P
0

P(Z(t) = 0)dt

ET

)
(20)

≥ λX
λZ

(
1−

1
2ET
ET

)
=

λX
2λZ

. (21)

Together (13) and (21) complete the proof.

The following Lemma says that the expected cycle time
for which item 1 has demand d ∈ Z+ is less than or equal to
the expected cycle time for which item 1 has zero demand.

LEMMA 2. For any X(t), Y (t), P,Q as defined above and
for any d ∈ Z+,

E
∫ T

0

1X(t)=ddt ≤ E
∫ T

0

1X(t)=0dt. (22)

Proof: Let τd :=
∫∞
0

1X(t)=ddt be the time during
which X(t) = d and let td :=

∑d−1
d′=0 τd′ be the time until

X(t) ≥ d. The sequence (τd)
∞
d=0 consists of independent

identically distributed exponential random variables, by
definition of the Poisson process.

The following inequalities are a consequence of the facts
that td and τd are independent of Y , that 1Y (t)<Q−d,t≤P is
decreasing in t and in d, and that τd and τ0 are identically

distributed:

E
∫ T

0

1X(t)=ddt

= EX
∫ td+τd

td

EY 1Y (t)<Q−d,t≤P dt (23)

≤ EX
∫ τd

0

EY 1Y (t)<Q−d,t≤P dt (24)

≤ EX
∫ τd

0

EY 1Y (t)<Q,t≤P dt (25)

= EX
∫ τ0

0

EY 1Y (t)<Q,t≤P dt (26)

= E
∫ T

0

1X(t)=0dt. (27)

This completes the proof.

THEOREM 1. Suppose that X(t), Y (t), P,Q are as defined
above and that k, θ1, θ2, λX , λY > 0 are any parameters.
Let the item cost rate as a function of inventory position
x := (x1, x2) be

c(x) := θ1|x1|+ θ2|x2|. (28)

Then for any order-up-to point S ∈ R2, the cost rate v̄ of
a (Q,S, P ) policy using these parameters satisfies

v̄ ≥ min{2kλZ , θ1λX/λZ}/4 (29)

whereas the cost rate v̄∗ of an optimal policy satisfies

v̄∗ ≤ λXk + θ2(λY /λX). (30)

Thus if we set λX = θ2 = 1, k = λY = α, θ1 = α3 for any
α ≥ 0, then

v̄

v̄∗
≥ 1

8

α2

1 + α
. (31)

Proof: First we place a lower bound on the cost rate v̄
of the (Q,S, P ) policy. Since X(t) ∈ Z+, for any S1 ∈ R
there exists some d ∈ Z+ for which

|S1 −X(t)| ≥ 1X(t) 6=d/2 for all t. (32)

Thus, we may bound v̄ by dropping costs associated with
item 2, as

v̄ET

≥ kP(Z(T ) > 0) + θ1E
∫ T

0

|S1 −X(t)|dt (33)

≥ kP(Z(T ) > 0) + (θ1/2)E
∫ T

0

1X(t)6=ddt (34)

≥ kP(Z(T ) > 0) + (θ1/2)E
∫ T

0

1X(t)>0dt (35)

by Lemma 2. So by Lemma 1

v̄ ≥ min

{
k

2/λZ
, (θ1/2)

λX
2λZ

}
. (36)

This proves (29).
Secondly, we observe that the cost rate v̄∗ of an optimal

policy is no more than the cost rate v̄1 of a policy that uses
order-up-to-point S = 0 and that orders as soon as there
is a demand for item 1. This policy orders at time T1 :=
inf{t | X(t) > 0}. Since T1 is exponentially distributed,



Algorithm 1: Find a QI(s, S) policy
Input: An SJRP
let C be the set of items i having θi > (k + ki)λi
sort these items so that θ1 ≥ θ2 ≥ · · · ≥ θ|C|
return a policy corresponding to

min0≤j≤|C|{v̄I | I = {1, 2, . . . , j}}
where

v̄I :=
∑
i∈I ci(x

∗
i ) + minQ

(
k

ETQ,I +
∑
i∈Ic g

Q,I
i

)

