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Abstract—In synchronized games players make their moves
simultaneously rather than alternately. Synchronized Triomi-
neering is the synchronized version of Triomineering, a classic
two-player combinatorial game. Experimental results for small
m× n boards with m+ n ≤ 14 and theoretical results for the
n× 7 and n× 8 boards are presented.

Index Terms—combinatorial game, synchronized game, Syn-
chronized Triomineering.

I. INTRODUCTION

THE game of Triomineering is a two-player game with
perfect information, proposed in 2004 by Blanco and

Fraenkel [1]. In Triomineering two players, usually denoted
by Vertical and Horizontal, take turns in placing ”straight”
triominoes (3× 1 tile) on a checkerboard.

Vertical is only allowed to place its triominoes vertically
and Horizontal is only allowed to place its triominoes
horizontally on the board. Triominoes are not allowed to
overlap and the first player that cannot find a place for one
of its triominoes loses. After a time the remaining space may
separate into several disconnected regions, and each player
must choose into which region to place a triomino.

In the game of Synchronized Triomineering [2], a general
instance and the legal moves for Vertical and Horizontal are
defined exactly in the same way as defined for the game of
Triomineering.

There is only one difference: Vertical and Horizontal make
their legal moves simultaneously, therefore, triominoes are
allowed to overlap if they have a 1× 1 tile in common. We
note that 1×1 overlap is only possible within a simultaneous
move. At the end, if both players cannot make a move, then
the game ends in a draw, else if only one player can still
make a move, then he/she is the winner.

In Synchronized Triomineering, for each player there exist
three possible outcomes:

• The player has a winning strategy (ws) independently
of the opponent’s strategy, or

• The player has a drawing strategy (ds), i.e., he/she can
always get a draw in the worst case, or

• The player has a losing strategy (ls), i.e., he/she does
not have a strategy for winning or for drawing.

Table I shows all the possible cases. It is clear that if one
player has a winning strategy, then the other player has
neither a winning strategy nor a drawing strategy. Therefore,
the cases ws − ws, ws − ds, and ds − ws never happen.
As a consequence, if G is an instance of Synchronized
Triomineering, then we have six possible legal cases:

• G = D if both players have a drawing strategy, and the
game will always end in a draw under perfect play, or

• G = V if Vertical has a winning strategy, or
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TABLE I
THE POSSIBLE OUTCOMES IN SYNCHRONIZED TRIOMINEERING

Horizontal ls Horizontal ds Horizontal ws

Vertical ls G = V HD G = HD G = H

Vertical ds G = V D G = D –

Vertical ws G = V – –

• G = H if Horizontal has a winning strategy, or
• G = V D if Vertical can always get a draw in the

worst case, but he/she could be able to win if Horizontal
makes a wrong move, or

• G = HD if Horizontal can always get a draw in the
worst case, but he/she could be able to win if Vertical
makes a wrong move, or

• G = V HD if both players have a losing strategy and
the outcome is totally unpredictable.

II. EXAMPLES OF SYNCHRONIZED TRIOMINEERING

The game

always ends in a draw, therefore G = D.
In the game

Vertical has a winning strategy moving in the second (or in
the third) column, therefore G = V .

In the game

if Vertical moves in the first column we have two possibilities

or

therefore, either Vertical wins or the game ends in a draw.
Symmetrically, if Vertical moves in the third column we have
two possibilities

or



TABLE II
OUTCOMES FOR RECTANGLES IN SYNCHRONIZED TRIOMINEERING

3 4 5 6 7 8 9 10 11

3 D V V D V V D V V

4 H D V H H HD H H

5 H H D H H H H

6 D V V D V V

7 H V V H ?

8 H VD V H

9 D V V

10 H V

11 H

therefore, either Vertical wins or the game ends in a draw. It
follows G = V D.

Symmetrically, in the game

either Horizontal wins or the game ends in a draw therefore,
G = HD.

In the game

each player has 4 possible moves. For every move of Vertical,
Horizontal can win or draw (and sometimes lose); likewise,
for every move by Horizontal, Vertical can win or draw (and
sometimes lose). As a result it follows that G = V HD.