ET1 = 1/λX ,ET 2
1 = 2/λ2X . Thus this policy has a cost

rate

v̄1 =

(
k + E

∫ T1

0

θ2|Y (t)|dt

)
/ET1 (37)

=

(
k + θ2E

∫ T1

0

λY t dt

)
/ET1 (38)

= λX
(
k + θ2λY ET 2

1 /2
)

(39)

= λXk + θ2
λY
λX
≥ v̄∗. (40)

This proves (30).
Finally, taking the ratio of (29) and (30) for λX = θ2 =

1, k = λY = α, θ1 = α3 yields

v̄

v̄∗
≥ 1

4

min{2kλZ , λXθ1/λZ}
λXk + θ2(λY /λX)

(41)

=
1

4

min{2α(1 + α), α3/(1 + α)}
α+ α

(42)

=
1

8

α2

1 + α
. (43)

This completes the proof.
Theorem 1 does not immediately show that Q(s, S) and

P (s, S) policies can perform badly relative to an optimal
policy. However, the same type of argumentation can be
made in this case. For instance, in the case of a Q(s, S)
policy, if there is a single expensive item with cost rate
parameter θ1 and n − 1 identical inexpensive items, then
either the policy sets Q = 1 or it will sometimes pay the
expensive rate θ1. As θ1 is increased, the cost rate of such
a policy with Q > 1 increases without bound relative to
that of an optimal policy. On the other hand, any policy
with Q = 1 makes an order as soon as there is some item
i whose inventory position reaches si. Thus, such a policy
makes orders for only one item at a time. Any policy which
orders only one item at a time fails to benefit from joint
replenishment opportunities, so as the number of items n
increases, the cost rate of such a policy increases without
bound relative to that of an optimal policy.

In the same setting, a P (s, S) policy either sets P to
a very small value or it will sometimes pay the expensive
rate θ1 with finite probability. As θ1 increases, the cost rate
of a policy that pays θ1 with finite probability increases
without bound relative to that of an optimal policy. On the
other hand, a policy with a small value for P will only
rarely benefit from joint replenishment opportunities, and
will mostly order only one item at a time. So, as the number
of items n increases, the cost rate of such a policy increases
without bound relative to that of an optimal policy.

V. PARTITIONING ITEMS

The example of the previous section immediately sug-
gests that an improvement of the Q(s, S) policy in which we

split the items into two groups: I, which is the set of items
with expensive holding and penalty costs; and Ic, which is
the complement of I. We then set two monitoring variables
QI and Q, where QI monitors the demand from I and Q
monitors the demand from all items. We make orders for
all items i having inventory positions xi ≤ si whenever the
demand for items from I exceeds QI or whenever demand
for items from all items exceeds Q.

If the monitoring variable for I is set to one, QI = 1,
then it turns out that we can compute a corresponding policy
for essentially the same cost as computing a Q(s, S) policy.
We call such a policy a QI(s, S) policy.

We do not know if the QI(s, S) policy in general is a
constant-factor approximation for the SJRP. However it is
possible to imagine some (unnatural but still quasi-convex)
cost rate functions ci(x) for which such a policy with QI =
1 would not work well. For instance, consider the cost rate
function

ci(x) = K max{|x| − a, 0} (44)

where K, a ∈ R+ are large constants. To approximate an
optimal policy for a SJRP in which all items had this cost
rate function, one would require that all such items were
placed in I, otherwise large penalties would sometimes be
incurred. On the other hand, such a policy (with QI = 1)
would order every time an item in I is demanded, whereas
an optimal policy would not need to order so frequently if
a is large.

A. Computing a QI(s, S) Policy

In this section, we present an algorithm for computing
a QI(s, S) policy (see Algorithm 1). The first step is to
select a candidate set C of expensive items, so we must
define the notion of expensive. Theorem 1 suggests that
we identify items with a large value of min{hi, pi}/(kλi)
where hi and pi are the holding and penalty costs for the
item. However, we require a definition that takes leadtime
and minor order setup costs into account. We meet this
requirement as follows. Let x∗i ∈ Z be an inventory position
for which item i has its lowest cost rate

ci(x
∗
i ) = min

x∈Z
ci(x). (45)

We define a parameter θi as the minimum change in cost
rates around inventory position x∗i , that is

θi := min{ci(x∗i + 1), ci(x
∗
i − 1)} − ci(x∗i ). (46)

The candidate set of items C then consists of those items i
having θi > (k + ki)λi.