III. NEW RESULTS

Table II shows the results obtained using an exhaustive
search algorithm for n ×m boards with n + m ≤ 14. The
case 7× 7 is still unsolved but, because of the symmetry of
the board, either G = D or G = V HD.

Theorem 1: Let G be a n × 7 board of Synchronized
Triomineering with n ≥ 27. Then, Vertical has a winning
strategy.

Proof: In the beginning, Vertical will always move into
the third and the fifth column of the board, i.e., (k, c), (k+
1, c), (k+2, c), (k, e), (k+1, e), and (k+2, e), where k ≡ 1
(mod 3), as shown in Fig. 1.

When Vertical cannot move anymore into the third and the
fifth column, let us imagine that we divide the main rectangle
into 3× 7 sub-rectangles starting from the top of the board
(by using horizontal cuts). Of course, if n 6≡ 0 (mod 3),
then the last sub-rectangle will be of size either 1×7 or 2×7,
and Horizontal will be able to make respectively either two
more move or four more moves.
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Fig. 1. Vertical strategy on the n×7 board of Synchronized Triomineering.

We can classify all these sub-rectangles into 13 different
classes according to:

• The number of vertical triominoes already placed in the
sub-rectangle (vt),

• The number of horizontal triominoes already placed in
the sub-rectangle (ht),

• The number of moves that Vertical is able to make in
the worst case, in all the sub-rectangles of that class
(vm),

• The number of moves that Horizontal is able to make
in the best case, in all the sub-rectangles of that class
(hm),

as shown in Table III. We denote with |A| the number of
sub-rectangles in the A class, with |B| the number of sub-
rectangles in the B class, and so on. The value of vm in
all the sub-rectangles belonging to the class D, E, H, and I
considered as a group is

2|D|+ d|D|/2e+ d|E|/2e+ 2|H|+ d|I|/2e

The last statement is true under the assumption that Vertical
moves first into the sub-rectangles of class H as long as they
exist, second into the sub-rectangles of class D, E, and I as
long as they exist, and finally into the sub-rectangles of the
other classes. When Vertical cannot move anymore into the
third and the fifth column, both Vertical and Horizontal have
placed the same number of triominoes, therefore

2|A|+ |B| = |E|+ 2|F |+ 3|G|+ |H|+ 2|I|+
3|J |+ 4|K|+ 5|L|+ 6|M | (1)

Let us prove by contradiction that Vertical can make a
larger number of moves than Horizontal. Assume therefore
moves(V ) ≤ moves(H) using the data in Table III

5|A|+ 3|B|+ |C|+ 2|D|+ d|D|/2e+
d|E|/2e+ 2|H|+ d|I|/2e ≤

2|D|+ 2|E|+ |F |+ 2|H|+ 4|I|+



TABLE III
THE 13 CLASSES FOR 3× 7 SUB-RECTANGLES

vt ht vm hm Example

A 2 0 5|A| 0

B 2 1 3|B| 0

C 2 2 |C| 0

D 1 1 ∗ 2|D|

E 1 2 ∗ 2|E|

F 1 3 0 |F |

G 1 4 0 0

H 0 1 ∗ 2|H|

I 0 2 ∗ 4|I|

J 0 3 0 3|J |

K 0 4 0 2|K|

L 0 5 0 |L|

M 0 6 0 0
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Fig. 2. Vertical strategy on the n×8 board of Synchronized Triomineering.

3|J |+ 2|K|+ |L|+ 4

and applying Equation 1

|A|+ |B|+ |C|+ d|D|/2e+ d|E|/2e+
3|F |+ 6|G|+ 2|H|+ d|I|/2e+

3|J |+ 6|K|+ 9|L|+ 12|M | ≤ 4

which is false because

|A|+ |B|+ |C|+ |D|+ |E|+ |F |+ |G|+
|H|+ |I|+ |J |+ |K|+ |L|+ |M | = bn/3c

and by hypothesis n ≥ 27. Therefore, moves(V ) ≤
moves(H) does not hold and consequently moves(H) <
moves(V ). We observe that if n ≡ 1 (mod 3), then the
theorem holds for n ≥ 16 and if n ≡ 0 (mod 3), then the
theorem holds for n ≥ 3.