Our algorithm then loops over subsets I of C in order
of decreasing θi, at each stage computing the cost rate v̄I
of the corresponding QI(s, S) policy. For any given Q, the
total cost rate is the sum of: the cost rate for the items in
I, which is

∑
i∈I ci(x

∗
i ), since such items stay at inventory

position x∗i ; plus the cost rate associated with the major
order setup costs, when orders are made at an average time
interval of ET I,Q; plus the sum of the cost rates gI,Qi of
the remaining items. We explain the computation of ET I,Q
and gI,Qi below.

For each choice of I, we must search over the parameter
Q. No guarantees about this search have been given, even



Algorithm 2: Minimum cost rate for item i ∈ Ic
Input: Parameter Q ∈ N, set I and an SJRP
Step 1
µ :=

∑n
j=1 λj

p := λi/µ
r :=

∑
j∈I λj/µ

q := 1− p− r
for y = Q− 1 to 0
P (y) := r(1− r)y

end for
P (Q) := 1−

∑Q−1
y=0 P(Y (T ) = y)

for x = 0 to Q

a(x) :=
∑Q
y=x P (y)

(y
x

) ( p
p+q

)x (
q
p+q

)y−x
end for
Step 2 (Assume v(x, y) = 0 if otherwise undefined)
for y = Q− 1 to 0

for x = xmin to xmax
v(x, y) :=

c(x)
µ

+ pv(x− 1, y + 1)

+qv(x, y + 1)
end for

end for
Step 3 (Assume w(x, y) = 0 if otherwise undefined)
for d = 1 to Q

for x = xmin to xmax
Sw :=

∑d−1
j=1 a(j)w(x− j, d− j)

w(x, d) := (v(x, 0) + Sw) /(1− a(0))
end for

end for
Step 4
repeat step 2 replacing c(x) by 1

and v(x, y) by vt(x, y)
repeat step 3 replacing w(x, d) by t(x, d)

and v(x, y) by vt(x, y)

return cost rate gQ,Ii := minSi,si
ki+w(Si,Si−si)
t(Si,Si−si)

and time between orders ETQ,I := vt(0, 0)

for computing a Q(s, S) policy [7] as the cost rate is not a
quasi-convex function of Q. To do this search, we start with
a guess for an interval of Q-values that might contain the
best value. Then we investigate the endpoints and midpoint
of this interval. If the endpoints give better results, we
extend the interval, otherwise we narrow it.

B. Computing the Cost Rate of an Individual Item

We now explain how to compute the mean time between
orders ET I,Q and the cost rate gI,Qi or an individual item
i (see Algorithm 2).

Before describing the algorithm, let us set up some
notation. Let X(t) be the demand for item i ∈ Ic (the
complement of I) since the last order of item i. Let
Y (t), Z(t) be the cumulative demand for items in Ic and
I since the last order. Then, for a given Q, the first order
is made at time

T := inf{t | Y (t) ≥ Q or Z(t) > 0}. (47)

Similarly, if Si − si = d, then the first order for item i is
made at time

Ti(d) := inf{t | X(t) ≥ d and
(Y (t) ≥ Q or Z(t) > 0)}. (48)

Note that X(t) can still increase after an order is made at
time T , since that order might not involve item i.

First (Step 1) we find the probability mass function
a(x) := P(X(T ) = x) in terms of the total demand rate µ
and the probabilities p, q, r that a demand is from item i,

from an item in Ic\{i} or from an item in I respectively.
This follows from the fact that

Y (T ) ∼ min{Q,Geometric(r)}

and that

X(T ) | Y (T ) ∼ Binomial(p/(p+ q), Y (T )).