Theorem 2: Let G be a n × 8 board of Synchronized
Triomineering with n ≥ 15. Then, Vertical has a winning
strategy.

Proof: In the beginning, Vertical will always move into
the third and the sixth column of the board, i.e., (k, c), (k+
1, c), (k+2, c), (k, f), (k+1, f), and (k+2, f), where k ≡ 1
(mod 3), as shown in Fig. 2. When Vertical cannot move
anymore into the third and the sixth column, let us imagine
that we divide the main rectangle into 3 × 8 sub-rectangles
starting from the top of the board (by using horizontal cuts).
Of course, if n 6≡ 0 (mod 3), then the last sub-rectangle
will be of size either 1 × 8 or 2 × 8, and Horizontal will
be able to make respectively either two more move or four
more moves.

We can classify all these sub-rectangles into 12 different
classes according to:

• The number of vertical triominoes already placed in the
sub-rectangle (vt),

• The number of horizontal triominoes already placed in
the sub-rectangle (ht),



TABLE IV
THE 12 CLASSES FOR 3× 8 SUB-RECTANGLES

vt ht vm hm Example

A 2 0 6|A| 0

B 2 1 4|B| 0

C 2 2 2|C| 0

D 1 1 ∗ 2|D|

E 1 2 ∗ 2|E|

F 1 3 0 |F |

G 1 4 0 0

H 0 2 ∗ 4|H|

I 0 3 0 3|I|

J 0 4 0 2|J |

K 0 5 0 |K|

L 0 6 0 0

• The number of moves that Vertical is able to make in
the worst case, in all the sub-rectangles of that class
(vm),

• The number of moves that Horizontal is able to make
in the best case, in all the sub-rectangles of that class
(hm),

as shown in Table IV.
We denote with |A| the number of sub-rectangles in the

A class, with |B| the number of sub-rectangles in the B
class, and so on. The value of vm in all the sub-rectangles
belonging to the class D, E, and H considered as a group is

3|D|+ |E|+ d3|I|/4e

The last statement is true under the assumption that Vertical
moves first into the sub-rectangles of class H as long as they
exist, second into the sub-rectangles of class D and E as long
as they exist, and finally into the sub-rectangles of the other
classes.

When Vertical cannot move anymore into the third and the
sixth column, both Vertical and Horizontal have placed the
same number of triominoes, therefore

2|A|+ |B| = |E|+ 2|F |+ 3|G|+ 2|H|+ 3|I|+
4|J |+ 5|K|+ 6|L| (2)

Let us prove by contradiction that Vertical can make a
larger number of moves than Horizontal. Assume therefore
moves(V ) ≤ moves(H) using the data in Table IV

6|A|+ 4|B|+ 2|C|+ 3|D|+ |E|+ d3|H|/4e ≤
2|D|+ 2|E|+ |F |+ 4|H|+ 3|I|+ 2|J |+ |K|+ 4

and applying Equation 2

2|A|+ 2|B|+ 2|C|+ |D|+ |E|+ 3|F |+ 6|G|+
d3|H|/4e+ 3|I|+ 6|J |+ 9|K|+ 12|L| ≤ 4

which is false because

|A|+ |B|+ |C|+ |D|+ |E|+ |F |+ |G|+
|H|+ |I|+ |J |+ |K|+ |L| = bn/3c

and by hypothesis n ≥ 15. Therefore, moves(V ) ≤
moves(H) does not hold and consequently moves(H) <
moves(V ). We observe that if n ≡ 1 (mod 3), then the
theorem holds for n ≥ 10 and if n ≡ 0 (mod 3), then the
theorem holds for n ≥ 3.

By symmetry the following two theorems hold.
Theorem 3: Let G be a 7 × n board of Synchronized

Triomineering with n ≥ 27. Then, Horizontal has a winning
strategy.

Theorem 4: Let G be a 8 × n board of Synchronized
Triomineering with n ≥ 15. Then, Horizontal has a winning
strategy.
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