Then (Step 2) we find the expected holding and penalty
cost v(x, y) associated with item i over time interval [0, T ),
given that the inventory position of item i at t = 0 is
x and that X(0) = 0, Y (0) = y, Z(0) = 0. We use a
recurrence for v(x, y) which follows from the facts that the
mean time between demands is 1/µ and that a demand for
item i decreases x − X(t) and increases Y (t), whereas a
demand for item j ∈ Ic\{i} only increases Y (t).

Then (Step 3), we find the expected holding and penalty
cost w(x, d) associated with item i over time interval
[0, Ti(d)), given that X(0) = Y (0) = Z(0) = 0. By
definition of ordering time Ti(d) we have w(x, d) = 0
for d ≤ 0. Otherwise, cost w(x, d) is the cost until the
next order v(x, 0) plus the cost incurred from the inventory
position at the next order w(x − X(T ), d − X(T )). This
gives the following recurrence for 0 < d ≤ Q

w(x, d) = v(x, 0) + EX(T )w(x−X(T ), d−X(T ))

= v(x, 0) + a(0)w(x, d)

+

d−1∑
j=1

a(j)w(x− j, d− j) (49)

which is easily solved for w(x, d).
Finally (Step 4), we find the expected time t(x, d) be-

tween orders of item i. This satisfies the same recurrence
as w(x, d) except with v(x, 0) replaced by the expected
time between orders ET := vt(0, 0), which can be found
by imagining that item i has a constant cost rate of one. The
cost rate of item i for any given ordering parameters Si, si
is simply the cost between orders of i, including the minor
order setup cost ki, divided by the time between orders of
i

ki + w(Si, Si − si)
t(Si, Si − si)

. (50)

VI. RESULTS

To illustrate the performance of the QI(s, S) policy we
compare it with the Q(s, S) policy, a policy which controls
items in I and Ic with independent Q(s, S) policies and the
Atkins-Iyogun-Viswanathan lower bound [11] on a simple
4-item problem (see Table 1). In this problem we fixed
leadtimes L = 0.1, fixed penalties π = 0 and minor
order setup costs ki = 0.5 for each item. The holding
and proportional penalty costs are hi = pi = 1 for items
i ∈ I := {1, 2}, while the demand rates are λi = 1 for
items i ∈ Ic = {3, 4}. The other parameters are varied.

The table clearly demonstrates the benefits of QI(s, S)
policies over Q(s, S) policies and to a lesser extent the
benefits of QI(s, S) policies over policies that treat expen-
sive items independently. Indeed, the cost of the Q(s, S)
policy is always between 9% and 56% more than that of
the QI(s, S) policy. While Theorem 1 would suggest that
such benefits only become noticeable when some items are



TABLE I
COST RATES OF QI(s, S) AND Q(s, S) POLICIES FOR 4-ITEM

PROBLEM.

k h3:4 λ1:2 QI(s, S) Q(s, S) Indep- Lower
= p3:4 endent Bound

1 3 1 5.09 5.55 5.93 3.80
1 8 2 7.06 8.91 7.84 5.64
2 27 2 13.01 18.88 14.36 10.44
3 64 3 23.33 36.32 25.22 19.39
3 125 4 36.35 56.56 38.31 32.08

far more expensive than other items, the first row shows
that the benefits are apparent even when items 3 and 4 are
only three times more expensive than the other items. Such
a ratio of three in holding cost rates could clearly arise in
practice.

VII. CONCLUSION

We showed that commonly-used policies for the stochas-
tic joint replenishment problem do not provide a good
approximation to an optimal policy. Indeed the cost of
such policies can grow without bound relative to the cost
of an optimal policy if some items are significantly more
expensive than others.

To overcome this weakness, we proposed a QI(s, S)
policy in which items are ordered if an expensive item is
demanded or if demand for other items reaches Q. Our
results demonstrate that this policy does indeed prevent this
weakness and even provides benefits when the ratio of the
cost of expensive items to other items is only a factor of
three.

For future work, it would be of interest to consider
extensions of the QI(s, S) policy which may be able to
guarantee a constant-factor approximation to the optimal
policy for the stochastic joint replenishment problem.
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